Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Alzheimers Dement ; 20(1): 511-524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37695013

ABSTRACT

INTRODUCTION: Post-operative delirium (POD) is associated with increased morbidity and mortality but is bereft of treatments, largely due to our limited understanding of the underlying pathophysiology. We hypothesized that delirium reflects a disturbance in cortical connectivity that leads to altered predictions of the sensory environment. METHODS: High-density electroencephalogram recordings during an oddball auditory roving paradigm were collected from 131 patients. Dynamic causal modeling (DCM) analysis facilitated inference about the neuronal connectivity and inhibition-excitation dynamics underlying auditory-evoked responses. RESULTS: Mismatch negativity amplitudes were smaller in patients with POD. DCM showed that delirium was associated with decreased left-sided superior temporal gyrus (l-STG) to auditory cortex feedback connectivity. Feedback connectivity also negatively correlated with delirium severity and systemic inflammation. Increased inhibition of l-STG, with consequent decreases in feed-forward and feed-back connectivity, occurred for oddball tones during delirium. DISCUSSION: Delirium is associated with decreased feedback cortical connectivity, possibly resulting from increased intrinsic inhibitory tone. HIGHLIGHTS: Mismatch negativity amplitude was reduced in patients with delirium. Patients with postoperative delirium had increased feedforward connectivity before surgery. Feedback connectivity was diminished from left-side superior temporal gyrus to left primary auditory sensory area during delirium. Feedback connectivity inversely correlated with inflammation and delirium severity.


Subject(s)
Delirium , Evoked Potentials, Auditory , Humans , Feedback , Evoked Potentials, Auditory/physiology , Electroencephalography , Inflammation , Acoustic Stimulation/methods
2.
Dev Cogn Neurosci ; 58: 101168, 2022 12.
Article in English | MEDLINE | ID: mdl-36335806

ABSTRACT

Rhythm is a fundamental component of the auditory world, present even during the prenatal life. While there is evidence that some auditory capacities are already present before birth, whether and how the premature neural networks process auditory rhythm is yet not known. We investigated the neural response of premature neonates at 30-34 weeks gestational age to violations from rhythmic regularities in an auditory sequence using high-resolution electroencephalography and event-related potentials. Unpredicted rhythm violations elicited a fronto-central mismatch response, indicating that the premature neonates detected the rhythmic regularities. Next, we examined the cortical effective connectivity underlying the elicited mismatch response using dynamic causal modeling. We examined the connectivity between cortical sources using a set of 16 generative models that embedded alternate hypotheses about the role of the frontal cortex as well as backward fronto-temporal connection. Our results demonstrated that the processing of rhythm violations was not limited to the primary auditory areas, and as in the case of adults, encompassed a hierarchy of temporo-frontal cortical structures. The result also emphasized the importance of top-down (backward) projections from the frontal cortex in explaining the mismatch response. Our findings demonstrate a sophisticated cortical structure underlying predictive rhythm processing at the onset of the thalamocortical and cortico-cortical circuits, two months before term.


Subject(s)
Auditory Cortex , Electroencephalography , Adult , Infant, Newborn , Humans , Acoustic Stimulation , Evoked Potentials/physiology , Frontal Lobe , Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology
3.
Brain Imaging Behav ; 16(2): 909-920, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34677785

ABSTRACT

To investigate directed information flow of epileptiform activity in benign epilepsy with centrotemporal spikes (BECTS) during ictal epileptiform discharges (IEDs) and non-IEDs periods. In this multi-center study, a total of 188 subjects, including 50 BECTS and 138 normal children's controls (NCs) from three different centers (Center 1: females/males, 38/55; mean age, 9.33 ± 2.6 years; Center 2: females/males,7/10; mean age, 8.59 ± 2.32 years; Center 3: females/males, 14/14; mean age, 13 ± 3.42 years) were recruited. The BECTS were classified into IEDs (females/males, 12/15; mean age, 8.15 ± 1.68 years) and non-IEDs (females/males, 10/13; mean age, 9.09 ± 1.98 years) subgroups depending on presence of central-temporal spikes from an EEG-fMRI examination. Three new methods, structural equation parametric modeling, dynamic causal modeling and granger causality density (GCD) were used to determine optimal network architectures for BECTS. Three multicentric NCs determined a reliable and consistent network architecture by structural equation parametric modeling method. Further analyses were used for IEDs and non-IEDs to determine the brain network architecture by structural equation parametric modeling, dynamic causal modeling and GCD, respectively. The brain network architecture of IEDs substate, non-IEDs substate and NCs are different. IEDs promoted the driving effect of the Rolandic areas with more output information flows, and increased the targeted effect of the top of pre-/post-central gyrus with more input information flows. The information flow arises from the Rolandic areas, and subsequently propagates to the top of pre-/post-central gyrus and thalamus. From non-IEDs status to IEDs status, the thalamus load may play an important role in the modulation and regulation of epileptiform activity. These findings shed new light on pathophysiological mechanism of directed localization of epileptiform activity in BECTS.


Subject(s)
Epilepsy, Rolandic , Adolescent , Brain/diagnostic imaging , Child , Electroencephalography , Epilepsy, Rolandic/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Thalamus
4.
J Neural Eng ; 18(5)2021 10 11.
Article in English | MEDLINE | ID: mdl-34551403

ABSTRACT

Objective.In this study, we assessed the impact of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) neurofeedback (NF) on connectivity strength and direction in bilateral motor cortices in chronic stroke patients. Most of the studies using NF or brain computer interfaces for stroke rehabilitation have assessed treatment effects focusing on successful activation of targeted cortical regions. However, given the crucial role of brain network reorganization for stroke recovery, our broader aim was to assess connectivity changes after an NF training protocol targeting localized motor areas.Approach.We considered changes in fMRI connectivity after a multisession EEG-fMRI NF training targeting ipsilesional motor areas in nine stroke patients. We applied the dynamic causal modeling and parametric empirical Bayes frameworks for the estimation of effective connectivity changes. We considered a motor network including both ipsilesional and contralesional premotor, supplementary and primary motor areas.Main results.Our results indicate that NF upregulation of targeted areas (ipsilesional supplementary and primary motor areas) not only modulated activation patterns, but also had a more widespread impact on fMRI bilateral motor networks. In particular, inter-hemispheric connectivity between premotor and primary motor regions decreased, and ipsilesional self-inhibitory connections were reduced in strength, indicating an increase in activation during the NF motor task.Significance.To the best of our knowledge, this is the first work that investigates fMRI connectivity changes elicited by training of localized motor targets in stroke. Our results open new perspectives in the understanding of large-scale effects of NF training and the design of more effective NF strategies, based on the pathophysiology underlying stroke-induced deficits.


Subject(s)
Motor Cortex , Neurofeedback , Stroke , Bayes Theorem , Humans , Magnetic Resonance Imaging , Stroke/diagnostic imaging , Stroke/therapy
5.
Neuroimage ; 234: 117957, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33744457

ABSTRACT

Nociceptive and tactile information is processed in the somatosensory system via reciprocal (i.e., feedforward and feedback) projections between the thalamus, the primary (S1) and secondary (S2) somatosensory cortices. The exact hierarchy of nociceptive and tactile information processing within this 'thalamus-S1-S2' network and whether the processing hierarchy differs between the two somatosensory submodalities remains unclear. In particular, two questions related to the ascending and descending pathways have not been addressed. For the ascending pathways, whether tactile or nociceptive information is processed in parallel (i.e., 'thalamus-S1' and 'thalamus-S2') or in serial (i.e., 'thalamus-S1-S2') remains controversial. For the descending pathways, how corticothalamic feedback regulates nociceptive and tactile processing also remains elusive. Here, we aimed to investigate the hierarchical organization for the processing of nociceptive and tactile information in the 'thalamus-S1-S2' network using dynamic causal modeling (DCM) combined with high-temporal-resolution fMRI. We found that, for both nociceptive and tactile information processing, both S1 and S2 received inputs from thalamus, indicating a parallel structure of ascending pathways for nociceptive and tactile information processing. Furthermore, we observed distinct corticothalamic feedback regulations from S1 and S2, showing that S1 generally exerts inhibitory feedback regulation independent of external stimulation whereas S2 provides additional inhibition to the thalamic activity during nociceptive and tactile information processing in humans. These findings revealed that nociceptive and tactile information processing have similar hierarchical organization within the somatosensory system in the human brain.


Subject(s)
Feedback, Physiological/physiology , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Nociception/physiology , Somatosensory Cortex/physiology , Thalamus/physiology , Touch/physiology , Adult , Data Analysis , Female , Humans , Male , Nerve Net/diagnostic imaging , Physical Stimulation/methods , Somatosensory Cortex/diagnostic imaging , Thalamus/diagnostic imaging , Young Adult
6.
Hum Brain Mapp ; 41(15): 4419-4430, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32662585

ABSTRACT

Sensory attenuation refers to the decreased intensity of a sensory percept when a sensation is self-generated compared with when it is externally triggered. However, the underlying brain regions and network interactions that give rise to this phenomenon remain to be determined. To address this issue, we recorded magnetoencephalographic (MEG) data from 35 healthy controls during an auditory task in which pure tones were either elicited through a button press or passively presented. We analyzed the auditory M100 at sensor- and source-level and identified movement-related magnetic fields (MRMFs). Regression analyses were used to further identify brain regions that contributed significantly to sensory attenuation, followed by a dynamic causal modeling (DCM) approach to explore network interactions between generators. Attenuation of the M100 was pronounced in right Heschl's gyrus (HES), superior temporal cortex (ST), thalamus, rolandic operculum (ROL), precuneus and inferior parietal cortex (IPL). Regression analyses showed that right postcentral gyrus (PoCG) and left precentral gyrus (PreCG) predicted M100 sensory attenuation. In addition, DCM results indicated that auditory sensory attenuation involved bi-directional information flow between thalamus, IPL, and auditory cortex. In summary, our data show that sensory attenuation is mediated by bottom-up and top-down information flow in a thalamocortical network, providing support for the role of predictive processing in sensory-motor system.


Subject(s)
Auditory Perception/physiology , Cerebral Cortex/physiology , Magnetoencephalography , Models, Statistical , Motor Activity/physiology , Nerve Net/physiology , Thalamus/physiology , Adult , Humans , Young Adult
7.
Brain Imaging Behav ; 14(4): 1187-1198, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31172360

ABSTRACT

Recent evidence from neurophysiological and functional imaging research has demonstrated that semantically congruent sounds can modulate the identification of a degraded visual object. However, it remains unclear how different integration regions interact with each other when only a visual object was obscured. The present study aimed to elucidate the neural bases of cross-modal functional interactions in degraded visual object recognition. Naturally degraded images and semantically congruent sounds were used in our experiment. Participants were presented with three different modalities of audio-visual stimuli: auditory only (A), degraded visual only (Vd), and simultaneous auditory and degraded visual (AVd). We used conjunction analysis and the classical 'max criterion' to define three audiovisual integration cortical hubs: the visual association cortex, the superior temporal sulcus and the Heschl's gyrus. Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. The DCM results revealed that the modulation of an auditory stimulus resulted in increased connectivity from the Heschl's gyrus to the visual association cortex and from the superior temporal sulcus to the visual association cortex. It was shown that the visual association cortex is modulated not only via feedback and top-down connections from higher-order convergence areas but also via lateral feedforward connectivity from the auditory cortex. The present findings give support to interconnected models of cross-modal information integration.


Subject(s)
Auditory Perception , Brain Mapping , Acoustic Stimulation , Humans , Magnetic Resonance Imaging , Photic Stimulation , Visual Perception
8.
Front Hum Neurosci ; 13: 177, 2019.
Article in English | MEDLINE | ID: mdl-31293405

ABSTRACT

Damage to the orbitofrontal cortex (OFC) often occurs following a traumatic brain injury (TBI) and can lead to complex behavioral changes, including difficulty with attention and concentration. We investigated the effects of musical training on patients with behavioral and cognitive deficits following a mild traumatic brain injury (mTBI) and found significant functional neuro-plastic changes in the OFC's networks. The results from neuropsychological tests revealed an improved cognitive performance. Moreover, six out of seven participants in this group returned to work post intervention and reported improved well-being and social behavior. In this study, we explore the functional changes in OFC following music-supported intervention in reference to connecting networks that may be responsible for enhanced social interaction. Furthermore, we discuss the factor of dopamine release during playing as an element providing a possible impact on the results. The intervention consisted of playing piano, two sessions per week in 8 weeks, 30 min each time, with an instructor. Additional playing was required with a minimum of 15 min per day at home. Mean time playing piano in reference to participant's report was 3 h per week during the intervention period. Three groups participated, one mTBI group (n = 7), two control groups consisting of healthy participants, one with music training (n = 11), and one baseline group without music training (n = 12). Participants in the clinical group had received standardized cognitive rehabilitation treatment during hospitalization without recovering from their impairments. The intervention took place 2 years post injury. All participants were assessed with neuropsychological tests and with both task and resting-state functional magnetic resonance imaging (fMRI) pre-post intervention. The results demonstrated a significant improvement of neuropsychological tests in the clinical group, consistent with fMRI results in which there were functional changes in the orbitofrontal networks (OFC). These changes were concordantly seen both in a simple task fMRI but also in resting-state fMRI, which was analyzed with dynamic causal modeling (DCM). We hypothesized that playing piano, as designed in the training protocol, may provide a positive increase in both well-being and social interaction. We suggest that the novelty of the intervention may have clinical relevance for patients with behavioral problems following a TBI.

9.
Neuroimage ; 184: 214-226, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30176368

ABSTRACT

Neurofeedback based on real-time functional MRI is an emerging technique to train voluntary control over brain activity in healthy and disease states. Recent developments even allow for training of brain networks using connectivity feedback based on dynamic causal modeling (DCM). DCM is an influential hypothesis-driven approach that requires prior knowledge about the target brain network dynamics and the modulatory influences. Data-driven approaches, such as tensor independent component analysis (ICA), can reveal spatiotemporal patterns of brain activity without prior assumptions. Tensor ICA allows flexible data decomposition and extraction of components consisting of spatial maps, time-series, and session/subject-specific weights, which can be used to characterize individual neurofeedback regulation per regulation trial, run, or session. In this study, we aimed to better understand the spatiotemporal brain patterns involved and affected by model-based feedback regulation using data-driven tensor ICA. We found that task-specific spatiotemporal brain patterns obtained using tensor ICA were highly consistent with model-based feedback estimates. However, we found that the DCM approach captured specific network interdependencies that went beyond what could be detected with either general linear model (GLM) or ICA approaches. We also found that neurofeedback-guided regulation resulted in activity changes that were characteristic of the mental strategies used to control the feedback signal, and that these activity changes were not limited to periods of active self-regulation, but were also evident in distinct gradual recovery processes during subsequent rest periods. Complementary data-driven and model-based approaches could aid in interpretation of the neurofeedback data when applied post-hoc, and in the definition of the target brain area/pattern/network/model prior to the neurofeedback training study when applied to the pilot data. Systematically investigating the triad of mental effort, spatiotemporal brain network changes, and activity and recovery processes might lead to a better understanding of how learning with neurofeedback is accomplished, and how such learning can cause plastic brain changes along with specific behavioral effects.


Subject(s)
Brain Mapping/methods , Brain/physiology , Neurofeedback/methods , Adult , Attention , Female , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Neural Pathways/physiology , Signal Processing, Computer-Assisted , Visual Perception/physiology , Young Adult
10.
Article in English | MEDLINE | ID: mdl-30115499

ABSTRACT

BACKGROUND: Disturbances in N-methyl-D-aspartate receptors (NMDARs)-as implicated in patients with schizophrenia-can cause regionally specific electrophysiological effects. Both animal models of NMDAR blockade and clinical studies in patients with schizophrenia have suggested that behavioral phenotypes are associated with reduction in inhibition within the frontal cortex. METHODS: Here we investigate event-related potentials to a roving auditory oddball paradigm under ketamine in healthy human volunteers (N= 18; double-blind, placebo-controlled, crossover design). Using recent advances in Bayesian modeling of group effects in dynamic causal modeling, we fit biophysically plausible network models of the auditory processing hierarchy to whole-scalp event-related potential recordings. This allowed us to identify regionally specific effects of ketamine in a distributed network of interacting cortical sources. RESULTS: We show that the effect of ketamine is best explained as a selective change in intrinsic inhibition, with a pronounced ketamine-induced reduction of inhibitory interneuron connectivity in frontal sources, compared with temporal sources. Simulations of these changes in an integrated microcircuit model shows that they are associated with a reduction in superficial pyramidal cell activity that can explain drug effects observed in the event-related potential. CONCLUSIONS: These results are consistent with findings from invasive recordings in animal models exposed to NMDAR blockers, and provide evidence that inhibitory interneuron-specific NMDAR dysfunction may be sufficient to explain electrophysiological abnormalities induced by NMDAR blockade in human subjects.


Subject(s)
Auditory Perception/physiology , Evoked Potentials, Auditory , Excitatory Amino Acid Antagonists/administration & dosage , Ketamine/administration & dosage , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/physiology , Acoustic Stimulation , Adult , Auditory Perception/drug effects , Bayes Theorem , Cross-Over Studies , Double-Blind Method , Humans , Male , Models, Neurological , Young Adult
11.
Neurosci Bull ; 33(3): 281-291, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28224285

ABSTRACT

Information flow among auditory and language processing-related regions implicated in the pathophysiology of auditory verbal hallucinations (AVHs) in schizophrenia (SZ) remains unclear. In this study, we used stochastic dynamic causal modeling (sDCM) to quantify connections among the left dorsolateral prefrontal cortex (inner speech monitoring), auditory cortex (auditory processing), hippocampus (memory retrieval), thalamus (information filtering), and Broca's area (language production) in 17 first-episode drug-naïve SZ patients with AVHs, 15 without AVHs, and 19 healthy controls using resting-state functional magnetic resonance imaging. Finally, we performed receiver operating characteristic (ROC) analysis and correlation analysis between image measures and symptoms. sDCM revealed an increased sensitivity of auditory cortex to its thalamic afferents and a decrease in hippocampal sensitivity to auditory inputs in SZ patients with AVHs. The area under the ROC curve showed the diagnostic value of these two connections to distinguish SZ patients with AVHs from those without AVHs. Furthermore, we found a positive correlation between the strength of the connectivity from Broca's area to the auditory cortex and the severity of AVHs. These findings demonstrate, for the first time, augmented AVH-specific excitatory afferents from the thalamus to the auditory cortex in SZ patients, resulting in auditory perception without external auditory stimuli. Our results provide insights into the neural mechanisms underlying AVHs in SZ. This thalamic-auditory cortical-hippocampal dysconnectivity may also serve as a diagnostic biomarker of AVHs in SZ and a therapeutic target based on direct in vivo evidence.


Subject(s)
Auditory Cortex/physiopathology , Broca Area/physiopathology , Connectome/methods , Hallucinations/physiopathology , Hippocampus/physiopathology , Prefrontal Cortex/physiopathology , Schizophrenia/physiopathology , Speech Perception/physiology , Thalamus/physiopathology , Adult , Auditory Cortex/diagnostic imaging , Broca Area/diagnostic imaging , Hallucinations/diagnostic imaging , Hallucinations/etiology , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Models, Theoretical , Prefrontal Cortex/diagnostic imaging , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Thalamus/diagnostic imaging
12.
Neuron ; 93(3): 522-532.e5, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28132829

ABSTRACT

Defining the large-scale behavior of brain circuits with cell type specificity is a major goal of neuroscience. However, neuronal circuit diagrams typically draw upon anatomical and electrophysiological measurements acquired in isolation. Consequently, a dynamic and cell-type-specific connectivity map has never been constructed from simultaneous measurements across the brain. Here, we introduce dynamic causal modeling (DCM) for optogenetic fMRI experiments-which uniquely allow cell-type-specific, brain-wide functional measurements-to parameterize the causal relationships among regions of a distributed brain network with cell type specificity. Strikingly, when applied to the brain-wide basal ganglia-thalamocortical network, DCM accurately reproduced the empirically observed time series, and the strongest connections were key connections of optogenetically stimulated pathways. We predict that quantitative and cell-type-specific descriptions of dynamic connectivity, as illustrated here, will empower novel systems-level understanding of neuronal circuit dynamics and facilitate the design of more effective neuromodulation therapies.


Subject(s)
Brain/physiology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Animals , Basal Ganglia/diagnostic imaging , Basal Ganglia/physiology , Bayes Theorem , Brain/diagnostic imaging , Causality , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Fourier Analysis , Functional Neuroimaging , Magnetic Resonance Imaging , Mice , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Optogenetics , Thalamus/diagnostic imaging , Thalamus/physiology
13.
Cereb Cortex ; 27(2): 1193-1202, 2017 02 01.
Article in English | MEDLINE | ID: mdl-26679192

ABSTRACT

Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders.


Subject(s)
Emotions/physiology , Learning/physiology , Nerve Net/physiology , Neurofeedback , Adult , Amygdala/physiology , Behavior , Cognition/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Neural Pathways/physiology , Neuropsychological Tests , Photic Stimulation , Prefrontal Cortex/physiology
14.
Hum Brain Mapp ; 37(7): 2557-70, 2016 07.
Article in English | MEDLINE | ID: mdl-27145923

ABSTRACT

Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals [dynamic causal modeling (DCM)] to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian model selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus â†’ dPFC) and descending (dPFC â†’ thalamus) pathways. However, modulation of these pathways was asymmetric: while positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC â†’ thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus â†’ dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. Hum Brain Mapp 37:2557-2570, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Attention/physiology , Frontal Lobe/physiology , Thalamus/physiology , Adolescent , Bayes Theorem , Brain Mapping , Child , Female , Frontal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Neuropsychological Tests , Psychology, Adolescent , Thalamus/diagnostic imaging , Young Adult
15.
Neuroimage ; 135: 214-22, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27132544

ABSTRACT

Evaluation of taste intensity is one of the most important perceptual abilities in our daily life. In contrast with extensive research findings regarding the spatial representation of taste in the insula and thalamus, little is known about how the thalamus and insula communicate and reciprocally influence their activities for processing taste intensity. To examine this neurophysiological relationship, we investigated the modulatory effect of intensity of saltiness on connections in the network processing taste signals in the human brain. These "effective connectivity" relationships refer to the neurophysiological influence (including direction and strength of influence) of one brain region on another. Healthy adults (N=34), including 17 males and 17 females (mean age=21.3years, SD=2.4; mean body mass index (BMI)=20.2kg/m(2), SD=2.1) underwent functional magnetic resonance imaging as they tasted three concentrations of sodium chloride solutions. By effective connectivity analysis with dynamic causal modeling, we show that taste intensity enhances top-down signal transmission from the insular cortex to the thalamus. These results are the first to demonstrate the modulatory effect of taste intensity on the taste network in the human brain.


Subject(s)
Cerebral Cortex/physiology , Connectome/methods , Nerve Net/physiology , Sodium Chloride/administration & dosage , Taste Perception/physiology , Taste/physiology , Thalamus/physiology , Administration, Oral , Dose-Response Relationship, Drug , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/drug effects , Neural Pathways/drug effects , Neural Pathways/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Taste/drug effects , Taste Perception/drug effects , Thalamus/drug effects , Young Adult
16.
Hum Brain Mapp ; 37(1): 351-65, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26503033

ABSTRACT

The mismatch negativity (MMN) evoked potential, a preattentive brain response to a discriminable change in auditory stimulation, is significantly reduced in psychosis. Glutamatergic theories of psychosis propose that hypofunction of NMDA receptors (on pyramidal cells and inhibitory interneurons) causes a loss of synaptic gain control. We measured changes in neuronal effective connectivity underlying the MMN using dynamic causal modeling (DCM), where the gain (excitability) of superficial pyramidal cells is explicitly parameterised. EEG data were obtained during a MMN task--for 24 patients with psychosis, 25 of their first-degree unaffected relatives, and 35 controls--and DCM was used to estimate the excitability (modeled as self-inhibition) of (source-specific) superficial pyramidal populations. The MMN sources, based on previous research, included primary and secondary auditory cortices, and the right inferior frontal gyrus. Both patients with psychosis and unaffected relatives (to a lesser degree) showed increased excitability in right inferior frontal gyrus across task conditions, compared to controls. Furthermore, in the same region, both patients and their relatives showed a reversal of the normal response to deviant stimuli; that is, a decrease in excitability in comparison to standard conditions. Our results suggest that psychosis and genetic risk for the illness are associated with both context-dependent (condition-specific) and context-independent abnormalities of the excitability of superficial pyramidal cell populations in the MMN paradigm. These abnormalities could relate to NMDA receptor hypofunction on both pyramidal cells and inhibitory interneurons, and appear to be linked to the genetic aetiology of the illness, thereby constituting potential endophenotypes for psychosis.


Subject(s)
Brain Injuries/complications , Brain Injuries/pathology , Contingent Negative Variation/physiology , Evoked Potentials, Auditory/physiology , Family , Prefrontal Cortex/physiopathology , Psychotic Disorders/complications , Acoustic Stimulation , Adolescent , Adult , Electroencephalography , Female , Humans , Male , Middle Aged , Models, Theoretical , Nonlinear Dynamics , Prefrontal Cortex/pathology , Young Adult
17.
Neuroimage ; 124(Pt A): 43-53, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26342528

ABSTRACT

Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays.


Subject(s)
Brain/physiopathology , Channelopathies/genetics , Channelopathies/physiopathology , Magnetoencephalography/methods , Mutation , Neurons/physiology , Acoustic Stimulation , Adult , Aged , Aged, 80 and over , Auditory Cortex/physiopathology , Auditory Perception/physiology , Calcium Channels/genetics , Computer Simulation , Evoked Potentials, Auditory , Female , Humans , Male , Middle Aged , Models, Neurological , Potassium Channels, Inwardly Rectifying/genetics , Synapses/physiology , Young Adult
18.
J Neurosci ; 35(39): 13501-10, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26424894

ABSTRACT

Although the visual system has been extensively investigated, an integrated account of the spatiotemporal dynamics of long-range signal propagation along the human visual pathways is not completely known or validated. In this work, we used dynamic causal modeling approach to provide insights into the underlying neural circuit dynamics of pattern reversal visual-evoked potentials extracted from concurrent EEG-fMRI data. A recurrent forward-backward connectivity model, consisting of multiple interacting brain regions identified by EEG source localization aided by fMRI spatial priors, best accounted for the data dynamics. Sources were first identified in the thalamic area, primary visual cortex, as well as higher cortical areas along the ventral and dorsal visual processing streams. Consistent with hierarchical early visual processing, the model disclosed and quantified the neural temporal dynamics across the identified activity sources. This signal propagation is dominated by a feedforward process, but we also found weaker effective feedback connectivity. Using effective connectivity analysis, the optimal dynamic causal modeling revealed enhanced connectivity along the dorsal pathway but slightly suppressed connectivity along the ventral pathway. A bias was also found in favor of the right hemisphere consistent with functional attentional asymmetry. This study validates, for the first time, the long-range signal propagation timing in the human visual pathways. A similar modeling approach can potentially be used to understand other cognitive processes and dysfunctions in signal propagation in neurological and neuropsychiatric disorders. Significance statement: An integrated account of long-range visual signal propagation in the human brain is currently incomplete. Using computational neural modeling on our acquired concurrent EEG-fMRI data under a visual evoked task, we found not only a substantial forward propagation toward "higher-order" brain regions but also a weaker backward propagation. Asymmetry in our model's long-range connectivity accounted for the various observed activity biases. Importantly, the model disclosed the timing of signal propagation across these connectivity pathways and validates, for the first time, long-range signal propagation in the human visual system. A similar modeling approach could be used to identify neural pathways for other cognitive processes and their dysfunctions in brain disorders.


Subject(s)
Neural Pathways/physiology , Visual Pathways/physiology , Adult , Brain Mapping , Cerebral Cortex/physiology , Electroencephalography , Evoked Potentials, Visual , Feedback, Sensory/physiology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Models, Neurological , Thalamus/physiology , Visual Cortex/physiology , Young Adult
19.
Psychiatry Res ; 233(2): 243-53, 2015 Aug 30.
Article in English | MEDLINE | ID: mdl-26195295

ABSTRACT

The identification of antidepressant response predictors in bipolar disorder (BD) may provide new potential enhancements in treatment selection. Repeated total sleep deprivation combined with light therapy (TSD+LT) can acutely reverse depressive symptoms and has been proposed as a model antidepressant treatment. This study aims at investigating the effect of TSD+LT on effective connectivity and neural response in cortico-limbic circuitries during implicit processing of fearful and angry faces in patients with BD. fMRI and Dynamic Causal Modeling (DCM) were combined to study the effect of chronotherapeutics on neural responses in healthy controls (HC, n = 35) and BD patients either responder (RBD, n = 26) or non responder (nRBD, n = 11) to 3 consecutive TSD+LT sessions. Twenty-four DCMs exploring connectivity between anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), Amygdala (Amy), fusiform gyrus and visual cortex were constructed. After treatment, patients significantly increased their neural responses in DLPFC, ACC and insula. nRBD showed lower baseline and endpoint neural responses than RBD. The increased activity in ACC and in medial prefrontal cortex, associated with antidepressant treatment, was positively associated with the improvement of depressive symptomatology. Only RBD patients increased intrinsic connectivity from DLPFC to ACC and reduced the modulatory effect of the task on Amy-DLPFC connection. A successful antidepressant treatment was associated with an increased functional activity and connectivity within cortico-limbic networks, suggesting the possible role of these measures in providing possible biomarkers for treatment efficacy.


Subject(s)
Bipolar Disorder/drug therapy , Depressive Disorder, Major/drug therapy , Drug Chronotherapy , Image Interpretation, Computer-Assisted , Limbic System/drug effects , Lithium Carbonate/therapeutic use , Magnetic Resonance Imaging , Nerve Net/drug effects , Phototherapy , Prefrontal Cortex/drug effects , Sleep Deprivation , Adult , Bipolar Disorder/diagnosis , Bipolar Disorder/psychology , Combined Modality Therapy , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/psychology , Female , Humans , Male , Middle Aged
20.
J Neurosci ; 35(25): 9255-64, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26109651

ABSTRACT

Brain function can be conceived as a hierarchy of generative models that optimizes predictions of sensory inputs and minimizes "surprise." Each level of the hierarchy makes predictions of neural events at a lower level in the hierarchy, which returns a prediction error when these expectations are violated. We tested the generalization of this hypothesis to multiple sequential deviations, and we identified the most likely organization of the network that accommodates deviations in temporal structure of stimuli. Magnetoencephalography of healthy human participants during an auditory paradigm identified prediction error responses in bilateral primary auditory cortex, superior temporal gyrus, and lateral prefrontal cortex for deviation by frequency, intensity, location, duration, and silent gap. We examined the connectivity between cortical sources using a set of 21 generative models that embedded alternate hypotheses of frontotemporal network dynamics. Bayesian model selection provided evidence for two new features of functional network organization. First, an expectancy signal provided input to the prefrontal cortex bilaterally, related to the temporal structure of stimuli. Second, there are functionally significant lateral connections between superior temporal and/or prefrontal cortex. The results support a predictive coding hypothesis but go beyond previous work in demonstrating the generalization to multiple concurrent stimulus dimensions and the evidence for a temporal expectancy input at the higher level of the frontotemporal hierarchy. We propose that this framework for studying the brain's response to unexpected events is not limited to simple sensory tasks but may also apply to the neurocognitive mechanisms of higher cognitive functions and their disorders.


Subject(s)
Brain/physiology , Models, Neurological , Nerve Net , Acoustic Stimulation , Adolescent , Adult , Bayes Theorem , Evoked Potentials, Auditory/physiology , Female , Humans , Magnetoencephalography , Male , Signal Processing, Computer-Assisted , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL