Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 399: 133941, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36007445

ABSTRACT

A deep eutectic system (DESys) is formed when a hydrogen bond acceptor (HBA) is processed with polysaccharide (hydrogen bond donor, HBD) containing plant substance in water to dissolve, extract, and recover the polysaccharide directly, instead of using a traditional deep eutectic solvent (DES). The extraction efficiency is enhanced by the direct formation of the DESys, in a mechanochemical extraction (MCE) system. Key factors affecting the extraction efficiency were systematically studied and optimized. The effects of the DESys on the structure and physicochemical properties of polysaccharides were studied by several analytical techniques. The findings demonstrated that the direct DESys formation extraction efficiency was superior than that of traditional extraction methods while retaining physicochemical properties of polysaccharides. Moreover, the composition of polysaccharides extracted with this method is different from that obtained by conventional methods. The recovery and purification process of polysaccharides is simplified by eliminating the need for an additional HBD.


Subject(s)
Deep Eutectic Solvents , Plant Extracts , Polysaccharides , Hydrogen Bonding , Plant Extracts/chemistry , Plants , Solvents/chemistry
2.
Int J Pharm ; 563: 395-405, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30978486

ABSTRACT

Fast dissolution of nonsteroidal anti-inflammatory drugs (NSAIDs) is a prerequisite from patient perspective. However, most NSAIDs are slowly dissolving acidic compounds. Caffeine, a commonly used analgesic adjuvant with NSAIDs showed high potential as eutectic co-former for acidic compounds. The study investigated eutectic forming potential of caffeine with meloxicam, aceclofenac and flurbiprofen. Each drug was co-ground with caffeine in various ratios and the products were characterized by thermal analysis to determine the optimum eutectic composition from phase diagram and Tamman's triangle. The optimum systems were subjected to X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) and dissolution studies. Co-ground systems at dose ratio were also assessed for drug dissolution and anti-inflammatory effect using carrageenan induced rat paw edema method. Eutexia was confirmed by thermal analysis with the optimum composition being 1:1, 1:1 and 1:2 (NSAID: caffeine) for aceclofenac, flurbiprofen and meloxicam, respectively. Eutexia did not alter FTIR spectra with minor changes being recorded in XRPD patterns. The eutectic systems underwent fast liberation of drugs with fast dissolution being retained even at dose ratios. Dissolution enhancement was associated with enhanced anti-inflammatory response. The study introduced caffeine as eutectic forming analgesic for fixed dose combination with NSAIDs to enhance drug dissolution and anti-inflammatory effect.


Subject(s)
Analgesics , Anti-Inflammatory Agents, Non-Steroidal , Caffeine , Analgesics/administration & dosage , Analgesics/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Caffeine/administration & dosage , Caffeine/chemistry , Carrageenan , Diclofenac/administration & dosage , Diclofenac/analogs & derivatives , Diclofenac/chemistry , Drug Liberation , Edema/chemically induced , Edema/drug therapy , Flurbiprofen/administration & dosage , Flurbiprofen/chemistry , Male , Meloxicam/administration & dosage , Meloxicam/chemistry , Powder Diffraction , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Transition Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL