ABSTRACT
Euonymus alatus (Thunb.) Siebold, a traditional medicinal plant, has been used in China and several other Asian countries to address a variety of health concerns. The extensive research conducted on E. alatus is driven by its diverse pharmacological applications. However, its biological effects on osteoclastogenesis and osteoporosis have not been previously studied. In this research, we investigated the impact of an ethanolic extract of E. alatus (EEEA) on osteoclast differentiation and function as well as estrogen deficiency-induced bone loss. We found that EEEA inhibits osteoclast differentiation by downregulating the expression of the receptor activator of nuclear factor-κB ligand (RANKL) in osteoclast-supporting cells and by directly impeding RANKL-mediated signaling pathways for osteoclastogenesis in precursor cells. In addition, EEEA inhibited the bone-resorptive function of mature osteoclasts in vitro. Furthermore, oral administration of EEEA significantly alleviated bone loss in an ovariectomy-induced osteoporosis mouse model. Additionally, we identified phytochemicals in EEEA that have suppressive effects on osteoclast differentiation and bone loss. Collectively, these results suggest that EEEA holds potential as a biotherapeutic candidate for anti-postmenopausal osteoporosis.
ABSTRACT
Background: Euonymus alatus (Thunb.) Siebold (EA) is a medicinal plant used in some Asian countries to treat various diseases, including cancer, hyperglycemia, diabetes, urticaria, dysmenorrhea, and arthritis. Owing to the wide range of pharmacological applications of EA, various roles of EA are being studied. Objective: We evaluated the immune-enhancing effect of EA treatment in a cyclophosphamide (Cy)-induced immunosuppressed rat model. Design: We analyzed the immune enhancement effect of EA on macrophages by western blotting. In addition, cell viability and natural killer (NK) cell activity were analyzed in splenocytes following EA treatment. For in vivo studies, analysis of weekly body weight, spleen weight, immune cell count, cytokine levels, and spleen histological findings was performed following EA administration in Cy-induced immunocompromised rats. Results: EA significantly increased cell viability and phospho-nuclear factor-kappa B and phospho-extracellular signal-regulated kinase protein levels in the macrophages. EA significantly increased NK cell activity in splenocytes compared with the control group. In Cy-induced immunosuppressed rats, EA administration increased spleen tissue weight and the contents of leukocytes, lymphocytes, granulocytes, intermediate cells, and plasma cytokines (tumor necrosis factor-α and interferon-γ). In addition, improvement in the damaged spleen tissue was observed. Conclusions: These findings confirm that EA exerts an immune-enhancing effect, thereby suggesting its potential as an immunostimulatory agent or functional food.
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Euonymus alatus (Thunb.) Siebold (family Celastraceae) is a deciduous woody shrub that is recorded in ShenNong BenCaoJing. It has been widely used for diabetes in traditional Chinese medicine. AIM OF THE STUDY: This study aimed to identify the most effective extract of Euonymus alatus (EA) against high glucose-induced endothelial cells in vitro, evaluate its pharmacological effect on retinopathy in diabetic mice and explore its underlying mechanism by RNA sequencing. METHODS: Retinal vascular endothelial cells (RF/6A) were treated with normal glucose (5.5 mmol/L glucose), high glucose (25 mmol/L glucose) or high glucose plus methanol extracts of EA (MEA), ethyl acetate extracts of EA (EEA) or water extracts of EA (WEA). The cytotoxicity and cell viability were determined by Cell Counting Kit-8 (CCK-8) assay. Cell migration was examined using the Transwell assay, and tube formation ability was measured using the Matrigel assay. Then, the KK-Ay mice were administered WEA or water for 12 weeks. The velocities of ocular blood flow were determined by Doppler ultrasound. RNA sequencing and reverse transcription quantitative PCR (RT-qPCR) were performed on WEA-stimulated RF/6A cells to reveal the underlying mechanism. RESULTS: The cytotoxicity assay found that 30 µg/mL MEA, 20 µg/mL EEA and 30 µg/mL WEA had no toxic effect on RF/6A cells. The cell viability results showed that MEA, EEA and WEA all decreased cell viability. Compared with the high-glucose group, both MEA and WEA decreased the number of migrated cells, while the inhibition rate of WEA was higher. The Matrigel results showed that 30 µg/mL WEA effectively reduced the total tube length. Moreover, WEA improved the haemodynamics of the central retinal artery. RNA sequencing coupled with RT-qPCR verified that WEA regulated angiogenesis-related factors in high glucose-stimulated RF/6A cells. CONCLUSIONS: WEA inhibits the migration and tube formation of RF/6A cells and improves diabetic retinopathy (DR) by mediating angiogenesis.