Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Biomed Pharmacother ; 174: 116592, 2024 May.
Article in English | MEDLINE | ID: mdl-38615608

ABSTRACT

Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.


Subject(s)
Epigenesis, Genetic , Skin Aging , Humans , Epigenesis, Genetic/drug effects , Skin Aging/drug effects , Skin Aging/genetics , Animals , Skin/metabolism , Skin/drug effects , Medicine, Chinese Traditional/methods , Protective Agents/pharmacology
2.
Eur J Clin Invest ; 54(7): e14223, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38623918

ABSTRACT

BACKGROUND: Personalized medicine represents a novel and integrative approach that focuses on an individual's genetics and epigenetics, precision medicine, lifestyle and exposures as key players of health status and disease phenotypes. METHODS: In this narrative review, we aim to carefully discuss the current knowledge on gender disparities in cardiometabolic diseases, and we consider the sex- specific expression of miRNAs and their role as promising tool in precision medicine. RESULTS: Personalised medicine overcomes the restricted care of patient based on a binomial sex approach, by enriching itself with a holistic and dynamic gender integration. Recognized as a major worldwide health emergency, cardiometabolic disorders continue to rise, impacting on health systems and requiring more effective and targeted strategies. Several sex and gender drivers might affect the onset and progression of cardiometabolic disorders in males and females at multiple levels. In this respect, distinct contribution of genetic and epigenetic mechanisms, molecular and physiological pathways, sex hormones, visceral fat and subcutaneous fat and lifestyle lead to differences in disease burden and outcomes in males and females. CONCLUSIONS: Sex and gender play a pivotal role in precision medicine because the influence the physiology of each individual and the way they interact with environment from intrauterine life.


Subject(s)
Cardiovascular Diseases , MicroRNAs , Precision Medicine , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Female , Cardiovascular Diseases/genetics , Sex Factors , Metabolic Diseases/genetics , Epigenesis, Genetic , Life Style
3.
Immunology ; 172(2): 269-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430118

ABSTRACT

The aetiology and progression of systemic lupus erythematosus (SLE) resulted from a complex sequence of events generated both from genetic and epigenetic processes. In the current research, the effect of methyl-supplemented nutrition on the development of SLE was studied in the pristane-induced mouse model of the disease. The results clearly demonstrated decreased anti-dsDNA antibody and proteinuria levels, modulation of cytokines and protected renal structures in the group of treated mice. An additional increase in the DNA methylation of mouse B lymphocytes was also observed. The beneficial effect of the diet is due to the methyl-containing micronutrients with possible anti-inflammatory and immunomodulating effects on cell proliferation and gene expression. Since these components are responsible for maintaining the physiological methylation level of DNA, the results point to the central role of methylation processes in environmentally triggered lupus. As nutrition represents one of the major epigenetic factors, these micronutrients may be considered novel agents with significant therapeutic outcomes.


Subject(s)
Antibodies, Antinuclear , B-Lymphocytes , DNA Methylation , Dietary Supplements , Disease Models, Animal , Lupus Erythematosus, Systemic , Terpenes , Animals , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/chemically induced , Mice , Antibodies, Antinuclear/immunology , Antibodies, Antinuclear/blood , Female , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cytokines/metabolism , Epigenesis, Genetic , Micronutrients/administration & dosage , Proteinuria/immunology , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Kidney/drug effects
4.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515015

ABSTRACT

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Subject(s)
Iron Deficiencies , Iron , Pregnancy , Female , Animals , Rats , Male , Iron/metabolism , Chromatin/genetics , Chromatin/metabolism , Animals, Newborn , Rats, Sprague-Dawley , Epigenesis, Genetic , Choline/pharmacology , Choline/metabolism , Hippocampus
5.
Methods Mol Biol ; 2791: 23-33, 2024.
Article in English | MEDLINE | ID: mdl-38532089

ABSTRACT

Epigenetic programming plays a vital role in regulating pluripotency genes, which become activated or inactivated during the processes of dedifferentiation and differentiation during an organism's development. The analysis of epigenetic modifications has become possible through the technique of immunostaining, where specific antibodies allow the identification of a single target protein. This chapter describes a detailed protocol for the analysis of the epigenetic modifications with the use of confocal microscopy, subsequent image, and statistical analysis on the example of Fagopyrum calli with the use of nine antibodies raised against histone H3 and H4 methylation and acetylation on several lysines as well as DNA methylation.


Subject(s)
Fagopyrum , Fagopyrum/metabolism , Histones/metabolism , Cell Nucleus/metabolism , DNA Methylation , Antibodies/metabolism , Epigenesis, Genetic , Acetylation
6.
Heliyon ; 10(6): e27045, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500994

ABSTRACT

Background: Imbalances between Bcl-2 and caspase-3 are significant evidence of apoptosis, which is considered an influential factor in rapidly occurring neuronal cell death and the decline of neurological function after stroke. Studies have shown that acupuncture can reduce poststroke brain cell damage via either an increase in Bcl-2 or a reduction in caspase-3 exposure. The current study aimed to investigate whether acupuncture could modulate Bcl-2 and caspase-3 expression through histone acetylation modifications, which could potentially serve as a neuroprotective mechanism. Methods: This study used TTC staining, Nissl staining, Clark neurological system score, and Evans Blue (EB) extravasation to evaluate neurological damage following stroke. The expression of Bcl-2/caspase-3 mRNA was detected by real-time fluorescence quantification of PCR (real-time PCR), whereas the protein expression levels of Bcl-2, Bax, caspase-3, and cleaved caspase-3 were assessed using western blotting. TUNEL staining of the ischemic cortical neurons determined apoptosis in the ischemic cortex. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities, along with the protein performance of AceH3, H3K9ace, and H3K27ace, were detected to evaluate the degree of histone acetylation. The acetylation enrichment levels of H3K9 and K3K27 in the Bcl-2/caspase-3 gene were assessed using Chromatin Immunoprecipitation (ChIP) assay. Results: Our data demonstrated that electroacupuncture (EA) exerts a significant neuroprotective effect in middle cerebral artery occlusion (MCAO) rats, as evidenced by a reduction in infarct volume, neuronal damage, Blood-Brain Barrier (BBB) disruption, and decreased apoptosis of ischemic cortical neurons. EA treatment can promote the mRNA and protein expression of the Bcl-2 gene in the ischemic brain while reducing the mRNA and protein expression levels of caspase-3 and effectively decreasing the protein expression levels of Bax and cleaved caspase-3. More importantly, EA treatment enhanced the level of histone acetylation, including Ace-H3, H3K9ace, and H3K27ace, significantly enhanced the occupancy of H3K9ace/H3K27ace at the Bcl-2 promoter, and reduced the enrichment of H3K9ace and H3K27ace at the caspase-3 promoter. However, the Histone Acetyltransferase inhibitor (HATi) treatment reversed these effects. Conclusions: Our data demonstrated that EA mediated the expression levels of Bcl-2 and caspase-3 in MCAO rats by regulating the occupancy of acetylated H3K9/H3K27 at the promoters of these two genes, thus exerting a cerebral protective effect in ischemic reperfusion (I/R) injury.

7.
Health Inf Sci Syst ; 12(1): 26, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38505098

ABSTRACT

Purpose: To investigate the association between DNA methylation and childhood simple obesity. Methods: Genome-wide analysis of DNA methylation was conducted on peripheral blood samples from 41 children with simple obesity and 31 normal controls to identify differentially methylated sites (DMS). Subsequently, gene functional analysis of differentially methylated genes (DMGs) was carried out. After screening the characteristic DMGs based on specific conditions, the methylated levels of these DMS were evaluated and verified by pyrosequencing. Receiver operating characteristic (ROC) curve analysis assessed the predictive efficacy of corresponding DMGs. Finally, Pearson correlation analysis revealed the correlation between specific DMS and clinical data. Results: The overall DNA methylation level in the obesity group was significantly lower than in normal. A total of 241 DMS were identified. Functional pathway analysis revealed that DMGs were primarily involved in lipid metabolism, carbohydrate metabolism, amino acid metabolism, human diseases, among other pathways. The characteristic DMS within the genes Transcription factor A mitochondrial (TFAM) and Piezo type mechanosensitive ion channel component 1(PIEZO1) were recognized as CpG-cg05831083 and CpG-cg14926485, respectively. Furthermore, the methylation level of CpG-cg05831083 significantly correlated with body mass index (BMI) and vitamin D. Conclusions: Abnormal DNA methylation is closely related to childhood simple obesity. The altered methylation of CpG-cg05831083 and CpG-cg14926485 could potentially serve as biomarkers for childhood simple obesity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-024-00275-w.

8.
Nutrients ; 16(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474806

ABSTRACT

Pregnancy is an extremely stressful period in a pregnant woman's life. Currently, women's awareness of the proper course of pregnancy and its possible complications is constantly growing. Therefore, a significant percentage of women increasingly reach for various dietary supplements during gestation. Some of the most popular substances included in multi-ingredient supplements are folic acid and choline. Those substances are associated with positive effects on fetal intrauterine development and fewer possible pregnancy-associated complications. Recently, more and more attention has been paid to the impacts of specific environmental factors, such as diet, stress, physical activity, etc., on epigenetic modifications, understood as changes occurring in gene expression without the direct alteration of DNA sequences. Substances such as folic acid and choline may participate in epigenetic modifications by acting via a one-carbon cycle, leading to the methyl-group donor formation. Those nutrients may indirectly impact genome phenotype by influencing the process of DNA methylation. This review article presents the current state of knowledge on the use of folic acid and choline supplementation during pregnancy, taking into account their impacts on the maternal-fetal unit and possible pregnancy outcomes, and determining possible mechanisms of action, with particular emphasis on their possible impacts on epigenetic modifications.


Subject(s)
DNA Methylation , Dietary Supplements , Pregnancy , Female , Humans , Folic Acid/metabolism , Epigenesis, Genetic , Choline
9.
Compr Psychoneuroendocrinol ; 17: 100226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38482488

ABSTRACT

Healthcare is presently experiencing a global workforce crisis, marked by the inability of hospitals to retain qualified healthcare workers. Indeed, poor working conditions and staff shortages have contributed to structural collapse and placed a heavy toll on healthcare workers' (HCWs) well-being, with many suffering from stress, exhaustion, demoralization, and burnout. An additional factor driving qualified HCWs away is the repeated experience of moral distress, or the inability to act according to internally held moral values and perceived ethical obligations due to internal and external constraints. Despite general awareness of this crisis, we currently lack an organized understanding of how stress leads to poor health, wellbeing, and performance in healthcare workers. To address this critical issue, we first review the literature on moral distress, stress, and health in HCWs. Second, we summarize the biobehavioral pathways linking occupational and interpersonal stressors to health in this population, focusing on neuroendocrine, immune, genetic, and epigenetic processes. Third, we propose a novel Psychoneuroimmunological Model of Moral Distress and Health in HCWs based on this literature. Finally, we discuss evidence-based individual- and system-level interventions for preventing stress and promoting resilience at work. Throughout this review, we underscore that stress levels in HCWs are a major public health concern, and that a combination of system-level and individual-level interventions are necessary to address preventable health care harm and foster resilience in this population, including new health policies, mental health initiatives, and additional translational research.

10.
Mol Hum Reprod ; 30(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38366926

ABSTRACT

5,10-Methylenetetrahydrofolate reductase (MTHFR) is an enzyme that plays a key role in providing methyl groups for DNA methylation, including during spermatogenesis. A common genetic variant in humans (MTHFR 677C>T) results in reduced enzyme activity and has been linked to various disorders, including male infertility. A new animal model has been created by reproducing the human equivalent of the polymorphism in mice using CRISPR/Cas9. Biochemical parameters in the Mthfr 677TT mice recapitulate alterations found in MTHFR 677TT men. Our aims were to characterize the sperm DNA methylome of the Mthfr 677CC and TT mice on a control diet (2 mg folic acid/kg diet) and assess the effects of folic acid supplementation (10 mg/kg diet) on the sperm DNA methylome. Body and reproductive organ weights, testicular sperm counts, and histology were examined. DNA methylation in sperm was assessed using bisulfite pyrosequencing and whole-genome bisulfite sequencing (WGBS). Reproductive parameters and locus-specific imprinted gene methylation were unaffected by genotype or diet. Using WGBS, sperm from 677TT mice had 360 differentially methylated tiles as compared to 677CC mice, predominantly hypomethylation (60% of tiles). Folic acid supplementation mostly caused hypermethylation in sperm of males of both genotypes and was found to partially correct the DNA methylation alterations in sperm associated with the TT genotype. The new mouse model will be useful in understanding the role of MTHFR deficiency in male fertility and in designing folate supplementation regimens for the clinic.


Subject(s)
DNA Methylation , Methylenetetrahydrofolate Reductase (NADPH2) , Sulfites , Male , Humans , Animals , Mice , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Semen , Spermatozoa/metabolism , Folic Acid/pharmacology , Genotype , Dietary Supplements
11.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279228

ABSTRACT

The intestinal microbiota is a community of microorganisms inhabiting the human intestines, potentially influencing both physiological and pathophysiological processes in the human body. Existing evidence suggests that nutrients can influence the modulation of the gut microbiota. However, there is still limited evidence regarding the effects of vitamin and mineral supplementation on the human gut microbiota through epigenetic modification. It is plausible that maintaining an adequate dietary intake of vitamin D, iron, fibre, zinc and magnesium may have a beneficial effect on alleviating inflammation in the body, reducing oxidative stress, and improving the condition of the intestinal microbiota through various epigenetic mechanisms. Moreover, epigenetics involves alterations in the phenotype of a cell without changing its fundamental DNA sequence. It appears that the modulation of the microbiota by various nutrients may lead to epigenetic regulation. The correlations between microbiota and epigenetics are potentially interdependent. Therefore, the primary objective of this review is to identify the complex relationships between diet, gut microbiota, and epigenetic regulation. These interactions could play a crucial role in systemic health.


Subject(s)
Gastrointestinal Microbiome , Humans , Epigenesis, Genetic , Intestines , Diet , Nutritional Status
12.
Pharmacol Res Perspect ; 12(1): e1171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38293783

ABSTRACT

Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.


Subject(s)
Anti-Obesity Agents , Neoplasms , Humans , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Epigenesis, Genetic , Polyphenols/pharmacology , Polyphenols/therapeutic use , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use
13.
Biol Trace Elem Res ; 202(11): 5094-5105, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38221603

ABSTRACT

Zinc plays a pivotal role in tissue regeneration and maintenance being as a central cofactor in a plethora of enzymatic activities. Hypozincemia is commonly seen with chronic liver disease and is associated with an increased risk of liver fibrosis development and hepatocellular carcinoma. Previously favorable effects of zinc supplementation on liver fibrosis have been shown. However, the underlying mechanism of this effect is not elucidated. Liver fibrosis was induced in mice by using CCl4 injection, followed by treatment with zinc chloride (ZnCl2) both at fibrotic and sham groups, and their hepatocytes were isolated. Our results showed that the administration of ZnCl2 restored the depleted cytosolic zinc levels in the hepatocytes isolated from the fibrotic group. Also, alpha-smooth muscle actin (αSMA) expression in hepatocytes was decreased, indicating a reversal of the fibrotic process. Notably, ZIP14 expression significantly increased in the fibrotic group following ZnCl2 treatment, whereas in the sham group ZIP14 expression decreased. Chromatin immunoprecipitation (ChIP) experiments revealed an increased binding percentage of Metal-regulatory transcription factor 1 (MTF1) on ZIP14 promoter in the hepatocytes isolated from fibrotic mice compared to the sham group after ZnCl2 administration. In the same group, the binding percentage of the histone deacetylase HDAC4 on ZIP14 promoter decreased. Our results suggest that the ZnCl2 treatment ameliorates liver fibrosis by elevating intracellular zinc levels through MTF1-mediated regulation of ZIP14 expression and the reduction of ZIP14 deacetylation via HDAC4. The restoration of intracellular zinc concentrations and the modulation of ZIP14 expression by zinc orchestrated through MTF1 and HDAC4, appear to be essential determinants of the therapeutic response in hepatic fibrosis. These findings pave the way for potential novel interventions targeting zinc-related pathways for the treatment of liver fibrosis and associated conditions.


Subject(s)
Cation Transport Proteins , Epigenesis, Genetic , Liver Cirrhosis , Zinc Compounds , Zinc , Animals , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Mice , Zinc/pharmacology , Zinc/metabolism , Zinc Compounds/pharmacology , Male , Epigenesis, Genetic/drug effects , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Histone Deacetylases/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Chlorides/metabolism , Chlorides/pharmacology , Hepatocytes/metabolism , Hepatocytes/drug effects , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factor MTF-1 , Mice, Inbred C57BL , Carbon Tetrachloride , Promoter Regions, Genetic
14.
Biochem Biophys Res Commun ; 695: 149463, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38176172

ABSTRACT

Cisplatin-induced acute kidney injury (AKI) restricts the use of cisplatin as a first-line chemotherapeutic agent. Our previous study showed that prophylactic vitamin C supplementation may act as an epigenetic modulator in alleviating cisplatin-induced AKI in mice. However, the targets of vitamin C and the mechanisms underlying the epigenetics changes remain largely unknown. Herein, whole-genome bisulfite sequencing and bulk RNA sequencing were performed on the kidney tissues of mice treated with cisplatin with prophylactic vitamin C supplementation (treatment mice) or phosphate-buffered saline (control mice) at 24 h after cisplatin treatment. Ascorbyl phosphate magnesium (APM), an oxidation-resistant vitamin C derivative, was found that led to global hypomethylation in the kidney tissue and regulated different functional genes in the promoter region and gene body region. Integrated evidence suggested that APM enhanced renal ion transport and metabolism, and reduced apoptosis and inflammation in the kidney tissues. Strikingly, Mapk15, Slc22a6, Cxcl5, and Cd44 were the potential targets of APM that conferred protection against cisplatin-induced AKI. Moreover, APM was found to be difficult to rescue cell proliferation and apoptosis caused by cisplatin in the Slc22a6 knockdown cell line. These results elucidate the mechanism by which vitamin C as an epigenetic regulator to protects against cisplatin-induced AKI and provides a new perspective and evidence support for controlling the disease process through regulating DNA methylation.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Mice , Animals , Cisplatin/adverse effects , Antineoplastic Agents/pharmacology , DNA Demethylation , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/prevention & control , Kidney/metabolism , Apoptosis , Magnesium/metabolism , Vitamins/pharmacology , Dietary Supplements , Ascorbic Acid/metabolism , Phosphates/metabolism , Mice, Inbred C57BL
15.
J Nutr Biochem ; 124: 109533, 2024 02.
Article in English | MEDLINE | ID: mdl-37977406

ABSTRACT

The prevalences of diabetes mellitus and obesity are increasing yearly and has become a serious social burden. In addition to genetic factors, environmental factors in early life development are critical in influencing the prevalence of metabolic disorders in offspring. A growing body of evidence suggests the critical role of early methyl donor intervention in offspring health. Emerging studies have shown that methyl donors can influence offspring metabolism through epigenetic modifications and changing metabolism-related genes. In this review, we focus on the role of folic acid, betaine, vitamin B12, methionine, and choline in protecting against metabolic disorders in offspring. To address the current evidence on the potential role of maternal methyl donors, we summarize clinical studies as well as experimental animal models that support the impact of maternal methyl donors on offspring metabolism and discuss the mechanisms of action that may bring about these positive effects. Given the worldwide prevalence of metabolic disorders, these findings could be utilized in clinical practice, in which methyl donor supplementation in the early life years may reverse metabolic disorders in offspring and block the harmful intergenerational effect.


Subject(s)
Dietary Supplements , Metabolic Diseases , Animals , Betaine/pharmacology , Betaine/therapeutic use , DNA Methylation , Folic Acid/pharmacology , Folic Acid/therapeutic use , Metabolic Diseases/prevention & control , Humans , Female , Pregnancy
16.
Biochim Biophys Acta Gen Subj ; 1868(1): 130507, 2024 01.
Article in English | MEDLINE | ID: mdl-37925032

ABSTRACT

BACKGROUND: Potato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate various abiotic stress responses. However, the role of histone methyltransferases and demethylases remain unexplored in potato under heat stress. METHODS: Potato genome database was used for genome-wide analysis of StPRMT and StHDMA gene families, which were further characterized by analyzing gene structure, conserved motif, domain organization, sub-cellular localization, promoter region and phylogenetic relationships. Additionally, expression profiling under high-temperature stress in leaf and stolon tissue of heat contrasting potato genotypes was done to study their role in response to high temperature stress. RESULTS: The genome-wide analysis led to identification of nine StPRMT and eleven StHDMA genes. Structural analysis, including conserved motifs, exon/intron structure and phylogenetic relationships classified StPRMT and StHDMA gene families into two classes viz. Class I and Class II. A variety of cis-regulatory elements were explored in the promoter region associated with light, developmental, hormonal and stress responses. Prediction of sub-cellular localization of StPRMT proteins revealed their occurrence in nucleus and cytoplasm, whereas StHDMA proteins were observed in different sub-cellular compartments. Furthermore, expression profiling of StPRMT and StHDMA gene family members revealed genes responding to heat stress. Heat-inducible expression of StPRMT1, StPRMT3, StPRMT4 and StPRMT5 in leaf and stolon tissues of HS and HT cultivar indicated them as probable candidates for enhancing thermotolerance in potato. However, StHDMAs responded dynamically in leaf and stolon tissue of heat contrasting genotypes under high temperature. CONCLUSION: The current study presents a detailed analysis of histone modifiers in potato and indicates their role as an important epigenetic regulators modulating heat tolerance. GENERAL SIGNIFICANCE: Understanding epigenetic mechanisms underlying heat tolerance in potato will contribute towards breeding of thermotolerant potato varieties.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Phylogeny , Histone Methyltransferases/metabolism , Heat-Shock Response/genetics , Stress, Physiological/genetics
17.
J Biol Chem ; 300(2): 105597, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160798

ABSTRACT

Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.


Subject(s)
DNA Demethylation , Hypothalamus , Receptor, Angiotensin, Type 1 , Solute Carrier Family 12, Member 2 , Animals , Rats , Blood Pressure , DNA/metabolism , Hypertension/metabolism , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Receptor, Angiotensin, Type 1/metabolism , RNA, Messenger/genetics , Sympathetic Nervous System/metabolism , Solute Carrier Family 12, Member 2/metabolism
18.
Epigenetics ; 19(1): 2293410, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38096372

ABSTRACT

Folate is an essential mediator in one-carbon metabolism, which provides methyl groups for DNA synthesis and methylation. The availability of active methyl groups can be influenced by the uptake of folic acid. We conducted a randomized intervention trial to test the influence of folic acid supplementation on DNA methylation in an unfortified population in Germany. A total of 16 healthy male volunteers (age range 23-61 y) were randomized to receive either 400 µg (n = 9) or 800 µg (n = 7) folic acid supplements daily for 8 weeks. Infinium Human Methylation 450K BeadChip Microarrays were used to assay site-specific DNA methylation across the genome. Microarray analyses were conducted on PBL DNA. We estimated several epigenetic clocks and mean DNA methylation across all autosomal probes on the array. AgeAccel was estimated as the residual variation in each metric. In virtually all participants, both serum and red blood cell (RBC) folate increased successively throughout the trial period. Participants with a larger increase in RBC folate had a larger increase in DNAmAge AgeAccel (Spearman Rho: 0.56, p-value = 0.03). No notable changes in the methylome resulting from the folic acid supplementation emerged. In this population with adequate folate levels derived from diet, an increase in RBC folate had a modest impact on the epigenetic clock predicting chronologic age.


Subject(s)
DNA Methylation , Folic Acid , Humans , Male , Infant , Dietary Supplements , Epigenesis, Genetic , DNA/metabolism
19.
Mol Metab ; 80: 101864, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159883

ABSTRACT

OBJECTIVE: Maternal exposure during pregnancy is a strong determinant of offspring health outcomes. Such exposure induces changes in the offspring epigenome resulting in gene expression and functional changes. In this study, we investigated the effect of maternal Western hypercaloric diet (HCD) programming during the perinatal period on neuronal plasticity and cardiometabolic health in adult offspring. METHODS: C57BL/6J dams were fed HCD for 1 month prior to mating with regular diet (RD) sires and kept on the same diet throughout pregnancy and lactation. At weaning, offspring were maintained on either HCD or RD for 3 months resulting in 4 treatment groups that underwent cardiometabolic assessments. DNA and RNA were extracted from the hypothalamus to perform whole genome methylation, mRNA, and miRNA sequencing followed by bioinformatic analyses. RESULTS: Maternal programming resulted in male-specific hypertension and hyperglycemia, with both males and females showing increased sympathetic tone to the vasculature. Surprisingly, programmed male offspring fed HCD in adulthood exhibited lower glucose levels, less insulin resistance, and leptin levels compared to non-programmed HCD-fed male mice. Hypothalamic genes involved in inflammation and type 2 diabetes were targeted by differentially expressed miRNA, while genes involved in glial and astrocytic differentiation were differentially methylated in programmed male offspring. These data were supported by our findings of astrogliosis, microgliosis and increased microglial activation in programmed males in the paraventricular nucleus (PVN). Programming induced a protective effect in male mice fed HCD in adulthood, resulting in lower protein levels of hypothalamic TGFß2, NF-κB2, NF-κBp65, Ser-pIRS1, and GLP1R compared to non-programmed HCD-fed males. Although TGFß2 was upregulated in male mice exposed to HCD pre- or post-natally, only blockade of the brain TGFß receptor in RD-HCD mice improved glucose tolerance and a trend to weight loss. CONCLUSIONS: Our study shows that maternal HCD programs neuronal plasticity in the offspring and results in male-specific hypertension and hyperglycemia associated with hypothalamic inflammation in mechanisms and pathways distinct from post-natal HCD exposure. Together, our data unmask a compensatory role of HCD programming, likely via priming of metabolic pathways to handle excess nutrients in a more efficient way.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hyperglycemia , Hypertension , MicroRNAs , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Mice , Animals , Male , Diet, Western , Diabetes Mellitus, Type 2/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Epigenesis, Genetic , Hypothalamus/metabolism , Inflammation/genetics , Inflammation/metabolism , Hyperglycemia/metabolism , Glucose/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiovascular Diseases/metabolism
20.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068882

ABSTRACT

This overview discusses the role of imprinting in the development of an organism, and how exposure to environmental chemicals during fetal development leads to the physiological and biochemical changes that can have adverse lifelong effects on the health of the offspring. There has been a recent upsurge in the use of chemical products in everyday life. These chemicals include industrial byproducts, pesticides, dietary supplements, and pharmaceutical products. They mimic the natural estrogens and bind to estradiol receptors. Consequently, they reduce the number of receptors available for ligand binding. This leads to a faulty signaling in the neuroendocrine system during the critical developmental process of 'imprinting'. Imprinting causes structural and organizational differentiation in male and female reproductive organs, sexual behavior, bone mineral density, and the metabolism of exogenous and endogenous chemical substances. Several studies conducted on animal models and epidemiological studies provide profound evidence that altered imprinting causes various developmental and reproductive abnormalities and other diseases in humans. Altered metabolism can be measured by various endpoints such as the profile of cytochrome P-450 enzymes (CYP450's), xenobiotic metabolite levels, and DNA adducts. The importance of imprinting in the potentiation or attenuation of toxic chemicals is discussed.


Subject(s)
Endocrine Disruptors , Reproductive Health , Animals , Male , Humans , Female , Estrogens/toxicity , Reproduction , Neurosecretory Systems , Sexual Behavior , Endocrine Disruptors/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL