Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Am Soc Mass Spectrom ; 35(5): 960-971, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38616559

ABSTRACT

In Asia, some herbal preparations have been found to be adulterated with undeclared synthetic medicines to increase their therapeutic efficiency. Many of these adulterants were found to be toxic when overdosed and have been documented to bring about severe, even life-threatening acute poisoning events. The objective of this study is to develop a rapid and sensitive ambient ionization mass spectrometric platform to characterize the undeclared toxic adulterated ingredients in herbal preparations. Several common adulterants were spiked into different herbal preparations and human sera to simulate the clinical conditions of acute poisoning. They were then sampled with a metallic probe and analyzed by the thermal desorption-electrospray ionization mass spectrometry. The experimental parameters including sensitivity, specificity, accuracy, and turnaround time were prudently optimized in this study. Since tedious and time-consuming pretreatment of the sample is unnecessary, the toxic adulterants could be characterized within 60 s. The results can help emergency physicians to make clinical judgments and prescribe appropriate antidotes or supportive treatment in a time-sensitive manner.


Subject(s)
Drug Contamination , Plant Preparations , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Humans , Plant Preparations/analysis , Plant Preparations/chemistry , Emergency Medical Services/methods
2.
Food Res Int ; 184: 114276, 2024 May.
Article in English | MEDLINE | ID: mdl-38609208

ABSTRACT

Inulin, a polysaccharide characterized by a ß-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.


Subject(s)
Biological Products , Cynara scolymus , Garlic , Helianthus , Inulin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Antioxidants , Magnetic Resonance Spectroscopy , Lasers
3.
Food Res Int ; 181: 114136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448105

ABSTRACT

To achieve an integrative understanding of the spatial distribution and chronological flavoring compounds accumulation, desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) and multi-omics techniques were performed on the leaf samples collected from the enzymatic-catalyzed-process (ECP) stage of Tieguanyin oolong tea manufacturing. The result of DESI-MSI visualization indicated transform or re-distribution of catechins, flavonols and amino acids were on-going attributing to the multi-stress over ECP stage. Out of identified 2621 non-volatiles and 45,771 transcripts, 43 non-volatiles and 12 co-expressed pathways were screened out as biomarkers and key cascades in response to adverse conditions. The targeted metabolic analysis on the characteristic flavoring compounds showed that the accumulations of free amino acids were enhanced, while catechins, flavonol glycosides, and alkaloids exhibited dynamic changes. This result suggests withering and turning-over process are compatible and collectively regulate the metabolic accumulation and development of flavoring metabolites, facilitating to the development of characteristic quality of Tieguanyin tea.


Subject(s)
Amino Acids , Catechin , Commerce , Flavonols , Flavoring Agents , Catalysis , Tea
4.
Environ Sci Technol ; 58(6): 3031-3040, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38299499

ABSTRACT

In this study, we used a membrane capacitive deionization device with a reservoir (R-MCDI) to enrich phosphorus (P) from synthetic wastewater. This R-MCDI had two small-volume electrode chambers, and most of the electrolyte was contained in the reservoir, which was circulated along the electrode chambers. Compared with conventional MCDI, R-MCDI exhibited a phosphate removal rate of 0.052 µmol/(cm2·min), approximately double that of MCDI. This was attributed to R-MCDI's utilization of OH- alternative adsorption to remove phosphate from the influent. Noticing that around 73.9% of the removed phosphate was stored in the electrolyte in R-MCDI, we proposed a novel off-flow desorption operation to enrich the removed phosphate in the reservoir. Exciting results from the multicycle experiment (∼8 h) of R-MCDI showed that the PO43--P concentration in the reservoir increased all the way from the initial 152 mg/L to the final 361 mg/L, with the increase in the P charge efficiency from 5.5 to 22.9% and the decrease in the energy consumption from 28.2 to 6.8 kW h/kg P. The P recovery performance of R-MCDI was evaluated by viewing other similar studies, which revealed that R-MCDI in this study achieved superior P enrichment with low energy consumption and that the off-flow desorption proposed here considerably simplified the operation and enabled continuous P enrichment.


Subject(s)
Phosphorus , Water Purification , Water Purification/methods , Electrolytes , Wastewater , Adsorption , Electrodes , Phosphates
5.
Environ Sci Pollut Res Int ; 31(7): 10417-10429, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200192

ABSTRACT

There is a growing need to develop new strategies for rare earth element (REE) recovery from secondary resources. Herein, a novel approach to utilize biogenic silica (from rice husk) and metakaolin was employed to fabricate magnetic geopolymer (MGP) by incorporating metallic iron. The fabricated MGP adsorbent material was used to uptake Ce3+, La3+, and Nd3+ from synthetic solutions and real phosphogypsum leachate in batch and column modes. The MGP offers a negatively charged surface at pH above 2.7, and the uptake of REEs rises from pH 3 to 6. The kinetic study validated that the kinetics was much faster for Nd3+, followed by La3+ and Ce3+. A thermodynamic investigation validated the exothermic nature of the adsorption process for all selected REEs. The desorption experiment using 2 mol L-1 H2SO4 as the eluent demonstrated approximately 100% desorption of REEs from the adsorbent. After six adsorption-desorption cycles, the MGP maintained a high adsorption performance up to cycle five before suffering a significant decrease in performance in cycle six. The effectiveness of MGP was also assessed for its applicability in recovering numerous REEs (La3+, Ce3+, Pr3+, Sm3+, and Nd3+) from real leachate from phosphogypsum wastes, and the highest recovery was achieved for Nd3+ (95.03%) followed by Ce3+ (86.33%). The operation was also feasible in the column presenting suitable values of the length of the mass transfer zone. The findings of this investigation indicate that MGP adsorbent prepared via a simple route has the potential for the recovery of REEs from synthetic and real samples in both batch and continuous operations modes.


Subject(s)
Calcium Sulfate , Metals, Rare Earth , Oryza , Phosphorus , Adsorption , Magnetic Phenomena
6.
Int J Biol Macromol ; 260(Pt 2): 129275, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242408

ABSTRACT

Adsorption-based treatment of sulfate contaminated water sources present challenges due to its favourable hydration characteristics. Herein, a copper-modified granular chitosan-based biocomposite (CHP-Cu) was prepared and characterized for its sulfate adsorption properties at neutral pH via batch equilibrium and fixed-bed column studies. The CHP-Cu adsorbent was characterized by complementary methods: spectroscopy (IR, Raman, X-ray photoelectron), thermal gravimetry analysis (TGA) and pH-based surface charge analysis. Sulfate adsorption at pH 7.2 with CHP-Cu follows the Sips isotherm model with a maximum adsorption capacity (407 mg/g) that exceeds most reported values of granular biosorbents at similar conditions. For the dynamic adsorption study, initial sulfate concentration, bed height, and flow rate were influential parameters governing sulfate adsorption. The Thomas and Yoon-Nelson models yield a sulfate adsorption capacity (146 mg/g) for the fixed bed system at optimized conditions. CHP-Cu was regenerated over 5 cycles (33 % to 31 %) with negligible Cu-leaching. The adsorbent also displays excellent sulfate uptake properties, regenerability, and sustainable adsorbent properties for effective point-of-use sulfate remediation in aqueous media near neutral pH (7.2). This sulfate remediation strategy is proposed for other oxyanion systems relevant to contaminated environmental surface and groundwater resources.


Subject(s)
Chitosan , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Copper/chemistry , Sulfates , Water Pollutants, Chemical/chemistry , Water , Adsorption , Hydrogen-Ion Concentration , Kinetics
7.
J Environ Manage ; 353: 120207, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38281428

ABSTRACT

The release of uranium from uranium tailings into the aqueous environment is a complex process controlled by a series of interacting geochemical reactions. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling and mixed to analyze the fugacity state of U. Static leaching experiments of U at different pH, oxidant concentration and solid-to-liquid ratios and dynamic leaching experiments of U at different pH were carried out, and the adsorption and desorption behaviour of U in five representative stratigraphic media were investigated. The results show that U is mainly present in the residue state in uranium tailings, that U release is strong in the lower pH range, that the leached U is mainly in the form of U(VI), mainly from the water-soluble, Fe/Mn oxides and exchangeable fraction of uranium tailings, and that the reduction in U leaching at higher pH is mainly due to the combined effect of precipitation formation and larger particle size of platelets in uranium tailings. Experiments with different oxidant concentrations and solid-liquid ratios showed that the oxygen-enriched state and low solid-liquid ratios were favorable for the leaching of U from uranium tailings. Adsorption and desorption experiments show that U is weakly adsorbed in representative strata, reversibly adsorbed, and that U is highly migratory in groundwater. The present research results have important guiding significance for the management of existing uranium tailings ponds and the control of U migration in groundwater, which is conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.


Subject(s)
Soil Pollutants, Radioactive , Uranium , Water Pollutants, Radioactive , Uranium/analysis , Adsorption , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Water , Oxidants
8.
J Chromatogr A ; 1715: 464621, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38198876

ABSTRACT

White tea contains the highest flavonoids compared to other teas. While there have been numerous studies on the components of different tea varieties, research explicitly focusing on the flavonoid content of white tea remains scarce, making the need for a good flavonoid purification process for white tea even more important. This study compared the adsorption and desorption performance of five types of macroporous resins: D101, HP20, HPD500, DM301, and AB-8. Among the tested resins, AB-8 was selected based on its best adsorption and desorption performance to investigate the static adsorption kinetics and dynamic adsorption-desorption purification of white tea flavonoids. The optimal purification process was determined: adsorption temperature 25 °C, crude tea flavonoid extract pH 3, ethanol concentration 80 %, sample loading flow rate and eluent flow rate 1.5 BV/min, and eluent dosage 40 BV. The results indicated that the adsorption process followed pseudo-second-order kinetics. Under the above purification conditions, the purity of the total flavonoids in the purified white tea flavonoid increased from approximately 17.69 to 46.23 %, achieving a 2.61-fold improvement, indicating good purification results. The purified white tea flavonoid can be further used for nutraceutical and pharmaceutical applications.


Subject(s)
Flavonoids , Resins, Synthetic , Flavonoids/analysis , Adsorption , Resins, Synthetic/chemistry , Plant Extracts/chemistry , Resins, Plant , Tea
9.
J Exp Bot ; 75(6): 1654-1670, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37889862

ABSTRACT

Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.


Subject(s)
Metabolome , Plants , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Plants/metabolism , Plant Roots/metabolism , Seeds
10.
Anal Bioanal Chem ; 415(27): 6825-6838, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37848578

ABSTRACT

This work aims to rapidly detect toxic alkaloids in traditional Chinese medicines (TCM) using laser desorption ionization mass spectrometry (LDI-MS). We systematically investigated twelve nanomaterials (NMs) as matrices and found that MoS2 and defect-rich-WO3 (D-WO3) were the best NMs for alkaloid detection. MoS2 and D-WO3 can be used directly as matrices dipped onto conventional ground steel target plates. Additionally, they can be conveniently fabricated as three-dimensional (3D) NM plates, where the MoS2 or D-WO3 NM is doped into resin and formed using a 3D printing process. We obtained good quantification of alkaloids using a chemothermal compound as an internal standard and detected related alkaloids in TCM extracts, Fuzi (Aconiti Lateralis Radix Praeparata), Caowu (Aconiti Kusnezoffii Radix), Chuanwu (Aconiti Radix), and Houpo (Magnoliae Officinalis Cortex). The work enabled the advantageous "dip and measure" method, demonstrating a simple and fast LDI-MS approach that achieves clean backgrounds for alkaloid detection. The 3D NM plates also facilitated mass spectrometry imaging of alkaloids in TCMs. This method has potential practical applications in medicine and food safety. Doped nanomaterial facilitates 3D printing target plate for rapid detection of alkaloids in laser desorption/ionization mass spectrometry.


Subject(s)
Aconitum , Alkaloids , Drugs, Chinese Herbal , Molybdenum , Chromatography, High Pressure Liquid/methods , Alkaloids/analysis , Mass Spectrometry/methods , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Aconitum/chemistry
11.
Environ Sci Pollut Res Int ; 30(52): 111903-111915, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37540418

ABSTRACT

Standalone and combined leachate treatment mechanisms suffer from low treatment efficiencies due to leachate's complex, toxic, and recalcitrant nature. Bioelectrochemical system (BES) was used for the first time to investigate the treatment of leachate mixed wastewater (WW) (i.e., diluted leachate, DL) (DL ≈ L:WW = 1:4) to minimize these complexities. A natural clay (palygorskite) was used as adsorbent material for further treatment on the BES effluent (EBES) while using two different masses and sizes (i.e., 3 g and 6 g of raw crushed clay (RCC) and 75 µ of sieved clay (75 µSC)). According to bioelectrochemical performance, BES, when operated with low external resistance (Rext = 1 Ω) (BES 1), showed a high removal of COD and NH3-N with 28% and 36%, respectively. On the other hand, a high Rext (100 Ω, BES 100) resulted in low removal of NH3-N with 10% but revealed high COD removal by 78.26%. Moreover, the 6 g doses of 75 µSC and RCC showed the maximum COD removals of 62% and 38% and showed the maximum removal of NH3-N with an average range of 40% for both sizes. After efficient desorption, both clay sizes resulted in regeneration performance which was observed with high COD (75%) and NH3-N (34%) on EBES. Therefore, when BES and clay adsorption technique sequentially treated and achieved with combined removal of ~ 98% for COD and ~ 80% of NH3-N, it demonstrated an efficient treatment method for DL treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Water Pollutants, Chemical , Humans , Clay , Adsorption , Water Pollutants, Chemical/analysis , Wastewater
12.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569435

ABSTRACT

Over the past two decades, there has been increasing interest in the use of low-cost and effective sorbents in water treatment. Hybrid chitosan sorbents are potential materials for the adsorptive removal of phosphorus, which occurs in natural waters mainly in the form of orthophosphate(V). Even though there are numerous publications on this topic, the use of such sorbents in industrial water treatment and purification is limited and controversial. However, due to the explosive human population growth, the ever-increasing global demand for food has contributed to the consumption of phosphorus compounds and other biogenic elements (such as nitrogen, potassium, or sodium) in plant cultivation and animal husbandry. Therefore, the recovery and reuse of phosphorus compounds is an important issue to investigate for the development and maintenance of a circular economy. This paper characterizes the problem of the presence of excess phosphorus in water reservoirs and presents methods for the adsorptive removal of phosphate(V) from water matrices using chitosan composites. Additionally, we compare the impact of modifications, structure, and form of chitosan composites on the efficiency of phosphate ion removal and adsorption capacity. The state of knowledge regarding the mechanism of adsorption is detailed, and the results of research on the desorption of phosphates are described.


Subject(s)
Chitosan , Water Pollutants, Chemical , Water Purification , Humans , Phosphates , Chitosan/chemistry , Wastewater , Phosphorus , Adsorption , Water Purification/methods , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Kinetics
13.
J Sci Food Agric ; 103(14): 7006-7020, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37319237

ABSTRACT

BACKGROUND: Recovery of high-purity tea saponin (TS), a promising non-ionic surfactant with well-documented properties, is one of the major challenges to broadening its industrial applications. In this study, an innovative and sustainable strategy for the highly-efficient purification of TS was developed by using well-designed highly-porous polymeric adsorbents. RESULTS: The prepared Pp-A with controllable macropores (~96 nm) and appropriate surface hydrophobic properties was found more favorable for achieving high adsorption efficiency towards TS/TS-micelles. Kinetic results showed the adsorption follows the pseudo-second-order model (R2 = 0.9800), and the Langmuir model is more qualified to explicate the adsorption isotherms with Qe-TS ~ 675 mg g-1 . Thermodynamic studies revealed the monolayer adsorption of TS was an endothermic process that was conducted spontaneously. Interestingly, ethanol-driven desorption (90% v/v ethanol) of TS was rapidly (< 30 min) complete due to the possible ethanol-mediated disassembling of TS-micelles. A possible mechanism that involves the interactions between the adsorbents and TS/TS-micelles, the formation and disassembling of TS-micelles was proposed to account for the highly efficient purification of TS. Afterwards, Pp-A-based adsorption method was developed to purify TS directly from industrial camellia oil production. Through selective adsorption, pre-washing, and ethanol-driven desorption, the applied Pp-A enabled the direct isolation of high-purity TS (~96%) with a recovery ratio > 90%. Notably, Pp-A exhibited excellent operational stability and is of high potential for long-term industrial application. CONCLUSION: Results ensured the practical feasibility of the prepared porous adsorbents in purifying TS, and the proposed methodology is a promising industrial-scale purification strategy. © 2023 Society of Chemical Industry.


Subject(s)
Camellia , Saponins , Water Pollutants, Chemical , Water Purification , Camellia/chemistry , Porosity , Micelles , Polymers , Adsorption , Tea/chemistry , Ethanol , Kinetics , Water Pollutants, Chemical/chemistry , Water Purification/methods
14.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298914

ABSTRACT

Traditional organic amines exhibit inferior desorption performance and high regeneration energy consumption. The implementation of solid acid catalysts presents an efficacious approach to mitigate regeneration energy consumption. Thus, investigating high-performance solid acid catalysts holds paramount importance for the advancement and implementation of carbon capture technology. This study synthesized two Lewis acid catalysts via an ultrasonic-assisted precipitation method. A comparative analysis of the catalytic desorption properties was conducted, encompassing these two Lewis acid catalysts and three precursor catalysts. The results demonstrated that the CeO2-γ-Al2O3 catalyst demonstrated superior catalytic desorption performance. Within the desorption temperature range of 90 to 110 °C, the average desorption rate of BZA-AEP catalyzed by the CeO2-γ-Al2O3 catalyst was 87 to 354% greater compared to the desorption rate in the absence of the catalyst, and the desorption temperature can be reduced by approximately 10 °C. A comprehensive analysis of the catalytic desorption mechanism of the CeO2-γ-Al2O3 catalyst was conducted, and indicated that the synergistic effect of CeO2-γ-Al2O3 conferred a potent catalytic influence throughout the entire desorption process, spanning from the rich solution to the lean solution.


Subject(s)
Aluminum Oxide , Cerium , Carbon Dioxide , Lewis Acids , Catalysis
15.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240043

ABSTRACT

Industrial wastewater is the main source of an excessive amount of molybdenum (Mo) in natural ecosystems. It is necessary to remove Mo from wastewater before it is discharged into the environment. Molybdate ion(VI) is the most common form of Mo in natural reservoirs and industrial wastewater. In this work, the sorption removal of Mo(VI) from an aqueous medium was evaluated using aluminum oxide. The influence of such factors as the pH of the solution and the temperature was evaluated. Three adsorption isotherms, namely, Langmuir, Freundlich and Temkin, were used to describe the experimental results. It was found that the pseudo-first order kinetic model better fits the kinetic data of the adsorption process, and the maximum Mo(VI) adsorption capacity was 31 mg/g at 25 °C and pH 4. The thermodynamic parameters indicated that the process of Mo(VI) adsorption on Al2O3 was exothermic and spontaneous. It was shown that the adsorption of Mo strongly depends on pH. The most effective adsorption was observed at pH values below 7. Experiments on adsorbent regeneration showed that Mo(VI) can be effectively desorbed from the aluminum oxide surface into a phosphate solution in a wide range of pH values. After the desorption of Mo(VI) in a phosphate solution, alumina was found to be suitable for repeating the procedure at least five times.


Subject(s)
Molybdenum , Water Pollutants, Chemical , Wastewater , Aluminum Oxide , Adsorption , Ecosystem , Thermodynamics , Phosphates , Hydrogen-Ion Concentration , Kinetics
16.
Environ Sci Pollut Res Int ; 30(23): 63915-63931, 2023 May.
Article in English | MEDLINE | ID: mdl-37059955

ABSTRACT

The immobilized lanthanum-modified biomass ash gel ball (CS-La-BA) was prepared with lanthanum chloride, biomass ash, and chitosan to remove phosphorus from water. CS-La-BA was characterized by several analytical techniques. SEM-EDS results showed that CS-La-BA has a well-developed pore structure and abundant adsorption sites. The surface area of BET is 75.46 m2/g and the pore size is mostly at 1.84 nm, indicating that it is a composite porous material with abundant microporous structure. The presence of La on biomass ash and the charge property of CS-La-BA were determined by XRD and zeta potential, and the adsorption mechanism of CS-La-BA on phosphate, including precipitation, electrostatic adsorption, ligand exchange, and complexation mechanism, was revealed by FTIR and XPS. The effects of pH, temperature, adsorbent dosage, initial phosphorus concentration, adsorption time, and coexisting ions on the phosphorus uptake performance of CS-La-BA were discussed. The adsorption experiment results show that the phosphorus removal rate of CS-La-BA can reach 95.6%. Even after six desorption and regeneration experiments, the phosphorus removal rate still reaches 68.13%, which indicates that CS-La-BA has good phosphorus adsorption performance and desorption and regeneration capacity. The phosphorus adsorption process of CS-La-BA conforms to the Freundlich isotherm adsorption equation and general-order kinetic model. The internal diffusion of the adsorption process is dominant, and the maximum adsorption capacity is 31.73 mg/g (25 ℃). Thermodynamic experiments show that the adsorption process of phosphorus by CS-La-BA is a spontaneous entropy increase process.


Subject(s)
Chitosan , Water Pollutants, Chemical , Phosphorus , Chitosan/chemistry , Lanthanum/chemistry , Adsorption , Biomass , Kinetics , Hydrogen-Ion Concentration
17.
Ecotoxicol Environ Saf ; 258: 114955, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37121076

ABSTRACT

The effect of mean flow velocity on phosphorus (P) partitioning between water and sediment has received much attention in recent decades. However, the impact of turbulence on the efficiency and capability of sediment adsorbing and desorbing dissolved inorganic phosphorus (DIP) is still unclear. A series of contrasting experiments on the sediment sorption and desorption of DIP with the flow turbulence kinetic energy (TKE) ranging from 1.95 to 2.93 pa have been conducted. It was found that the adsorbed P onto unit mass of sediment increases with the increase in TKE. It is because an increase in TKE results in a rise in the effective adsorption capacity of sediment (bm) by 20-30% during the adsorption process. The bm shows the maximum rise from 0.18 to 0.25 mg/g when TKE increases from 1.95 to 2.93 pa with a fixed sediment concentration of 0.5 g/L. To account for the direct effect of TKE on P adsorption, the Langmuir model is modified by introducing a newly defined coefficient (fA-TKE). The fA-TKE shows a good linear relationship with TKE. Comparison between the modified model and the classic model shows that the amount of adsorbed P could be overestimated by over 50% if the direct effect of turbulence intensity is ignored. The experimental data show that the increase in TKE also enhances the desorption process, with the degree of P desorption (Ddes) increased by 44%. The relation between Ddes and TKE can be well represented using a logarithmic function to quantify the direct effect of turbulence intensity on desorption of P.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Geologic Sediments , Adsorption , Water , Water Pollutants, Chemical/analysis
18.
Ying Yong Sheng Tai Xue Bao ; 34(3): 708-716, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37087654

ABSTRACT

The size of particles determines the adsorption reaction. In this study, three different particle sizes of biochar (0.25-1 mm, 0.075-0.25 mm, <0.075 mm) were produced from rapeseed straw (SBC) and chicken manure (MBC). The biochar was mixed with high phosphorus (P) soil and low P soil and then incubated for 30 days. We conducted isothermal P sorption and desorption experiments to evaluate the effects of biochar particle size on sorption-desorption characteristics of soil P, and analyzed soil properties associated with P sorption. The results showed that P sorption capacity of SBC and MBC in the water system was highest for the smallest particle size (<0.075 mm) (SBC: 43125 mg·kg-1, MBC: 20083 mg·kg-1), followed by the intermediate particle size (0.075-0.25 mm) (SBC: 37376 mg·kg-1, MBC: 13199 mg·kg-1) and the largest particle size (0.25-1 mm) (SBC: 27749 mg·kg-1, MBC: 12251 mg·kg-1). However, there was little difference in soil P sorption between the three particle sizes of the same biochar in the soil system. In comparison with no biochar treatment, the addition of SBC increased the Langmuir P sorption maximum (Smax) by 236.8%-755.7%, and decreased soil P desorption rate. The addition of MBC increased Smax, but the enhancement was less than that of SBC. Soil P desorption rate was increased by 7.2%-295.9%. Both SBC and MBC significantly increased the contents of soil total P, available P, and exchangeable calcium (Ca) and magnesium (Mg). The increases in Ca and Mg contents due to biochar addition was 64.0%-257.1% (SBC) and 39.1%-205.3% (MBC), respectively. The contents of soil exchangeable Ca and Mg were positively correlated with Smax. These results suggested that biochar particle size had little effect on soil P sorption, but the enrichment of Ca and Mg due to biochar addition played a critical role in regulating soil P sorption. The rapeseed straw biochar had a high adsorption capacity for soil P, making it suitable for improving the P fixation capacity of soil rich in P and reducing the loss of excess P. Chicken manure biochar could be used to improve the P availability of low P soils and increase the contents of available P.


Subject(s)
Soil Pollutants , Soil , Animals , Particle Size , Phosphorus , Manure , Charcoal , Adsorption , Chickens , Calcium
19.
Molecules ; 28(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903566

ABSTRACT

A batch of Fe-modified biochars MS (for soybean straw), MR (for rape straw), and MP (for peanut shell) were prepared by impregnating biochars pyrolyzed from three different raw biomass materials, i.e., peanut shell, soybean straw, and rape straw, with FeCl3 solution in different Fe/C impregnation ratios (0, 0.112, 0.224, 0.448, 0.560, 0.672, and 0.896) in this research. Their characteristics (pH, porosities, surface morphologies, crystal structures, and interfacial chemical behaviors) and phosphate adsorption capacities and mechanisms were evaluated. The optimization of their phosphate removal efficiency (Y%) was analyzed using the response surface method. Our results indicated that MR, MP, and MS showed their best phosphate adsorption capacity at Fe/C ratios of 0.672, 0.672, and 0.560, respectively. Rapid phosphate removal was observed within the first few minutes and the equilibrium was attained by 12 h in all treatment. The optimal conditions for phosphorus removal were pH = 7.0, initial phosphate concentration = 132.64 mg L-1, and ambient temperature = 25 °C, where the Y% values were 97.76, 90.23, and 86.23% of MS, MP, and MR, respectively. Among the three biochars, the maximum phosphate removal efficiency determined was 97.80%. The phosphate adsorption process of three modified biochars followed a pseudo-second-order adsorption kinetic model, indicating monolayer adsorption based on electrostatic adsorption or ion exchange. Thus, this study clarified the mechanism of phosphate adsorption by three Fe-modified biochar composites, which present as low-cost soil conditioners for rapid and sustainable phosphate removal.


Subject(s)
Phosphates , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Phosphorus , Water Pollutants, Chemical/chemistry
20.
Environ Sci Pollut Res Int ; 30(17): 48988-48998, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36763277

ABSTRACT

In many small communities in the Mediterranean area, groundwater is usually the only water body available. Depending mainly on the surrounding geology, their concentration of naturally occurring radionuclides may pose a radiological hazard. Removal of uranium and radium from drinking water is the best way to avoid it, i.e., reverse osmosis (RO), but consuming a lot of energy. Thus, two modified drinking water treatment plants (DWTPs) using zeolites coated with manganese dioxide as adsorbent material were analyzed as an alternative to RO. Groundwater salinity can negatively affect this process. Radium removal decreased as water salinity increased; but it had a major impact on uranium, rendering the adsorption effectless in one DWTP. Waste management and how to avoid it from becoming radioactive are of major concern. Radium and uranium were associated to the reducible fraction in the filter material and also to the carbonate fraction in the case of uranium. Regeneration of the filter material using KCl solutions was able to remove 81% and 63% of uranium and radium, respectively.


Subject(s)
Drinking Water , Groundwater , Radioactivity , Radium , Uranium , Water Pollutants, Radioactive , Radium/analysis , Uranium/analysis , Adsorption , Salinity , Water Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL