Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Pharmacol Res ; 176: 106083, 2022 02.
Article in English | MEDLINE | ID: mdl-35033647

ABSTRACT

The pathogenic hyper-inflammatory response has been revealed as the major cause of the severity and death of the Corona Virus Disease 2019 (COVID-19). Xuanfei Baidu Decoction (XFBD) as one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, shows unique advantages in the control of symptomatic transition from moderate to severe disease states. However, the roles of XFBD to against hyper-inflammatory response and its mechanism remain unclear. Here, we established acute lung injury (ALI) model induced by lipopolysaccharide (LPS), presenting a hyperinflammatory process to explore the pharmacodynamic effect and molecular mechanism of XFBD on ALI. The in vitro experiments demonstrated that XFBD inhibited the secretion of IL-6 and TNF-α and iNOS activity in LPS-stimulated RAW264.7 macrophages. In vivo, we confirmed that XFBD improved pulmonary injury via down-regulating the expression of proinflammatory cytokines such as IL-6, TNF-α and IL1-ß as well as macrophages and neutrophils infiltration in LPS-induced ALI mice. Mechanically, we revealed that XFBD treated LPS-induced acute lung injury through PD-1/IL17A pathway which regulates the infiltration of neutrophils and macrophages. Additionally, one major compound from XFBD, i.e. glycyrrhizic acid, shows a high binding affinity with IL17A. In conclusion, we demonstrated the therapeutic effects of XFBD, which provides the immune foundations of XFBD and fatherly support its clinical applications.


Subject(s)
Acute Lung Injury/drug therapy , Drugs, Chinese Herbal/pharmacology , Interleukin-17/metabolism , Macrophages/drug effects , Neutrophils/drug effects , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Acute Lung Injury/metabolism , Animals , COVID-19/metabolism , Cell Line , China , Cytokines/metabolism , Leukocyte Count/methods , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , RAW 264.7 Cells , COVID-19 Drug Treatment
2.
Pharmacol Res ; 157: 104820, 2020 07.
Article in English | MEDLINE | ID: mdl-32360484

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has become a huge threaten to global health, which raise urgent demand of developing efficient therapeutic strategy. The aim of the present study is to dissect the chemical composition and the pharmacological mechanism of Qingfei Paidu Decoction (QFPD), a clinically used Chinese medicine for treating COVID-19 patients in China. Through comprehensive analysis by liquid chromatography coupled with high resolution mass spectrometry (MS), a total of 129 compounds of QFPD were putatively identified. We also constructed molecular networking of mass spectrometry data to classify these compounds into 14 main clusters, in which exhibited specific patterns of flavonoids (45 %), glycosides (15 %), carboxylic acids (10 %), and saponins (5 %). The target network model of QFPD, established by predicting and collecting the targets of identified compounds, indicated a pivotal role of Ma Xing Shi Gan Decoction (MXSG) in the therapeutic efficacy of QFPD. Supportively, through transcriptomic analysis of gene expression after MXSG administration in rat model of LPS-induced pneumonia, the thrombin and Toll-like receptor (TLR) signaling pathway were suggested to be essential pathways for MXSG mediated anti-inflammatory effects. Besides, changes in content of major compounds in MXSG during decoction were found by the chemical analysis. We also validate that one major compound in MXSG, i.e. glycyrrhizic acid, inhibited TLR agonists induced IL-6 production in macrophage. In conclusion, the integration of in silico and experimental results indicated that the therapeutic effects of QFPD against COVID-19 may be attributed to the anti-inflammatory effects of MXSG, which supports the rationality of the compatibility of TCM.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Pneumonia, Viral/drug therapy , Animals , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , COVID-19 , Cells, Cultured , Computer Simulation , Coronavirus Infections/genetics , Gene Expression/drug effects , Glycyrrhizic Acid/pharmacology , Humans , Interleukin-6/metabolism , Lipopeptides/antagonists & inhibitors , Lipopeptides/pharmacology , Lipopolysaccharides , Male , Pandemics , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia, Viral/genetics , Rats , SARS-CoV-2 , Signal Transduction/drug effects , Thrombin/metabolism , Toll-Like Receptors/metabolism
3.
J Ethnopharmacol ; 224: 373-380, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-29906536

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nowadays, bronchial asthma is still a severe disease threatening human health, and it is incumbent upon us to seek effective therapeutic drugs. Mahuang decoction (MHD), a classic famous Chinese prescription, has been used for thousands of years to prevent phlegm from forming, stop coughing and relieve asthma, but the relevant mechanism has not been thoroughly clarified. This study aims to investigate the anti-airway inflammation effect of MHD and the possible molecular mechanism underlying IL21/STAT3 signaling pathway, so as to provide guidance for the treatment of MHD on bronchial asthma. MATERIALS AND METHODS: Specific pathogen free SD rats were randomly divided into 6 groups: normal control group, model group, positive group (Compound methoxyphenamine), MHD-treated groups at doses of 10 ml/kg, 5 ml/kg and 2.5 ml/kg, 10 rats in each group. Except for the normal control group, rats in other groups were sensitized with ovalbumin via introperitoneal injection and challenged with ovalbumin inhalation to trigger asthma model. At 24 h after the last excitation, bronchoalveolar lavage fluid (BALF) of every rat was drawn and the number of inflammatory cells was analyzed using cell counting method. ELISA method was performed to determine the concentrations of TXB2, 6-keto-PGF1α, MMP-9, TIMP-1, IL-2, IL-4, IL-5 and TNF-α in rat serum. The protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in murine pulmonary tissues were assessed with western blotting analysis. RESULTS: Compared with the control group, the airway wall and airway smooth muscle of murine pulmonary tissues significantly thickened and massive inflammatory cells infiltration occurred around the bronchus in the model group, and the cell counts of WBC and EOS in BALF were also apparently increased, which indicated the rat asthma model was successfully established. MHD or Compound methoxyphenamine not only alleviated the pulmonary inflammatory pathological damages, but also down- regulated the numbers of WBC and EOS in BALF. What's more, the levels of TXB2, MMP-9, TIMP-1, ILs-(2, 4, 5) and TNF-α in rat serum were lessened by the treatment of MHD. In western blotting analysis, treatment with 10 ml/kg or 5 ml/kg MHD markedly declined the increased protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in lung tissues of asthmatic rats to normal level. CONCLUSION: MHD intervention demonstrated a strong inhibitory action on the secretion of inflammatory mediators as well as the inflammatory cell infiltration in pulmonary tissues of asthmatic rats, and also depressed the protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in pulmonary tissues. MHD effectively mitigates airway inflammation and regulates the IL-21/STAT3 signaling pathway in rat asthma model.


Subject(s)
Anti-Asthmatic Agents , Asthma/drug therapy , Cytokines/immunology , Plant Preparations , STAT3 Transcription Factor/immunology , 6-Ketoprostaglandin F1 alpha/blood , Allergens , Animals , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Asthma/blood , Asthma/immunology , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Cytokines/blood , Disease Models, Animal , Ephedra sinica , Leukocyte Count , Lung/drug effects , Lung/immunology , Lung/pathology , Matrix Metalloproteinase 9/blood , Ovalbumin , Phytotherapy , Plant Preparations/pharmacology , Plant Preparations/therapeutic use , Rats, Sprague-Dawley , Signal Transduction/drug effects , Thromboxane B2/blood , Tissue Inhibitor of Metalloproteinase-1/blood
4.
J Ethnopharmacol ; 179: 356-66, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26719286

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Mahuang-Xingren (MX) herb pair, the combination of Herba Ephedrae (Mahuang in Chinese) and Semen Armeniacae Amarum (Xingren in Chinese), is a core component of traditional Chinese medicine formulations used to treat asthma and bronchitis. Although Xingren is considered to be toxic, MX is widely used in the clinic and has few adverse effects. The mechanism underlying detoxification of Xingren by Mahuang in MX remains unknown and merits investigation. AIM OF THE STUDY: To determine the mechanism underlying detoxification of Xingren by Mahuang in MX. MATERIALS AND METHODS: Acute toxic effects were evaluated in mice after oral administration of Mahuang, Xingren, and MX aqueous extracts. Synergism, additivity, and antagonism were quantified by determining the CI (combination index) and DRI (dose-reduction index), which were calculated by the median effect method. High performance liquid chromatography analysis of bioactive compounds (ephedrine, pseudoephedrine and amygdalin) in aqueous extracts and data from previous pharmacokinetic studies in rats were combined to explore the potential mechanism of toxicity antagonism by the components of MX. Moreover, the cytotoxic effects of amygdalin and amygdalin activated by ß-glucosidase (including different proportions of l-amygdalin and d-amygdalin) were also investigated. RESULTS: Mahuang prevented and antagonized the acute toxicity of Xingren and allowed escalation of the Xingren dose. Pearson correlation analysis indicated that the proportion of d-amygdalin was closely correlated with the antagonism of Xingren toxicity. The antagonism of its acute toxicity was primarily attributed to stereoselective metabolism of amygdalin. Interestingly, the process was facilitated by Mahuang, which led to reduced levels of the d-prunasin in vivo and thus reduced toxicity. Furthermore, the mechanism was also evaluated by testing the cytotoxicity of amygdalin. Metabolism of d-amygdalin was a major cause of cytotoxicity and no stereoselective metabolism occurred in culture medium. CONCLUSIONS: A comprehensive study of Xingren detoxification in the context of the MX combination suggested that stereoselective metabolism of amygdalin facilitated by Mahuang may be the crucial mechanism underlying detoxification of Xingren in the MX combination. Therefore, Mahuang acts to enhance and control the effects of Xingren in the MX combination. These results illustrate the rationale behind the combination of Mahuang and Xingren.


Subject(s)
Amygdalin/metabolism , Amygdalin/toxicity , Drugs, Chinese Herbal/pharmacology , Ephedra sinica , Cell Proliferation/drug effects , Cells, Cultured , Drug Combinations , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/toxicity , Nitriles/metabolism , Stereoisomerism
5.
J Ethnopharmacol ; 164: 22-9, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25660335

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mahuang decoction, Ephedra combined with Cassia twig, Bitter apricot kernel and Prepared licorice, has been widely used as a multi-herb prescription in traditional Chinese medicine (TCM). Many modern pharmacological studies have shown that the compatibility application of these four herbs has promising therapeutic effects on respiratory infection, acute glomerulonephritis and chronic renal failure. However, the underlying principles for governing the formulation of Mahuang decoction remain unknown. In this study, we used a Caco-2 cell monolayer model to explicate the possible compatibility mechanism of Mahuang decoction from the perspective of intestinal absorption. MATERIAL AND METHODS: Firstly, the apical-to-basolateral and basolarteral-to-apical transport of the main characteristic active alkaloids in Ephedra, l-ephedrine (LEP), d-pseudoephedrine (DPEP) and l-methylephedrine (LMEP), as a single compound, was investigated. Secondly, the influence of main components in Cassia twig, Bitter apricot kernel and Prepared licorice on the transport of LEP, DPEP and LMEP was investigated. Finally, the bidirectional transport of these three alkaloids in single Ephedra extract, in Mahuang decoction and in drug pair extracts, such as Ephedra-Cassia twig, Ephedra-Bitter apricot kernel, Ephedra-Prepared licorice, was assessed. RESULTS: The investigated LEP, DPEP and LMEP could transport through the Caco-2 cell monolayer at a high level, with the efflux ratio (ER) of 1.41, 1.33 and 1.30, respectively, when the cells were treated with each single compound solution. In the presence of verapamil, the permeability from apical side to basolateral side (PAB) of the three alkaloids increased significantly (P<0.05), and their ERs decreased. The treatment of cells with Mahuang decoction and the drug pair extracts from Ephedra-Cassia twig, Ephedra-Bitter apricot kernel and Ephedra-Prepared licorice appreciably decreased PAB of LEP, DPEP and LMEP with increased ERs, compared to the treatment with single Ephedra extract. When concomitant administration with herbal drugs and their main ingredients (including cinnamaldehyde-cinnamyl alcohol-cinnamic acid group, volatile oil from Cassia twig, liquiritin-glycyrrhizic acid group from Prepared licorice, Cassia twig extract, Bitter apricot kernel extract and Prepared licorice extract), was adopted, PAB of LEP, DPEP and LMEP were reduced significantly and the ERs of the corresponding compounds were promoted appreciably. Only amygdalin (from Bitter apricot kernel) had little influence on the transport of Ephedra alkaloids. CONCLUSION: The findings indicate that LEP, DPEP and LMEP in Ephedra extract have similar absorption as in the pure solution of each compound. The intestinal absorption of LEP, DPEP and LMEP is through passive diffusion and these compounds may be P-gp substrates. The compatibility application of Cassia twig, Bitter apricot kernel and Prepared licorice, and their main components except amygdalin can suppress the absorption of the three main Ephedra alkaloids across the Caco-2 cell monolayer. On the basis of our results, Cassia twig, Bitter apricot kernel and Prepared licorice in Mahuang decoction decrease the absorption of Ephedra alkaloids, which may alleviate the drastic diaphoretic function and toxicity of Ephedra.


Subject(s)
Alkaloids/pharmacology , Drugs, Chinese Herbal/pharmacology , Ephedra sinica , Caco-2 Cells , Drug Interactions , Humans , Intestinal Absorption/drug effects
6.
J Ethnopharmacol ; 151(3): 1116-1123, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24384378

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The herbal decoction is a complex dispersion system containing solutes, colloid, aggregates, emulsions and precipitates. In which phase bioactive phytochemicals are dispersed determines their delivery, action and metabolism. This study took ephedrine, a well-studied and widely used phytochemical, as an example to elucidate its exact distribution in the phases of Ma-Xing-Shi-Gan-Tang decoction (MXSGT), which is an Ephedra sinica Stapf. containing traditional Chinese medicinal formula, and the biological meaning of this distribution correspondingly. It may provide an important update to the safety and efficacy assessment of the herbal decoction and its active phytochemicals. MATERIALS AND METHODS: In this study, the decoction was fractionated with size-exclusion chromatography coupled with multi-angle laser light scattering detector. The morphology of fractionated nanoparticles was observed with AFM and SEM. The bioactivities of the decoction, the ephedrine alkaloids loaded NPs (prepared by chromatography isolation) and the synthetic ephedrine were assessed by cell proliferation tests using five cell lines, namely Caco-2, L-02, Hep-G2, NR-8383, and Hela-229. RESULTS: Nanoparticles with radii of gyration ranged from 50 to 150 nm were isolated, in spherical shape. Further analysis of nanoparticles on the subsequent reversed phase chromatography revealed that the majority of ephedrine (99.7%) and pseudoephedrine (95.5%) were associated with these nanoparticles, rather than dispersed freely in the real solution. The addition of both the herbal decoction and the separated ephedrine-loaded nanoparticles reserved higher cell viability/proliferation than that of the sole synthetic ephedrine among the Caco-2, L-02, Hep-G2, and NR-8383 cells. In contrast, the nanoparticles reduced the proliferating power of ephedrine on Hela-229 cells. In general, the ephedrine-loaded NPs conducted the intermediate influences on the cell viability, in either way. CONCLUSIONS: The colloidal nanoparticles were separated from the decoction. The association of ephedrine alkaloids with nanoparticles was demonstrated and may have changed the bioactivity of the alkaloids. The naturally occurred colloidal nanoparticles may play an important role in the pharmacological properties of both the decoction and its active phytochemicals, therefore warrant further studies.


Subject(s)
Drugs, Chinese Herbal/chemistry , Nanoparticles/analysis , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, Gel , Chromatography, High Pressure Liquid , Ephedrine/analysis , Ephedrine/pharmacology , Humans , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Pseudoephedrine/analysis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL