Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Country/Region as subject
Affiliation country
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 981-988, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621905

ABSTRACT

The quantitative analysis of multicomponents by single-marker(QAMS) was established for 13 chemical components of Epimedii Folium, including neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ, so as to investigate the feasibility and accuracy of this method in evaluating the quality of Epimedii Folium materials from different origins and different varieties. Through the scientific and accurate investigation of the experimental method, the external standard method was used to determine the content of 13 chemical components in epimedium brevieornu. At the same time, icariin was used as the internal standard, and the relative correction factors of icariin with neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ were established, respectively. The contens of neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuosideⅠ in Epimedii Folium were calculated by QAMS. Finally, the difference between the measured value and the calculated value was compared to verify the accuracy and scientific nature of QAMS in the determination. The relative correction factor of each component had better repeatability, and there was no significant difference between the results of the external standard method and those of QAMS. With icariin as the internal standard, QAMS simultaneously determining neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ can be used for quantitative analysis of Epimedii Folium.


Subject(s)
Anthracenes , Drugs, Chinese Herbal , Epimedium , Perylene/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Chlorogenic Acid , Flavonoids/analysis , Drugs, Chinese Herbal/chemistry , Epimedium/chemistry
2.
Biomed Pharmacother ; 173: 116346, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428312

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS: Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS: 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS: These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.


Subject(s)
Drugs, Chinese Herbal , Ligustrum , Osteoporosis , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Ligustrum/chemistry , Ligustrum/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1/metabolism , Hydrogen Peroxide/pharmacology , Tumor Suppressor Protein p53/metabolism , TOR Serine-Threonine Kinases/metabolism , Osteoporosis/drug therapy , Osteoblasts , Apoptosis , Autophagy , Chloroquine/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism
3.
J Ethnopharmacol ; 319(Pt 3): 117329, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37879510

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bone defects are difficult to treat and have a high incidence of nonunion. The Epimedii folium-Rhizoma drynariae herbal pair (EDP) is a traditional Chinese medicine (TCM) used for treating bone diseases. However, the mechanisms by which EDP promotes osteogenesis or bone formation remain largely unclear. AIM OF THE STUDY: This study aimed to investigate the mechanism of EDP promoted bone formation in bone defects using network pharmacology and experiments. MATERIALS AND METHODS: The chemical components of EDP were analyzed by UHPLC-MS. The hub target and pathway enrichment analysis was conducted using molecular docking or network pharmacology. The pharmacological actions of EDP were determined by µCT and histopathology examination using a bone defect rat model. The effects of EDP on the mRNA expression of Bmp2, Smad2/5, Runx2, and Alp genes were measured by RT-PCR, while changes in the protein expressions of BMP2, COL1A1, SPP1, ALP, and RUNX2in the tibia tissues of the rats in response to EDP were analyzed by immunohistochemical staining or Western blot. We also performed cell viability assays, Alizarin Red and ALP staining assays, and RT-PCR to better understand how EDP affected osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RESULTS: Identified 14 key compounds and 47 hub targets of EDP that may be involved in promoting osteogenesis to repair bone defects. And the BMP/Smad/Runx2 pathway was likely the key pathway through which EDP promoted bone defects repairing. The results of in vivo rat experiments indicated that EDP effectively promoted tibia repair in the model rats and activated the BMP/Smad/Runx2 pathway in the tibia tissue, with upregulating Bmp2, Bmpr1α, Smad2/5, Runx2, and Alp genes, and increased the protein expression of BMP2, COL1A1, RUNX2, and ALP. In vitro, EDP was found to increase the proliferation, differentiation, and mineralization in BMSCs- and also up-regulated the expression of key genes in the BMP/Smad/Runx2 pathway. CONCLUSION: This study highlighted the ability of EDP to promote the osteogenic differentiation to enable bone repair by activating the BMP/Smad/Runx2 pathway.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteogenesis , Rats , Animals , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Network Pharmacology , Molecular Docking Simulation , Cells, Cultured , Cell Differentiation
4.
Heliyon ; 9(5): e15473, 2023 May.
Article in English | MEDLINE | ID: mdl-37131450

ABSTRACT

Radiotherapy causes a series of side effects in patients with malignant tumors. Polygonati Rhizoma, Achyranthis Bidentatae Radix, and Epimedii Folium are all traditional Chinese herbs with varieties of functions such as anti-radiation and immune regulation. In this study, the above three herbs were used as a herbal diet to study their effects on the hematopoietic, immune, and intestinal systems of mice exposed to three doses of radiation. Our study showed that the diet had no radiation-protective effect on the hematopoietic and immune systems. However, at the radiation dose of 4 Gy and 8 Gy, the diet showed an obvious radiation-protective effect on intestinal crypts. At the dose of 8 Gy, we also found that the Chinese herbal diet had an anti-radiation effect on reducing the loss of the inhibitory nNOS+ neurons in the intestine. That provides a new diet for relieving the symptoms of hyperperistalsis and diarrhea in patients after radiotherapy.

5.
Food Chem Toxicol ; 176: 113785, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080529

ABSTRACT

Epimedii Folium (EF), a commonly used herbal medicine to treat osteoporosis, has caused serious concern due to potential hepatotoxicity. Until now, its intrinsic hepatotoxic mechanism and hepatotoxic ingredients remain unclear. Here, a novel high-throughput approach was designed to investigate the intrinsic hepatotoxic of EF. High-content screen imaging (HCS) and biochemical tests were first performed to obtain the cytotoxicity parameter matrix of 17 batch EF samples. EF-treated alpha mouse liver 12 (AML12) cells showed increased reactive oxygen species (ROS), reduced glutathione (GSH) and mitochondrial membrane potential (MMP), and apoptosis and cholestasis were further observed. Network toxicology predicted that EF-triggered hepatotoxiciy was involved in transcription factor (TF) activity. The FXR expression, screened by a TF PCR array, exhibited down-regulation following EF extract administration. Moreover, EF inhibited bile acid (BA) metabolism pathway in an FXR-dependent manner. Pearson correlation between the cytotoxicity parameter matrix and quantification feature table obtained from UHPLC-QTOF data of EF suggested 7 prenylated flavonoids possessed potent hepatotoxicities and their cytotoxicity order was further summarized. The transcriptional repression effects of them on FXR were also verified. Collectively, our findings indicate that FXR is probably responsible for EF-induced hepatotoxicity and prenylated flavonoids may be a major class of hepatotoxic constituents in EF.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Plants, Medicinal , Mice , Animals , Drugs, Chinese Herbal/chemistry , Flavonoids/toxicity
6.
J Pharm Anal ; 13(3): 239-254, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37102112

ABSTRACT

Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium (EF) and possess excellent therapeutic effects on various diseases. Encouragingly, in 2022, icaritin soft capsules were approved to reach the market for the treatment of hepatocellular carcinoma (HCC) by National Medical Products Administration (NMPA) of China. Moreover, recent studies demonstrate that icaritin can serve as immune-modulating agent to exert anti-tumor effects. Nonetheless, both production efficiency and clinical applications of epimedium flavonoids have been restrained because of their low content, poor bioavailability, and unfavorable in vivo delivery efficiency. Recently, various strategies, including enzyme engineering and nanotechnology, have been developed to increase productivity and activity, improve delivery efficiency, and enhance therapeutic effects of epimedium flavonoids. In this review, the structure-activity relationship of epimedium flavonoids is described. Then, enzymatic engineering strategies for increasing the productivity of highly active baohuoside I and icaritin are discussed. The nanomedicines for overcoming in vivo delivery barriers and improving therapeutic effects of various diseases are summarized. Finally, the challenges and an outlook on clinical translation of epimedium flavonoids are proposed.

7.
Acta Pharmaceutica Sinica ; (12): 246-257, 2023.
Article in Chinese | WPRIM | ID: wpr-965705

ABSTRACT

Epimedii Folium is a traditional non-toxic Chinese herbal medicine. However, liver injury caused by Chinese herb preparations, including Epimedii Folium, is frequently reported over the years. Based on ancient and modern literature, this paper systematically summarized and analyzed the safe application of Epimedii Folium from the perspectives of varieties, processing methods, clinical adverse reactions, pharmacological effects and toxic mechanism. Combined with our team work, we build the comprehensive prevention and control system "human-drug-application", for the safe and rational application of Epimedii Folium. This study is expected to provide support for scientific evaluation and precise prevention and control of the safety risk of Epimedii Folium.

8.
Biomed Chromatogr ; 37(1): e5518, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36201235

ABSTRACT

The herb pair Epimedii Folium-Chuanxiong Rhizoma (EF-CR), derived from the classical traditional Chinese medicine 'Xian Ling Pi San', has a distinctive compatibility therapeutic profile and is clinically safe and effective. This study aimed to investigate and compare the pharmacokinetic characteristics of nine analytes in osteoarthritis (OA) rat plasma after the oral administration of EF, CR or a combination of these two herbs. We developed an ultra-performance liquid chromatography method coupled with quadrupole linear ion-trap mass spectrometry to simultaneously quantify and assess the pharmacokinetics of icariin, epimedin A, epimedin B, epimedin C, icariside I, icariside II, ferulic acid, ligustilide and senkyunolide A of the EF-CR pair in the plasma of osteoarthritic rats. The pharmacokinetic parameters showed that the absorption of multiple components was significantly enhanced and residence time was prolonged in the EF-CR group (P < 0.05) compared to the single-herb group. These parameters revealed that the combination of EF and CR exhibited synergistic effects of the nine bioactive components, suggesting the potential application of the EF-CR combination for the treatment of OA.


Subject(s)
Drugs, Chinese Herbal , Osteoarthritis , Rats , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Chromatography, Liquid , Administration, Oral , Osteoarthritis/drug therapy
9.
Cell Biol Toxicol ; 39(4): 1215-1235, 2023 08.
Article in English | MEDLINE | ID: mdl-35802278

ABSTRACT

Epimedii folium (EF) is an effective herbal medicine in osteoporosis treatment, but the clinical utilization of EF has been limited due to potential hepatotoxicity. The previous studies identified that baohuoside I (BI), the main active component of EF, was relevant to EF-induced liver injury. However, the mechanisms of BI causing direct injury to hepatocytes remain unclear. Here, we reveal that BI inhibits FXR-mediated signaling pathway via targeting estrogen receptor α (ER α), leading to the accumulation of bile acids (BAs). Targeted bile acid analyses show BI alters the BA composition and distribution, resulting in impaired BA homeostasis. Mechanistically, BI induces FXR-dependent hepatotoxicity at transcriptional level. Additionally, ER α is predicted to bind to the FXR promoter region based on transcription factor binding sites databases and we further demonstrate that ER α positively regulates FXR promoter activity and affects the expression of target genes involved in BA metabolism. Importantly, we discover that ER α and its mediated FXR transcription regulation might be involved in BI-induced liver injury via ligand-dependent ER α degradation. Collectively, our findings indicate that FXR is a newly discovered target gene of ER α mediated BI-induced liver injury, and suggest BI may be responsible for EF-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Receptors, Cytoplasmic and Nuclear , Humans , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/pharmacology , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver , Homeostasis , Signal Transduction
10.
Article in Chinese | WPRIM | ID: wpr-991139

ABSTRACT

Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium(EF)and possess excellent therapeutic effects on various diseases.Encouragingly,in 2022,icaritin soft capsules were approved to reach the market for the treatment of hepatocellular carcinoma(HCC)by National Medical Products Administration(NMPA)of China.Moreover,recent studies demonstrate that icaritin can serve as immune-modulating agent to exert anti-tumor effects.Nonetheless,both production effi-ciency and clinical applications of epimedium flavonoids have been restrained because of their low content,poor bioavailability,and unfavorable in vivo delivery efficiency.Recently,various strategies,including enzyme engineering and nanotechnology,have been developed to increase productivity and activity,improve delivery efficiency,and enhance therapeutic effects of epimedium flavonoids.In this review,the structure-activity relationship of epimedium flavonoids is described.Then,enzymatic en-gineering strategies for increasing the productivity of highly active baohuoside I and icaritin are dis-cussed.The nanomedicines for overcoming in vivo delivery barriers and improving therapeutic effects of various diseases are summarized.Finally,the challenges and an outlook on clinical translation of epi-medium flavonoids are proposed.

11.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4358-4364, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046862

ABSTRACT

Epimedii Folium possesses many pharmacological activities including immunomodulation, anti-oxidation, and anti-tumor. Polysaccharides are the main components of Epimedii Folium, and their activities are closely related to the structure. The present study isolated a neutral polysaccharide(EPS-1-1) and an acidic polysaccharide(EPS-2-1) from the aqueous extract of Epimedii Folium through DEAE-52 cellulose anion-exchange chromatography and Sephadex G-100. The structures were characterized by chemical composition analysis, high-performance gel permeation chromatography(HPGPC), Fourier-transform infrared spectrometry(FT-IR), 1-phenyl-3-methyl-5-pyrazolone(PMP) derivatization, scanning electron microscopy(SEM), Congo red test, etc. The immunomodulatory activity of polysaccharides in vitro was determined by investigating the effects on the maturation of bone marrow-derived dendritic cells(BMDCs) and the release of inflammatory cytokines. According to the structural characterization analysis, EPS-1-1 was composed of fructose(Fuc), mannose(Man), ribose(Rib), rhamnose(Rha), glucose(Glc), galactose(Gal), xylose(Xyl), and arabinose(Ara) at 1.90∶0.67∶0.05∶0.08∶3.29∶1.51∶0.05∶0.37(molar ratio), while EPS-2-1 was mainly composed of Fuc, Man, Rha, glucuronic acid(GlcA), galacturonic acid(GalA), Glc, Gal, Xyl, and Ara at 5.25∶0.18∶0.32∶0.13∶1.14∶0.16∶0.55∶0.08∶0.2. EPS-1-1 and EPS-2-1 could promote the maturation and function of BMDCs through up-regulating the expression of MHC-Ⅱ, CD86, CD80, and CD40, and increasing the levels of inflammatory cytokines(IL-6, IL-12, and TNF-α) in vitro experiments, which suggested that EPS-1-1 and EPS-2-1 possessed good immunomodulatory activity.


Subject(s)
Cytokines , Polysaccharides , Cytokines/metabolism , Drugs, Chinese Herbal , Gas Chromatography-Mass Spectrometry , Humans , Immunomodulation , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared
12.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4446-4453, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046874

ABSTRACT

In this study, the secondary osteoporosis model was induced by oral administration of retinoic acid for two weeks in SD male rats. The efficacy and mechanism of LG on secondary osteoporosis in rats were explored through the bone morphogenetic protein 2(BMP-2)/Runt-related transcription factor 2(Runx2)/Osterix signaling pathway. With Xianling Gubao Capsules(XLGB) as the positive control, three dose groups of low glycoside from Epimedii Folium flavonoids(LG), i.e., low-dose group(LG-L), medium-dose group(LG-M), and high-dose group(LG-H), were set up. After modeling, the rats in each group were treated correspondingly by gavage for eight weeks. The action target of LG in the treatment of secondary osteoporosis in rats was analyzed by measuring the body weight and the organ indexes of rats including heart index and testis index. The efficacy of LG was characterized by the pathological changes of the femur, the microstructural parameters of the trabecular bone, and the biomechanical properties of femoral tissues in rats. The mechanism of LG was explored by measuring the relevant biochemical indexes and the changes in BMP-2, Runx2, and Osterix content in rats with secondary osteoporosis. The results showed that the action target of LG in the treatment of secondary osteoporosis in rats was the testis. LG can improve the bone loss of the femur, increase the number and thickness of the trabecular bone, reduce the porosity and separation of the trabecular bone, potentiate the resistance of bone to deformation and destruction, up-regulate the serum content of Ca, P, aminoterminal propeptide of type Ⅰ procollagen(PINP), and osteocalcin(OC), promote bone matrix calcification and the expression of BMP-2, Runx2, and Osterix proteins, and accelerate bone formation, thereby reducing the risk of fractures, and ultimately exerting anti-secondary osteoporosis efficacy.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteoporosis , Animals , Bone Density , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Drugs, Chinese Herbal , Flavonoids/therapeutic use , Glycosides/therapeutic use , Male , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats , Rats, Sprague-Dawley , Tretinoin/adverse effects
13.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2634-2642, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718481

ABSTRACT

On the basis of previous studies, this study prepared and evaluated microemulsion gel loading enriched ingredients of Epimedii Folium and investigated its protective effect against peripheral nervous system damage caused by chemotherapeutics. The preparation method and the type and dosage of the matrix were investigated from rheology, preparation difficulty, and drug loading. Then the optimal prescription was determined and the microemulsion gel loading enriched ingredients of Epimedii Folium was prepared. The in vitro release and transdermal behaviors of the gel were investigated in the Franz diffusion cell with epimedin A1,A,B,C, and icariin as evaluation indicators. The oxaliplatin-induced peripheral neuropathy(OIPN) model was established in Wistar rats. The protective effect of the microemulsion gel loading enriched ingredients of Epimedii Folium against peripheral nervous system damage caused by chemotherapeutics was evaluated by behavioral measurement after drug administration and histopathological examination of dorsal root ganglia and sciatic nerve. The preparation process of the microemulsion gel loading enriched ingredients of Epimedii Folium was stable, and the release of the five components was consistent with the Hixson-Crowell cube root law. Behavioral indicators intuitively showed that the drug could effectively relieve mechanical allodynia caused by oxaliplatin. The histopathological examination showed that the drug can improve neuron damage in the dorsal root ganglia, axon degeneration, and demyelination caused by oxaliplatin. Therefore, the preparation process of the microemulsion gel loading enriched ingredients of Epimedii Folium is feasible, which can achieve stable drug release. It has a certain therapeutic effect on chemotherapy-induced peripheral neuropathy(CIPN).


Subject(s)
Drugs, Chinese Herbal , Peripheral Nervous System Diseases , Animals , Drugs, Chinese Herbal/therapeutic use , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Rats , Rats, Wistar
14.
J Ethnopharmacol ; 293: 115254, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35381309

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Epimedii Folium (EF) is a common traditional Chinese medicine that functions as a tonifying kidney yang to strengthen bones and muscles and dispel wind dampness (limb pain, lethargy, nausea, anorexia, and loose stools). Several studies have reported the potential risk of cholestatic liver damage from EF use; however, there have been few investigations of EF-induced cholestasis, particularly the underlying mechanisms. AIMS OF THE STUDY: The purpose of this study was to evaluate the risk of EF-induced cholestasis in vivo and to explore the mechanisms of action. MATERIALS AND METHODS: ICR mice were orally administered a water extract of EF (WEF) in doses of 6.5 and 19.5 g/kg/day for 14 weeks. Liver-to-body weight ratios, body weight, histopathological examination, and biochemical analyses were performed to assess WEF-induced cholestasis in the mice. Genes associated with bile acid (BA) metabolism and transport, including sodium taurocholate cotransporting polypeptide (NTCP), cytochrome P450 8B1 (CYP8B1), bile-salt export pump (BSEP), multidrug resistance P-glycoproteins 1 (MDR1), and farnesoid X receptor (FXR), were measured at the transcript and protein levels to investigate the potential mechanisms through which cholestasis is aroused by EF. RESULTS: After administration of WEF for 14 weeks, mice in the high-dose WEF group showed poor health with an increased liver-to-body weight ratio as well as higher serum aminotransferase, alkaline phosphatase, direct bilirubin, and total BA levels. Compared with the control group, mRNA expression of NTCP and cholesterol 7a-hydroxylase (CYP7A1) increased, and levels of BSEP, MDR1, multidrug resistance-associated protein 2, and multidrug resistance-associated protein 3 decreased in the WEF-treated group. NTCP, BSEP, MDR1, and CYP8B1 showed similar mRNA and protein expression trends. CONCLUSION: We demonstrated that the long-term oral administration of WEF causes cholestatic liver injury in mice, which is consistent with reported clinical cases. Furthermore, we found that the destruction of BA metabolism and transport is involved in WEF-induced cholestasis. The fine-scale molecular mechanisms of WEF-induced cholestasis and the active compounds of EF need further study.


Subject(s)
Cholestasis , Steroid 12-alpha-Hydroxylase , Administration, Oral , Animals , Bile Acids and Salts , Body Weight , Cholestasis/drug therapy , Drugs, Chinese Herbal , Liver/metabolism , Mice , Mice, Inbred ICR , RNA, Messenger , Receptors, Cytoplasmic and Nuclear
15.
Article in Chinese | WPRIM | ID: wpr-930162

ABSTRACT

Epimedii folium is a commonly used Traditional Chinese Medicine (TCM) for warming the kidney and strengthening the yang qi. It has androgen-estrogen-like effect. It can not only directly act on sexual organs to regulate hormone levels, but also exert sex-hormone-like effect through hypothalamus-pituitary-gonadal axis. Its regulation of hormone levels is similar to that of plant hormones. At present, Epimedii folium is commonly used with other TCMs to treat diseases caused by sex-hormone deficiency, such as male spermatopenia, asthenospermia, benign prostatic hyperplasia, functional erectile dysfunction, female premature ovarian failure, perimenopausal syndrome, dysfunctional infertility during ovulation, hyperandrogenemia of PCOS patients, etc.

16.
Article in Chinese | WPRIM | ID: wpr-940159

ABSTRACT

ObjectiveTo explore the effective components and mechanism of Epimedii Folium in the treatment of oligoasthenotspermia by using network pharmacology and molecular docking technique. MethodThe main active components and corresponding target genes of Epimedii Folium were screened out from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Target genes of oligospermia were obtained by GeneCards and Online Mendelian Inheritance in Man (OMIM) database. Uniprot was used to correct all genes. The drug-active component-key target regulatory network was constructed by Cytoscape3.9.0, and the key active components were screened out according to the degree value. The active components and common targets of the disease were uploaded to STRING 11.5 database to construct the Epimedii Folium and oligoasthenotspermia target protein-protein interaction (PPI) network, and the key protein targets were screened out according to the degree value. The key targets of gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using DAVID database. Protein Data Bank (PDB) and TCMSP were used to obtain the molecular structure of target proteins and active components. AutoDock Vina 1.1.2 was used to perform molecular docking of the active components and the core protein targets. Finally, icariin, the active component of Epimedii Folium, was used to intervene in the rat model of oligoasthenotspermia to verify the effect of icariin on the expression level of protein targets. ResultTwenty-three active components from Epimedii Folium were screened out, and 50 common targets and 6 core targets of oligoasthenotspermia and Epimedii Folium were obtained, including tumor protein p53 (TP53), epidermal growth factor receptor (EGFR), prostaglandin-endoperoxide synthase 2 (PTGS2), cysteine aspartate-specific protease (Caspase)-3, erb-b2 receptor tyrosine kinase 2 (ERBB2), and caspase-9. Through GO enrichment and KEGG pathway enrichment analysis, the active components of Epimedii Folium were mainly involved in the P53 signaling pathway, the pathways in cancer, cell proliferation, and apoptosis, etc. Molecular docking results indicated that icariin, quercetin, and 8-isopentenol had strong binding ability to target protein. The results of icariin intervention experiment showed that as compared with the control group, the expression of target proteins in testis of rats with oligoasthenotspermia was significantly down-regulated. As compared with the model group, icariin significantly up-regulated the expression of target protein in testis of rats with oligoasthenotspermia (P<0.05). ConclusionEpimedii Folium treats oligoasthenotspermia through regulating the P53 signaling pathway, the pathways in cancer, cell proliferation, and apoptosis by icariin, quercetin, and 8-isopentenol.

17.
Article in Chinese | WPRIM | ID: wpr-940191

ABSTRACT

ObjectiveTo explore the effective components and mechanism of Epimedii Folium in the treatment of oligoasthenotspermia by using network pharmacology and molecular docking technique. MethodThe main active components and corresponding target genes of Epimedii Folium were screened out from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Target genes of oligospermia were obtained by GeneCards and Online Mendelian Inheritance in Man (OMIM) database. Uniprot was used to correct all genes. The drug-active component-key target regulatory network was constructed by Cytoscape3.9.0, and the key active components were screened out according to the degree value. The active components and common targets of the disease were uploaded to STRING 11.5 database to construct the Epimedii Folium and oligoasthenotspermia target protein-protein interaction (PPI) network, and the key protein targets were screened out according to the degree value. The key targets of gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using DAVID database. Protein Data Bank (PDB) and TCMSP were used to obtain the molecular structure of target proteins and active components. AutoDock Vina 1.1.2 was used to perform molecular docking of the active components and the core protein targets. Finally, icariin, the active component of Epimedii Folium, was used to intervene in the rat model of oligoasthenotspermia to verify the effect of icariin on the expression level of protein targets. ResultTwenty-three active components from Epimedii Folium were screened out, and 50 common targets and 6 core targets of oligoasthenotspermia and Epimedii Folium were obtained, including tumor protein p53 (TP53), epidermal growth factor receptor (EGFR), prostaglandin-endoperoxide synthase 2 (PTGS2), cysteine aspartate-specific protease (Caspase)-3, erb-b2 receptor tyrosine kinase 2 (ERBB2), and caspase-9. Through GO enrichment and KEGG pathway enrichment analysis, the active components of Epimedii Folium were mainly involved in the P53 signaling pathway, the pathways in cancer, cell proliferation, and apoptosis, etc. Molecular docking results indicated that icariin, quercetin, and 8-isopentenol had strong binding ability to target protein. The results of icariin intervention experiment showed that as compared with the control group, the expression of target proteins in testis of rats with oligoasthenotspermia was significantly down-regulated. As compared with the model group, icariin significantly up-regulated the expression of target protein in testis of rats with oligoasthenotspermia (P<0.05). ConclusionEpimedii Folium treats oligoasthenotspermia through regulating the P53 signaling pathway, the pathways in cancer, cell proliferation, and apoptosis by icariin, quercetin, and 8-isopentenol.

18.
J Ethnopharmacol ; 284: 114766, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34688798

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Neuroinflammation induced by microglia is closely related to a variety of neurodegenerative diseases including Alzheimer's disease (AD). Previous study has found that aqueous extract of Epimedii Folium and Curculiginis Rhizoma (EX) had anti-inflammatory effect on AD by activating the NLRP3 inflammasome and inhibiting NF-κB/MAPK pathway. However, whether the anti-neuroinflammatory effect of EX is related to microglia or not remains unclear. AIM OF THE STUDY: The present study aimed to investigate the protective effect of EX on cognitive impairment induced by LPS and explore the underlying mechanism of EX. MATERIALS AND METHODS: High performance liquid chromatography-tandem mass spectrometry (HPLC-MS) was performed to qualify the major components of EX, EX in the serum and cerebrospinal fluid. To evaluate the anti-inflammatory effects of EX in vivo, the mice were orally administrated with EX (2.34, 4.68 g kg-1•d-1) for 28 days before cotreatment with LPS (1 mg kg-1•d-1, i.p.). The leaning and memory abilities of mice were examined by Morris water maze test. The expression of inflammatory related proteins and the activation of microglia were detected by ELISA, immunofluorescence, real-time PCR and Western blotting. RESULTS: HPLC-MS analysis confirmed and quantified 9 components in EX, 5 components in the serum and 4 components in the cerebrospinal fluid. In a LPS-induced neuroinflammatory mouse model, EX was found to exert anti-inflammatory activity by reducing the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß), regulating the expression of different phenotypes of microglia, and increasing the expression of proteins related with TREM2 in the hippocampus tissue. Moreover, LPS-induced microglia activation was markedly attenuated in the hippocampus. CONCLUSIONS: These findings demonstrate that EX exerts anti-neuroinflammatory effects via reducing the production of inflammatory mediators, regulating the conversion of microglia and activating the proteins related with TREM2. EX might become a novel herb pairs to treat neuroinflammatory diseases.


Subject(s)
Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Drugs, Chinese Herbal/therapeutic use , Gene Expression Regulation/drug effects , Lipopolysaccharides/toxicity , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Animals , Drugs, Chinese Herbal/chemistry , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Plant Extracts , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, Immunologic/genetics
19.
Article in Chinese | WPRIM | ID: wpr-940747

ABSTRACT

Liver cancer is a worldwide malignant tumor with an increasing incidence by years. At present, it is facing the predicament of poor prognosis and lack of effective therapeutic drugs. Epimedii Folium is a well-known traditional Chinese medicine with a long history, and exiting clinical and pharmacological studies show that it can be used in clinical treatment of liver cancer. According to reports, Epimedii Folium polysaccharides (EPS), C-8-isopentenyl substituted flavonoids and their glycosides (icaritin, icariin, baohuoside Ⅰ, epimedin C) have good anti-liver cancer activity. They are the main active ingredients of Epimedii Folium against liver cancer. The data which comes from in vitro and in vivo studies suggests flavonoids in Epimedii Folium demonstrate anti-liver cancer activity through various mechanisms, including inhibiting hepatoma cells proliferation, promoting hepatoma cells apoptosis, improving tumor immunosuppression microenvironment, inhibiting hepatoma cells immune escape, invasion and migration, reversing hepatoma cells resistance, suppressing hepatocellular carcinoma initiation cells and regulating the immunity of the body. While EPS play an anti-hepatocellular carcinoma role mainly through the regulation of immunity. Epimedii Folium exerts good anti-liver cancer effects with multiple components, multiple targets, and multiple pathways, which makes it a valuable anti-liver cancer drug. However, the comprehensive analysis of related aspects is still lacking. Therefore, this study briefly reviewed the anti-hepatocellular carcinoma active ingredients of Epimedii Folium and their mechanisms. In addition, in the process of literature review, it was found that the anti-liver cancer studies of Epimedii Folium mainly focused on a few components and the studies elucidating the active constituents and mechanism of Epimedii Folium against liver cancer on the whole level were insufficient. Based on these questions, the study also proposed corresponding suggestion to provide reference for the further study of substance basis, clinical application and rational development of Epimedii Folium against liver cancer.

20.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6224-6230, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34951249

ABSTRACT

Alzheimer's disease(AD) patients in China have been surging, and the resultant medical burden and care demand have a huge impact on the development of individuals, families, and the society. The active component compound of Epimedii Folium, Astragali Radix, and Puerariae Lobatae Radix(YHG) can regulate the expression of iron metabolism-related proteins to inhibit brain iron overload and relieve hypofunction of central nervous system in AD patients. Hepcidin is an important target regulating iron metabolism. This study investigated the effect of YHG on the expression of a disintegrin and metalloprotease-17(ADAM17), a key enzyme in the hydrolysis of ß amyloid precursor protein(APP) in HT22 cells, by mediating hepcidin. To be specific, HT22 cells were cultured in vitro, followed by liposome-mediated siRNA transfection to silence the expression of hepcidin. Real-time PCR and Western blot were performed to examine the silencing result and the effect of YHG on hepcidin in AD cell model. HT22 cells were randomized into 7 groups: control group, Aß25-35 induction(Aß) group, hepcidin-siRNA(siRNA) group, Aß25-35 + hepcidin-siRNA(Aß + siRNA) group, Aß25-35+YHG(Aß+YHG) group, hepcidin-siRNA+YHG(siRNA+YHG) group, Aß25-35+hepcidin-siRNA+YHG(Aß+siRNA+YHG) group. The expression of ADAM17 mRNA in cells was detected by real-time PCR, and the expression of ADAM17 protein by immunofluorescence and Western blot. Immunofluorescence showed that the ADAM17 protein expression was lower in the Aß group, siRNA group, and Aß+siRNA group than in the control group(P<0.05) and the expression was lower in the Aß+siRNA group(P<0.05) and higher in the Aß+YHG group(P<0.05) than in the Aß group. Moreover, the ADAM17 protein expression was lower in the Aß+siRNA group(P<0.05) and higher in the siRNA+YHG group(P< 0.05) than in the siRNA group. The expression was higher in the Aß+siRNA+YHG group than in the Aß+siRNA group(P<0.05). The results of Western blot and real-time PCR were consistent with those of immunofluorescence. The experiment showed that YHG induced hepcidin to up-regulate the expression of ADAM17 in AD cell model and promote the activation of non-starch metabolic pathways, which might be the internal mechanism of YHG in preventing and treating AD.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Pueraria , ADAM17 Protein , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid beta-Peptides , Drugs, Chinese Herbal/pharmacology , Hepcidins/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL