Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36430459

ABSTRACT

Choline is an essential nutrient with many roles in brain development and function. Supplementation of choline in early development can have long-lasting benefits. Our experiments aimed to determine the efficacy of choline supplementation in a postnatal day (PND) 10 rat model of neonatal hypoxia ischemia (HI) at term using both male and female rat pups. Choline (100 mg/kg) or saline administration was initiated the day after birth and given daily for 10 or 14 consecutive days. We determined choline's effects on neurite outgrowth of sex-specific cultured cerebellar granule cells after HI with and without choline. The magnitude of tissue loss in the cerebrum was determined at 72 h after HI and in adult rats. The efficacy of choline supplementation in improving motor ability and learning, tested using eyeblink conditioning, were assessed in young adult male and female rats. Overall, we find that choline improves neurite outgrowth, short-term histological measures and learning ability in males. Surprisingly, choline did not benefit females, and appears to exacerbate HI-induced changes.


Subject(s)
Choline , Hypoxia-Ischemia, Brain , Female , Animals , Rats , Male , Choline/pharmacology , Animals, Newborn , Hypoxia-Ischemia, Brain/pathology , Ischemia
2.
Neurosci Bull ; 38(5): 459-473, 2022 May.
Article in English | MEDLINE | ID: mdl-34989972

ABSTRACT

The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.


Subject(s)
Cerebellar Nuclei , Neurons , Animals , Blinking , Cerebellar Nuclei/physiology , Cerebellum , Mice , Neurons/physiology , Thalamus
3.
Neuroscience Bulletin ; (6): 459-473, 2022.
Article in English | WPRIM | ID: wpr-929103

ABSTRACT

The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.


Subject(s)
Animals , Mice , Blinking , Cerebellar Nuclei/physiology , Cerebellum , Neurons/physiology , Thalamus
4.
Neuropsychologia ; 117: 551-557, 2018 08.
Article in English | MEDLINE | ID: mdl-30031016

ABSTRACT

Primary cerebellar agenesis (PCA), a brain disease where the cerebellum does not develop, is an extremely rare congenital disease with only eleven living cases reported thus far. Studies of the PCA case will thus provide valuable insights into the necessity of cerebellar development for controlling and modulating cognitive functions of the brain. In this follow-up study, we further investigated the performance of associative learning and time perception of a 26-year-old female complete PCA case. We assessed whether delayed eyeblink conditioning (EBC), which represents prototypical associative motor learning function of the cerebellum, could be partially compensated by the extracerebellar brain regions in complete absence of the cerebellum. We also assessed whether the cerebellum, a critical brain region for millisecond-range interval timing, is essential for perception of the second-range time interval. Twelve neurotypical age-matched individuals were used as controls. We found that although the complete PCA patient had only mild to moderate motor deficits, she was unable to perform the delayed EBC even after 1-week of extensive training. Additionally, the PCA patient also performed poorly during time reproduction experiments in which she overproduced the millisecond-range time intervals, while underproduced the second-range time intervals. The PCA patient also failed to perform the temporal eyeblink conditioning with a 5 s fixed interval as the conditioned stimulus. These results indicate that the cerebellum is indispensable for associative motor learning and involved in timing of sub-second intervals, as well as in the perception of second-range intervals.


Subject(s)
Cerebellum/abnormalities , Eye Abnormalities/complications , Kidney Diseases, Cystic/complications , Learning Disabilities/etiology , Motor Activity/physiology , Perceptual Disorders/etiology , Retina/abnormalities , Time Perception/physiology , Abnormalities, Multiple , Acoustic Stimulation/adverse effects , Adult , Blinking , Case-Control Studies , Conditioning, Classical , Female , Humans , Reaction Time/physiology , Reflex, Startle/physiology , Young Adult
5.
Alcohol Clin Exp Res ; 42(7): 1327-1341, 2018 07.
Article in English | MEDLINE | ID: mdl-29750367

ABSTRACT

BACKGROUND: We recently demonstrated the acceptability and feasibility of a randomized, double-blind choline supplementation intervention for heavy drinking women during pregnancy. In this study, we report our results relating to the efficacy of this intervention in mitigating adverse effects of prenatal alcohol exposure (PAE) on infant growth and cognitive function. METHODS: Sixty-nine Cape Coloured (mixed ancestry) heavy drinkers in Cape Town, South Africa, recruited in mid-pregnancy, were randomly assigned to receive a daily oral dose of either 2 g of choline or placebo from time of enrollment until delivery. Each dose consisted of an individually wrapped packet of powder that, when mixed with water, produced a sweet tasting grape-flavored drink. The primary outcome, eyeblink conditioning (EBC), was assessed at 6.5 months. Somatic growth was measured at birth, 6.5, and 12 months, recognition memory and processing speed on the Fagan Test of Infant Intelligence, at 6.5 and 12 months. RESULTS: Infants born to choline-treated mothers were more likely to meet criterion for conditioning on EBC than the placebo group. Moreover, within the choline arm, degree of maternal adherence to the supplementation protocol strongly predicted EBC performance. Both groups were small at birth, but choline-treated infants showed considerable catch-up growth in weight and head circumference at 6.5 and 12 months. At 12 months, the infants in the choline treatment arm had higher novelty preference scores, indicating better visual recognition memory. CONCLUSIONS: This exploratory study is the first to provide evidence that a high dose of choline administered early in pregnancy can mitigate adverse effects of heavy PAE on EBC, postnatal growth, and cognition in human infants. These findings are consistent with studies of alcohol-exposed animals that have demonstrated beneficial effects of choline supplementation on classical conditioning, learning, and memory.


Subject(s)
Alcohol Drinking/drug therapy , Birth Weight/drug effects , Blinking/drug effects , Choline/administration & dosage , Cognition/drug effects , Dietary Supplements , Prenatal Exposure Delayed Effects/drug therapy , Adult , Alcohol Drinking/epidemiology , Birth Weight/physiology , Blinking/physiology , Cognition/physiology , Double-Blind Method , Female , Fetal Alcohol Spectrum Disorders/epidemiology , Fetal Alcohol Spectrum Disorders/prevention & control , Humans , Infant , Male , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , South Africa/epidemiology , Treatment Outcome
6.
Behav Brain Res ; 278: 476-81, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25447303

ABSTRACT

Adolescence is a key age in the development of anxiety disorders. The present study assessed the relationship between behavioral inhibition, a risk factor for anxiety typified by avoidance, and acquisition of the classically conditioned eyeblink response. 168 healthy high school students (mean age 15.7 years, 54% female) were given a battery of self-report measures including the Adult Measure of Behavioural Inhibition (AMBI). The study compared acquisition of three experimental training conditions. Two groups were given paired CS-US training: standard delay of 500-ms or long delay of 1000-ms with CS overlapping and co-terminating with a 50-ms airpuff US. A third group received unpaired training of 1000-ms CS and 50-ms airpuff US. Inhibited individuals showed greater acquisition of the conditioned eyeblink response in the 500-ms CS condition, but not in the paired 1000-ms condition. No differences in spontaneous blinks or reactivity to the stimulus were evident in the 1000-ms unpaired CS condition. Results support a relationship between associative learning and anxiety vulnerability that may be mediated by cerebellar functioning in inhibited individuals.


Subject(s)
Conditioning, Classical/physiology , Conditioning, Eyelid/physiology , Inhibition, Psychological , Acoustic Stimulation , Adolescent , Blinking/physiology , Electromyography , Female , Humans , Male , Physical Stimulation , Psychometrics , Self Report , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL