Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Heliyon ; 10(5): e26962, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463830

ABSTRACT

Medicinal plants have long been a source of lead compounds for drug discovery. Among these, the Annonaceae family has gained recognition for its potential to yield novel compounds, particularly those that can be used in the development of drugs targeting chronic diseases like diabetes mellitus (DM). We employed various chromatographic methods to isolate bioactive compounds from the roots, leaves, and twigs of Uvaria dulcis Dunal. We used spectroscopic methods to determine the chemical structures of these compounds. We successfully identified twelve known compounds from various parts of U. dulcis: patchoulenon, polygochalcone, 2'3'-dihydroxy-4',6'-dimethoxydihydrochalcone, 2',3'-dihydroxy-4',6'-dimethoxychalcone, chrysin, techochrysin, 8-hydroxy-5,7-dimethoxyflavanone, pinocembrin, 3-farnesylindole, onysilin, cinchonain la, and cinchonain lb. Interestingly, cinchonain la and cinchonain lb exhibited more potent anti-α-glucosidase activity than acarbose (standard drug), with IC50 values of 11.88 ± 1.41 µg/mL and 15.18 ± 1.19 µg/mL, respectively. Cinchonain la inhibited the DPP-IV enzyme, with IC50 value lower than the standard compound (diprotin A) at 81.78 ± 1.42 µg/mL. While 2',3'-dihydroxy-4',6'-dimethoxychalcone show more potent inhibitory effect than standard drug with IC50 value of 8.62 ± 1.19 µg/mL. Additionally, at a concentration of 10 µg/mL, cinchonain lb and 2',3'-dihydroxy-4',6'-dimethoxychalcone promoted glucose uptake in L6 myotubes cells to the same extent as 100 nM insulin. These findings suggest that cinchonain la, cinchonain lb, and 2',3'-dihydroxy-4',6'-dimethoxychalcone are the U. dulcis-derived bioactive compounds that hold promise as potential structures to use in the development of anti-diabetic drugs.

2.
Heliyon ; 10(1): e23289, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169946

ABSTRACT

Ethnopharmacological relevance: In recent times the decriminalisation of cannabis globally has increased its use as an alternative medication. Where it has been used in modern medicinal practises since the 1800s, there is limited scientific investigation to understand the biological activities of this plant. Aim of the study: Dipeptidyl peptidase IV (DPP-IV) plays a key role in regulating glucose homeostasis, and inhibition of this enzyme has been used as a therapeutic approach to treat type 2 diabetes. However, some of the synthetic inhibitors for this enzyme available on the market may cause undesirable side effects. Therefore, it is important to identify new inhibitors of DPP-IV and to understand their interaction with this enzyme. Methods: In this study, four cannabinoids (cannabidiol, cannabigerol, cannabinol and Δ9-tetrahydrocannabinol) were evaluated for their inhibitory effects against recombinant human DPP-IV and their potential inhibition mechanism was explored using both in vitro and in silico approaches. Results: All four cannabinoids resulted in a dose-dependent response with IC50 values of between 4.0 and 6.9 µg/mL. Kinetic analysis revealed a mixed mode of inhibition. CD spectra indicated that binding of cannabinoids results in structural and conformational changes in the secondary structure of the enzyme. These findings were supported by molecular docking studies which revealed best docking scores at both active and allosteric sites for all tested inhibitors. Furthermore, molecular dynamics simulations showed that cannabinoids formed a stable complex with DPP-IV protein via hydrogen bonds at an allosteric site, suggesting that cannabinoids act by either inducing conformational changes or blocking the active site of the enzyme. Conclusion: These results demonstrated that cannabinoids may modulate DPP-IV activity and thereby potentially assist in improving glycaemic regulation in type 2 diabetes.

3.
Int J Biol Macromol ; 259(Pt 1): 129191, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184042

ABSTRACT

Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides were screened and identified from yak hemoglobin for the first time by in silico analysis, molecular docking, and in vitro evaluation. Results showed that yak hemoglobin had a high potential to produce DPP-IV inhibitory peptides based on the sequence alignment and bioactive potential evaluation. Furthermore, "pancreatic elastase + stem bromelain" was the optimal combined-enzymatic strategy by simulated proteolysis. Additionally, 25 novel peptides were found from its simulated hydrolysate, among which 10 peptides had high binding affinities with DPP-IV by molecular docking. Most of these peptides were also in silico characterized with favorable physicochemical properties and biological potentials, including relatively low molecular weight, high hydrophobicity, several net charges, good water solubility, nontoxicity, acceptable sensory quality, and good human intestinal absorption. Finally, six novel DPP-IV inhibitory peptides were identified via in vitro assessment, among which EEKA (IC50 = 235.26 µM), DEV (IC50 = 339.45 µM), and HCDKL (IC50 = 632.93 µM) showed the strongest capacities. The hydrogen bonds and electrostatic attractions formed with core residues within the S2 pocket of DPP-IV could be mainly responsible for their inhibition performances. This work provided a time-saving method and broadened application for yak by-products development as sources of functional foods.


Subject(s)
Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors , Animals , Cattle , Humans , Molecular Docking Simulation , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Peptides/chemistry , Hemoglobins
4.
Fitoterapia ; 168: 105549, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244503

ABSTRACT

Dipeptidyl peptidase IV (DPP-IV) is an integrated type II transmembrane protein that reduces endogenous insulin contents and increases plasma glucose levels by hydrolyzing glucagon-like peptide-1 (GLP-1). Inhibition of DPP-IV regulates and maintains glucose homeostasis, making it an attractive drug target for the treatment of diabetes II. Natural compounds have tremendous potential to regulate glucose metabolism. In this study, we examined the DPP-IV inhibitory activity of a series of natural anthraquinones and synthetic structural analogues on DPP-IV using fluorescence-based biochemical assays. The inhibitory efficiency differed among anthraquinone compounds with different structures. Alizarin (7), aloe emodin (11), emodin (13) emerged the outstanding inhibitory potential for DPP-IV with IC50 values lower than 5 µM. To clarifying the inhibitory mechanism, inhibitory kinetics were performed, which showed that alizarin red S (8) and 13 were effective non-competitive inhibitors of DPP-IV, while alizarin complexone (9), rhein (12), and anthraquinone-2-carboxylic acid (23) were mixed inhibitors. Emodin was determined as inhibitor with the strongest DPP-IV-binding affinity determined via molecular docking. Structure-activity relationship (SAR) demonstrated that hydroxyl group at C-1 and C-8 sites and hydroxyl, hydroxymethyl or carboxyl group at the C-2 or C-3 site were very essential for DPP-IV inhibition, replacement of hydroxyl group with amino group at C-1 could led to an increase of the inhibitory potential. Further fluorescence imaging showed that both compounds 7 and 13 significantly inhibited DPP-IV activity in RTPEC cells. Overall, the results indicated that anthraquinones would be a natural functional ingredient for inhibiting DPP-IV and provided new ideas for searching and developing potential antidiabetic compounds.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Emodin , Humans , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Molecular Docking Simulation , Emodin/pharmacology , Emodin/therapeutic use , Molecular Structure , Hypoglycemic Agents/pharmacology , Structure-Activity Relationship , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism
5.
Metabolites ; 12(10)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36295839

ABSTRACT

Recently, dipeptidyl peptidase-IV (DPP-IV) has become an effective target in the management of type-2 diabetes mellitus (T2D). The study aimed to determine the efficacy of shikimate pathway-derived phenolic acids as potential DPP-IV modulators in the management of T2D. The study explored in silico (molecular docking and dynamics simulations) and in vitro (DPP-IV inhibitory and kinetics assays) approaches. Molecular docking findings revealed chlorogenic acid (CA) among the examined 22 phenolic acids with the highest negative binding energy (-9.0 kcal/mol) showing a greater affinity for DPP-IV relative to the standard, Diprotin A (-6.6 kcal/mol). The result was corroborated by MD simulation where it had a higher affinity (-27.58 kcal/mol) forming a more stable complex with DPP-IV than Diprotin A (-12.68 kcal/mol). These findings were consistent with in vitro investigation where it uncompetitively inhibited DPP-IV having a lower IC50 (0.3 mg/mL) compared to Diprotin A (0.5 mg/mL). While CA showed promising results as a DPP-IV inhibitor, the findings from the study highlighted the significance of medicinal plants particularly shikimate-derived phenolic compounds as potential alternatives to synthetic drugs in the effective management of T2DM. Further studies, such as derivatisation for enhanced activity and in vivo evaluation are suggested to realize its full potential in T2D therapy.

6.
Molecules ; 27(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458587

ABSTRACT

Bioactive compounds from medicinal plants are good alternative treatments for T2DM. They are also sources of lead molecules that could lead to new drug discoveries. In this study, Bauhinia strychnifolia Craib. stem, a traditional Thai medicinal plant for detoxification, was extracted into five fractions, including crude extract, BsH, BsD, BsE, and BsW, by ethanolic maceration and sequential partition with hexane, dichloromethane, ethyl acetate, and water, respectively. Among these fractions, BsE contained the highest amounts of phenolics (620.67 mg GAE/g extract) and flavonoids (131.35 mg QE/g extract). BsE exhibited the maximum inhibitory activity against α-glucosidase (IC50 1.51 ± 0.01 µg/mL) and DPP-IV (IC50 2.62 ± 0.03 µg/mL), as well as dominantly promoting glucose uptake on 3T3-L1 adipocytes. Furthermore, the four compounds isolated from the BsE fraction, namely resveratrol, epicatechin, quercetin, and gallic acid, were identified. Quercetin demonstrated the highest inhibitory capacity against α-glucosidase (IC50 6.26 ± 0.36 µM) and DPP-IV (IC50 8.25 µM). In addition, quercetin prominently enhanced the glucose uptake stimulation effect on 3T3-L1 adipocytes. Altogether, we concluded that quercetin was probably the principal bioactive compound of the B. strychnifolia stem for anti-diabetic, and the flavonoid-rich fraction may be sufficiently potent to be an alternative treatment for blood sugar control.


Subject(s)
Bauhinia , Plants, Medicinal , Antioxidants/pharmacology , Flavonoids/pharmacology , Glucose , Phenols/pharmacology , Plant Extracts , Quercetin , alpha-Glucosidases
7.
J Sci Food Agric ; 102(3): 1085-1094, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34309842

ABSTRACT

BACKGROUND: Hypertension and diabetes are two kinds of senile diseases which often occur simultaneously. The commonly used drugs in clinic may produce certain side effects. Food-derived polypeptide is a kind of polypeptide with great development potential, which has many functions of regulating human physiological function. Beer is rich in nutrition but there are few researches on bioactive peptides in beer. RESULTS: In this study, a rapid virtual screening method was established to obtain bioactive peptides from Tsingtao draft beer. The peptide sequence was analyzed by ultra-performance liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry (UPLC-Q-Orbitrap-MS2 ), and 50 peptides were identified. Eight peptides with potential biological activities were screened by using Peptide Ranker software and previous literature references. On the basis of absorption prediction, toxicity prediction, and molecular docking analysis, LNFDPNR and LPQQQAQFK were finally confirmed. The molecular docking results showed that two peptides could bind angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) tightly by hydrogen bonding and hydrophobic interaction. The in vitro activity evaluation results showed that two peptides had obvious ACE and DPP-IV inhibitory activity. CONCLUSION: This study established a method for rapidly screening bioactive peptides from Tsingtao draft beer, screened two ACE and DPP-IV inhibitory peptides in beer and analyzed their active action mechanism. This article may have great theoretical significance and practical value to further explore the health function of beer. © 2021 Society of Chemical Industry.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Beer/analysis , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Drug Evaluation, Preclinical/methods , Peptides/chemistry , Peptidyl-Dipeptidase A/chemistry , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical/instrumentation , Humans , Hypoglycemic Agents/chemistry , Mass Spectrometry , Molecular Docking Simulation
8.
Indian J Pharmacol ; 53(5): 384-387, 2021.
Article in English | MEDLINE | ID: mdl-34854407

ABSTRACT

The medicinal plants may serve as natural alternatives to synthetic antidiabetic medications such as dipeptidyl peptidase-IV (DPP-IV) inhibitors, which are commonly prescribed in clinical practise. The medicinal plants: Commiphora mukul and Phyllanthus emblica have considerable DPP-IV inhibitory efficacy, according to our findings. The present study is an extension of the previous study conducted in our laboratory and was designed to confirm the antidiabetic effects of C. mukul and P. emblica in the streptozotocin diabetes model and elucidate the active principles responsible for DPP-IV inhibition. C. mukul (Guggul) and P. emblica (Amla) have the ability to inhibit DPP-IV and have anti-diabetic properties in a Type 2 diabetes mellitus experimental model. The binding sites and affinity of the active principles of C. mukul (Gluggusterone E, Gluggusterone Z) and P. emblica (Pzrogallol, beta-glucogallin, and gallic acid) responsible for DPP-IV enzyme inhibition were identified using in silico studies and compared to Vildagliptin, a synthetic DPP-IV inhibitor. The Vildagliptin and therapy groups had significantly lower glycated hemoglobin and DPP-IV levels. The anti-diabetic effect of C. mukul and P. emblica is due to their DPP-IV inhibitory action. The DPP-IV inhibitory action of Gluggusterone E, Gluggusterone Z, and beta-Glucogallin was found to be superior to Vildagliptin in docking tests.


Subject(s)
Commiphora , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Phyllanthus emblica , Plant Extracts/pharmacology , Animals , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/drug effects , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Disease Models, Animal , Humans , Hypoglycemic Agents/therapeutic use , Phytotherapy , Plant Extracts/therapeutic use , Plant Leaves , Rats , Rats, Wistar
9.
Foods ; 10(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34945689

ABSTRACT

The aim of this work was to valorize the by-product derived from the ricotta cheese process (scotta). In this study, ovine scotta was concentrated by ultrafiltration and then subjected to enzymatic hydrolyses using proteases of both vegetable (4% E:S, 4 h, 50 °C) and animal origin (4% E:S, 4 h, 40 °C). The DPP-IV inhibitory, antioxidant, and antibacterial activities of hydrolysates from bromelain (BSPH) and pancreatin (PSPH) were measured in vitro. Both the obtained hydrolysates showed a significantly higher DPP-IV inhibitory activity compared to the control. In particular, BSPH proved to be more effective than PSPH (IC50 8.5 ± 0.2 vs. 13 ± 1 mg mL-1). Moreover, BSPH showed the best antioxidant power, while PSPH was more able to produce low-MW peptides. BSPH and PSPH hydrolysates showed a variable but slightly inhibitory effect depending on the species or strain of bacteria tested. BSPH and PSPH samples were separated by gel permeation chromatography (GPC). LC-MS/MS analysis of selected GPC fractions allowed identification of differential peptides. Among the peptides 388 were more abundant in BSPH than in the CTRL groups, 667 were more abundant in the PSPH group compared to CTRL, and 97 and 75 of them contained sequences with a reported biological activity, respectively.

10.
J Ayurveda Integr Med ; 12(4): 663-672, 2021.
Article in English | MEDLINE | ID: mdl-34756798

ABSTRACT

BACKGROUND: Dipeptidyl peptidase-IV (DPP-IV) inhibitors, the enhancers of incretin are used for the treatment of diabetes. The non-glycaemic actions of these drugs (under developmental stage) also proved that repurposing of these molecules may be advantageous for other few complicated disorders like cardiovascular diseases, Parkinson's disease, Alzheimer's disease, etc. OBJECTIVE: The present study was aimed to investigate the DPP-IV inhibitory potential of Calebin-A, one of the constituents of Curcuma longa. MATERIAL AND METHODS: The phytoconstituent was subjected for various in silico studies (using Schrödinger Suite) like, Docking analysis, molecular mechanics combined with generalized Born model and solvent accessibility method (MMGBSA) and Induced fit docking (IFD) after validating the protein using Ramachandran plot. Further, the protein-ligand complex was subjected to molecular dynamic simulation studies for 50 nanoseconds. And finally, the results were confirmed through enzyme inhibition study. RESULTS: Insilico results revealed possible inhibitory binding interactions in the catalytic pocket (importantly Glu205, Glu206 and Tyr 662 etc.) and binding affinity in terms of glide g-score and MMGBSA dG bind values were found to be -6.2 kcal/mol and -98.721 kcal/mol. Further, the inhibitory action towards the enzyme was confirmed by an enzyme inhibition assay, in which it showed dose-dependent inhibition, with maximum % inhibition of 55.9 at 26.3 µM. From molecular dynamic studies (50 nanoseconds), it was understood that Calebin A was found to be stable for about 30 nanoseconds in maintaining inhibitory interactions. CONCLUSION: From the in silico and in vitro analysis, the current research emphasizes the consideration of Calebin A to be as a promising or lead compound for the treatment of several ailments where DPP-IV action is culprit.

11.
Nutrients ; 13(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34836194

ABSTRACT

(1) Background: Prolonged feeding with a high-fat diet (HFD) acts as a stressor by activating the functions of the hypothalamic-pituitary-adrenal gland (HPA) stress axis, accompanied of hypertension by inducing the renin-angiotensin-aldosterone system. Angiotensinases enzymes are regulatory aminopeptidases of angiotensin metabolism, which together with the dipeptidyl peptidase IV (DPP-IV), pyroglutamyl- and tyrosyl-aminopeptidase (pGluAP, TyrAP), participate in cognitive, stress, metabolic and cardiovascular functions. These functions appear to be modulated by the type of fat used in the diet. (2) Methods: To analyze a possible coordinated response of aminopeptidases, their activities were simultaneously determined in the hypothalamus, adenohypophysis and adrenal gland of adult male rats fed diets enriched with monounsaturated (standard diet (S diet) supplemented with 20% virgin olive oil; VOO diet) or saturated fatty acids (diet S supplemented with 20% butter and 0.1% cholesterol; Bch diet). Aminopeptidase activities were measured by fluorimetry using 2-Naphthylamine as substrates. (3) Results: the hypothalamus did not show differences in any of the experimental diets. In the pituitary, the Bch diet stimulated the renin-angiotensin system (RAS) by increasing certain angiotensinase activities (alanyl-, arginyl- and cystinyl-aminopeptidase) with respect to the S and VOO diets. DPP-IV activity was increased with the Bch diet, and TyrAP activity decrease with the VOO diet, having both a crucial role on stress and eating behavior. In the adrenal gland, both HFDs showed an increase in angiotensinase aspartyl-aminopeptidase. The interrelation of angiotensinases activities in the tissues were depending on the type of diet. In addition, correlations were shown between angiotensinases and aminopeptidases that regulate stress and eating behavior. (4) Conclusions: Taken together, these results support that the source of fat in the diet affects several peptidases activities in the HPA axis, which could be related to alterations in RAS, stress and feeding behavior.


Subject(s)
Aminopeptidases/drug effects , Dietary Fats/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Renin-Angiotensin System/drug effects , Adrenal Glands/metabolism , Animals , Diet, High-Fat/adverse effects , Endopeptidases/drug effects , Fatty Acids/pharmacology , Feeding Behavior/drug effects , Hypothalamus/metabolism , Male , Olive Oil/pharmacology , Pituitary Gland, Anterior/metabolism , Rats , Rats, Wistar , Stress, Physiological/drug effects
12.
Saudi J Biol Sci ; 28(10): 5480-5489, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34588858

ABSTRACT

Flaxseed (Linum usitatissimum), commonly known as linseed is an oilseed crop, emerging as an important and functional ingredient of food and has been paid more attention due to its nutritional value as well as beneficial effects. It is mainly rich in is α-linolenic acid (ALA, omega-3 fatty acid), fibres and lignans that have potential health benefits in reducing cardiovascular diseases, diabetes, osteoporosis, atherosclerosis, cancer, arthritis, neurological and autoimmune disorders. Due to its richness in omega-3 fatty acid, a group of enzymes known as fatty acid desaturases (FADs) mainly introduce double bonds into fatty acids' (FAs) hydrocarbon chains that produce unsaturated fatty acids. Fatty acid desaturase 3 (FAD3), the commonest microsomal enzyme of omega-3 fatty acid, synthesizes linolenic acid (C18:3) from linoleic acid located in endoplasmic reticulum (ER) facing towards the cytosol. The emerging field of bioinformatics and large number of databases of bioactive peptides, helps in providing time-saving and efficient method for identification of potential bioactivities of any protein. In this study, 10 unique sequences of FAD3 from flaxseed protein have been used for in silico proteolysis and releasing of various bioactive peptides using three plant proteases, namely ficin, papain and stem bromelain, that are evaluated with the help of BIOPEP database. Overall, 20 biological activities were identified from these proteins. The results showed that FAD3 protein is a potential source of peptides with angiotensin-I-converting enzyme (ACE) inhibitory and dipeptidyl peptidase-IV (DPP-IV) activities, and also various parameters such as ∑A, ∑B, AE, W, BE, V and DHt were also calculated. Furthermore, PeptideRanker have been used for screening of novel promising bioactive peptides. Various bioinformatics tools also used to study protein's physicochemical properties, peptide's score, toxicity, allergenicity aggregation, water solubility, and drug likeliness. The present work suggests that flaxseed protein can be a good source of bioactive peptides for the synthesis of good quality and quantity of oil, and in silico method helps in investigating and production of functional peptides.

13.
Plants (Basel) ; 10(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34451706

ABSTRACT

Coreopsis species have been developed to produce cultivars of various floral colors and sizes and are also used in traditional medicine. To identify and evaluate mutant cultivars of C. rosea and C. verticillata, their phytochemical profiles were systematically characterized using ultra-performance liquid chromatography time-of-flight mass spectrometry, and their anti-diabetic effects were evaluated using the dipeptidyl peptidase (DPP)-IV inhibitor screening assay. Forty compounds were tentatively identified. This study is the first to provide comprehensive chemical information on the anti-diabetic effect of C. rosea and C. verticillata. All 32 methanol extracts of Coreopsis cultivars inhibited DPP-IV activity in a concentration-dependent manner (IC50 values: 34.01-158.83 µg/mL). Thirteen compounds presented as potential markers for distinction among the 32 Coreopsis cultivars via principal component analysis and orthogonal partial least squares discriminant analysis. Therefore, these bio-chemometric models can be useful in distinguishing cultivars as potential dietary supplements for functional plants.

14.
Int J Mol Sci ; 22(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34445765

ABSTRACT

Diabetes mellitus is a major public health concern associated with high mortality and reduced life expectancy. The alarming rise in the prevalence of diabetes is linked to several factors including sedentary lifestyle and unhealthy diet. Nutritional intervention and increased physical activity could significantly contribute to bringing this under control. Food-derived bioactive peptides and protein hydrolysates have been associated with a number health benefits. Several peptides with antidiabetic potential have been identified that could decrease blood glucose level, improve insulin uptake and inhibit key enzymes involved in the development and progression of diabetes. Dietary proteins, from a wide range of food, are rich sources of antidiabetic peptides. Thus, there are a number of benefits in studying peptides obtained from food sources to develop nutraceuticals. A deeper understanding of the underlying molecular mechanisms of these peptides will assist in the development of new peptide-based therapeutics. Despite this, a comprehensive analysis of the antidiabetic properties of bioactive peptides derived from various food sources is still lacking. Here, we review the recent literature on food-derived bioactive peptides possessing antidiabetic activity. The focus is on the effectiveness of these peptides as evidenced by in vitro and in vivo studies. Finally, we discuss future prospects of peptide-based drugs for the treatment of diabetes.


Subject(s)
Diabetes Mellitus/diet therapy , Dietary Supplements , Functional Food , Hypoglycemic Agents/analysis , Peptides/therapeutic use , Humans , Peptides/chemistry
15.
Molecules ; 26(7)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916639

ABSTRACT

Valorization of vegetable oil waste residues is gaining importance due to their high protein and polyphenol contents. Protease inhibitors (PIs), proteins from these abundantly available waste residues, have recently gained importance in treating chronic diseases. This research aimed to use canola meal of genetically diverse Brassica napus genotypes, BLN-3347 and Rivette, to identify PIs with diverse functionalities in therapeutic and pharmacological applications. The canola meal PI purification steps involved: native PAGE and trypsin inhibition activity, followed by ammonium sulfate fractionation, anion exchange, gel filtration, and reverse-phase chromatography. The purified PI preparations were characterized using SDS-PAGE, isoelectric focusing (IEF), and N terminal sequencing. SDS-PAGE analysis of PI preparations under native reducing and nonreducing conditions revealed three polymorphic PIs in each genotype. The corresponding IEF of the genotype BLN-3347, exhibited three acidic isoforms with isoelectric points (pI) of 4.6, 4.0, and 3.9, while Rivette possessed three isoforms, exhibiting two basic forms of pI 8.65 and 9.9, and one acidic of pI 6.55. Purified PI preparations from both the genotypes displayed dipeptidyl peptidase-IV (DPP-IV) and angiotensin-converting enzyme (ACE) inhibition activities; the BLN-3347 PI preparation exhibited a strong inhibitory effect with lower IC50 values (DPP-IV 37.42 µg/mL; ACE 129 µg/mL) than that from Rivette (DPP-IV 67.97 µg/mL; ACE 376.2 µg/mL). In addition to potential human therapy, these highly polymorphic PIs, which can inhibit damaging serine proteases secreted by canola plant pathogens, have the potential to be used by canola plant breeders to seek qualitative trait locus (QTLs) linked to genes conferring resistance to canola diseases.


Subject(s)
Antihypertensive Agents/pharmacology , Brassica napus/chemistry , Dipeptidyl Peptidase 4/chemistry , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Peptidyl-Dipeptidase A/chemistry , Amino Acid Sequence , Antihypertensive Agents/chemistry , Antihypertensive Agents/isolation & purification , Brassica napus/genetics , Brassica napus/metabolism , Dipeptidyl Peptidase 4/metabolism , Enzyme Assays , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Genotype , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Isoelectric Focusing , Kinetics , Liquid-Liquid Extraction/methods , Peptidyl-Dipeptidase A/metabolism , Plant Extracts/chemistry
16.
Nat Prod Res ; 35(11): 1840-1846, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31282201

ABSTRACT

Phyllanthus tenellus Roxb. (Phyllanthaceae) is a plant used in Brazilian folk medicine for the treatment of intestinal infections and diabetes. Despite its use in traditional medicine, it was reported that P. tenellus extract may cause several effects in the central nervous system (CNS) of animals, such as agitation and signs of depression. The aim of this study was to determine the main constituents of P. tenellus methanol extract and to investigate whether the extract is able to inhibit the enzymes prolyl oligopeptidase (POP), acetylcholinesterase (AChE) and dipeptidyl peptidase-IV (DPP-IV). Corilagin (1) was isolated as the main constituent of the P. tenellus extract, along with rutin (2) and vitexin-2″-O-rhamnoside (3). The extract presented the ability to inhibit mainly POP. Dichloromethane and ethyl acetate fractions showed the highest inhibitory potency against POP (IC50 values of 1.7 ± 0.4 and 11.7 ± 2 µg/mL, respectively). All fractions were inactive against AChE. Corilagin displayed selective POP inhibition in a dose-dependent manner, with IC50= 19.7 ± 2.6 µg/mL. Corilagin exhibited moderate capacity to pass through the phospholipid membrane by passive diffusion, presenting effective permeability (Pe) of 1.26 × 10-7 cm/s.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Phyllanthus/chemistry , Prolyl Oligopeptidases/antagonists & inhibitors , Animals , Blood-Brain Barrier/drug effects , Brazil , Cholinesterase Inhibitors/chemistry , Glucosides/pharmacology , Hydrolyzable Tannins/pharmacology , Plant Extracts/pharmacology , Prolyl Oligopeptidases/metabolism
17.
Med Chem ; 17(9): 937-944, 2021.
Article in English | MEDLINE | ID: mdl-32940185

ABSTRACT

BACKGROUND: Diabetes mellitus is a serious global health issue, currently affecting 425 million people and is set to affect over 690 million people by 2045. It is a chronic disease characterized by hyperglycemia due to relative or absolute insulin hormone deficiency. Dipeptidyl peptidase- IV (DPP-IV) inhibitors are hypoglycemic agents augmenting the action of the incretin hormones that stimulate insulin secretion from the pancreatic beta cells. OBJECTIVE: In this study, synthesis and biological evaluation of seven piperazine derivatives 3a-g was carried out. METHODS: The synthesized molecules were characterized using proton-nuclear magnetic resonance, carbon-nuclear magnetic resonance, infrared spectroscopy and mass spectrometry. RESULTS: In vitro biological evaluation study showed comparable DPP-IV inhibitory activity for the targeted compounds ranging from 19%-30% at 100 µM concentration. Furthermore, the in vivo hypoglycemic activity of 3d was evaluated using streptozotocin-induced diabetic mice. It was found that compound 3d significantly decreased the blood glucose level when the diabetic group treated with 3d was compared to the control diabetic group. Quantum-Polarized Ligand Docking (QPLD) studies demonstrate that 3a-g fit the binding site of DPP-IV enzyme and form H-bonding with the backbones of R125, E205, E206, K554, W629, Y631, Y662, R669, and Y752. CONCLUSION: Piperazine derivatives were successfully found to be new scaffolds as potential DPP-IV inhibitors.


Subject(s)
Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Piperazines/chemistry , Animals , Binding Sites , Blood Glucose/metabolism , Crystallography, X-Ray , Diabetes Mellitus, Experimental/drug therapy , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Drug Evaluation, Preclinical , Hyperglycemia/drug therapy , Ligands , Male , Mice, Inbred BALB C , Molecular Docking Simulation , Structure-Activity Relationship
18.
Molecules ; 25(19)2020 09 23.
Article in English | MEDLINE | ID: mdl-32977609

ABSTRACT

A new polyacetylene glycoside, (5R)-6E-tetradecene-8,10,12-triyne-1-ol-5-O-ß-glucoside (1), was isolated from the flower of Coreopsis lanceolata (Compositae), together with two known compounds, bidenoside C (10) and (3S,4S)-5E-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-ß-glucopyranoside (11), which were found in Coreopsis species for the first time. The other known compounds, lanceoletin (2), 3,2'-dihydroxy-4-3'-dimethoxychalcone-4'-glucoside (3), 4-methoxylanceoletin (4), lanceolin (5), leptosidin (6), (2R)-8-methoxybutin (7), luteolin (8) and quercetin (9), were isolated in this study and reported previously from this plant. The structure of 1 was elucidated by analyzing one-dimensional and two-dimensional nuclear magnetic resonance and high resolution-electrospray ionization-mass spectrometry data. All compounds were tested for their dipeptidyl peptidase IV (DPP-IV) inhibitory activity and compounds 2-4, 6 and 7 inhibited DPP-IV activity in a concentration-dependent manner, with IC50 values from 9.6 to 64.9 µM. These results suggest that C. lanceolata flower and its active constituents show potential as therapeutic agents for diseases associated with type 2 diabetes mellitus.


Subject(s)
Coreopsis/chemistry , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Flowers/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Inhibitory Concentration 50
19.
Enzyme Microb Technol ; 137: 109534, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32423671

ABSTRACT

We have reported previously that the water extract of the earthworm Eisenia fetida has inhibitory effect on human dipeptidyl-peptidase IV (DPP IV) in vitro. Here we studied to identify DPP IV inhibitors in a low-molecular mass extract (designated U3EE) under 3 kDa prepared from the water extract. U3EE showed 50 % inhibition (IC50) at the concentration of 5.3 ± 0.3 mg/mL. An inhibitory active fraction obtained by solid-phase extraction of U3EE was separated into three parts by reversed-phase HPLC. These parts were shown by GC/MS to be composed of ten (Ala, Gly, Thr, Ser, Asn, Asp, Lys, His, Orn, and cystine), two (Leu and Ile), and one (Met) amino acids, respectively. Among them, Met, Leu, and His showed strong inhibition with IC50 values of 3.4 ± 0.3, 6.1 ± 0.3 and 14.7 ± 1.2 mM, respectively; Ala, Lys, Orn, and Ile showed rather weaker inhibition than those, while the others showed no inhibition. Met, Leu, and Ile were competitive inhibitors and His was a mixed-type one. DPP IV inhibition by U3EE might be due to additive and/or synergistic effects of the inhibitory amino acids, suggesting that it could be useful as pharmaceutical and supplement for diabetes prevention.


Subject(s)
Amino Acids/pharmacology , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Oligochaeta/chemistry , Animals , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/isolation & purification , Histidine/pharmacology , Humans , Inhibitory Concentration 50 , Isoleucine/pharmacology , Leucine/pharmacology , Methionine/pharmacology , Molecular Weight
20.
Molecules ; 25(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906524

ABSTRACT

Moringa oleifera Lam. (MO) is called the "Miracle Tree" because of its extensive pharmacological activity. In addition to being an important food, it has also been used for a long time in traditional medicine in Asia for the treatment of chronic diseases such as diabetes and obesity. In this study, by constructing a library of MO phytochemical structures and using Discovery Studio software, compounds were subjected to virtual screening and molecular docking experiments related to their inhibition of dipeptidyl peptidase (DPP-IV), an important target for the treatment of type 2 diabetes. After the four-step screening process, involving screening for drug-like compounds, predicting the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of pharmacokinetic properties, LibDock heatmap matching analysis, and CDOCKER molecular docking analysis, three MO components that were candidate DPP-IV inhibitors were identified and their docking modes were analyzed. In vitro activity verification showed that all three MO components had certain DPP-IV inhibitory activities, of which O-Ethyl-4-[(α-l-rhamnosyloxy)-benzyl] carbamate (compound 1) had the highest activity (half-maximal inhibitory concentration [IC50] = 798 nM). This study provides a reference for exploring the molecular mechanisms underlying the anti-diabetic activity of MO. The obtained DPP-IV inhibitors could be used for structural optimization and in-depth in vivo evaluation.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/chemistry , Moringa oleifera/chemistry , Binding Sites , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Hypoglycemic Agents/therapeutic use , Molecular Docking Simulation , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL