Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters

Publication year range
1.
Food Chem ; 448: 139026, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38531298

ABSTRACT

Linusorbs (LOs), significantly influence oil quality and sensory properties of flaxseed oil. Trp-containing LOs exhibit distinct oxidative behavior when γ-tocopherol (γ-T) is present. Polar fractions of crude flaxseed oil were stripped via silica absorption, and reintroduced (LO and γ-T) separately into the oil matrix to investigate their interaction during storage. Compared with crude oil, LOs account for 18.49% reduction of p-anisidine value, while LOs with γ-T contributed to most of the endogenous antioxidant effect in crude oil. γ-T was found to suppress oxidation of Trp-containing LO at early stage (Met form), while facilitate oxidation while at their mid-stage (MetO form, Methionine sulfoxide). In vitro oxidation shows that CLD more likely cleaved into peptide fragments, while few products retain intact ring structures. LC-MS/MS analysis and silicon simulation revealed proximity between MetO and Trp residues, facilitating inter- or intra-molecular reactions and ring structure rupture. Remarkably, the presence of γ-T facilitate these phenomena.


Subject(s)
Linseed Oil , Tryptophan , gamma-Tocopherol , Tryptophan/chemistry , Linseed Oil/chemistry , gamma-Tocopherol/chemistry , Oxidation-Reduction , Antioxidants/chemistry , Tandem Mass Spectrometry , Flax/chemistry
2.
Food Chem ; 448: 138988, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38522295

ABSTRACT

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Subject(s)
Emulsions , Gels , Linseed Oil , Ovalbumin , Oxidation-Reduction , Transglutaminases , Ovalbumin/chemistry , Transglutaminases/chemistry , Transglutaminases/metabolism , Emulsions/chemistry , Linseed Oil/chemistry , Gels/chemistry
3.
Front Endocrinol (Lausanne) ; 15: 1280760, 2024.
Article in English | MEDLINE | ID: mdl-38469148

ABSTRACT

Background: This study was designed to explore the effects of flaxseed oil on the metaphase II (MII) oocyte rates in women with decreased ovarian reserve (DOR). Methods: The women with DOR were divided into a study group (n = 108, flaxseed oil treatment) and a control group (n = 110, no treatment). All patients were treated with assisted reproductive technology (ART). Subsequently, the ART stimulation cycle parameters, embryo transfer (ET) results, and clinical reproductive outcomes were recorded. The influencing factors affecting the MII oocyte rate were analyzed using univariate analysis and multivariate analysis. Results: Flaxseed oil reduced the recombinant human follicle-stimulating hormone (r-hFSH) dosage and stimulation time and increased the peak estradiol (E2) concentration in DOR women during ART treatment. The MII oocyte rate, fertilization rate, cleavage rate, high-quality embryo rate, and blastocyst formation rate were increased after flaxseed oil intervention. The embryo implantation rate of the study group was higher than that of the control group (p = 0.05). Additionally, the female age [odds ratio (OR): 0.609, 95% confidence interval (CI): 0.52-0.72, p < 0.01] was the hindering factor of MII oocyte rate, while anti-Müllerian hormone (AMH; OR: 100, 95% CI: 20.31-495, p < 0.01), peak E2 concentration (OR: 1.00, 95% CI: 1.00-1.00, p = 0.01), and the intake of flaxseed oil (OR: 2.51, 95% CI: 1.06-5.93, p = 0.04) were the promoting factors for MII oocyte rate. Conclusion: Flaxseed oil improved ovarian response and the quality of oocytes and embryos, thereby increasing the fertilization rate and high-quality embryo rate in DOR patients. The use of flaxseed oil was positively correlated with MII oocyte rate in women with DOR. Clinical trial number: https://www.chictr.org.cn/, identifier ChiCTR2300073785.


Subject(s)
Linseed Oil , Ovarian Reserve , Female , Humans , Dietary Supplements , Embryo Transfer/methods , Fertilization in Vitro , Linseed Oil/pharmacology , Metaphase , Oocytes
4.
Nutrients ; 16(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474847

ABSTRACT

Altered intestinal health is also associated with the incidence and severity of many chronic inflammatory conditions, which could be attenuated via dietary n-3 PUFA interventions. However, little is known about the effect of lifelong exposure to n-3 PUFA from plant and marine sources (beginning in utero via the maternal diet) on early life biomarkers of intestinal health. Harems of C57Bl/6 mice were randomly assigned to one of three isocaloric AIN-93G modified diets differing in their fat sources consisting of the following: (i) 10% safflower oil (SO, enriched in n-6 PUFA), (ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA-enriched diet), or (iii) 3% menhaden fish oil + 7% safflower oil (MO, marine-based n-3 PUFA-enriched diet). Mothers remained on these diets throughout pregnancy and offspring (n = 14/diet) continued on the same parental diet until termination at 3 weeks of age. In ileum, villi:crypt length ratios were increased in both the FX and MO dietary groups compared to SO (p < 0.05). Ileum mRNA expression of critical intestinal health biomarkers was increased by both n-3 PUFA-enriched diets including Relmß and REG3γ compared to SO (p < 0.05), whereas only the FX diet increased mRNA expression of TFF3 and Muc2 (p < 0.05) and only the MO diet increased mRNA expression of ZO-1 (p < 0.05). In the proximal colon, both the FX and MO diets increased crypt lengths compared to SO (p < 0.05), whereas only the MO diet increased goblet cell numbers compared to SO (p < 0.05). Further, the MO diet increased proximal colon mRNA expression of Relmß and REG3γ (p < 0.05) and both MO and FX increased mRNA expression of Muc2 compared to SO (p < 0.05). Collectively, these results demonstrate that lifelong exposure to dietary n-3 PUFA, beginning in utero, from both plant and marine sources, can support intestinal health development in early life. The differential effects between plant and marine sources warrants further investigation for optimizing health.


Subject(s)
Fatty Acids, Omega-3 , Mice , Animals , Pregnancy , Female , Safflower Oil , Fish Oils , Diet , Mice, Inbred C57BL , Biomarkers , Gene Expression , RNA, Messenger , Fatty Acids
5.
J Food Prot ; 87(2): 100221, 2024 02.
Article in English | MEDLINE | ID: mdl-38215978

ABSTRACT

Flaxseed oil is an important source of vegetable oil with a polyunsaturated fatty acid. It is significant to establish a method to quickly identify adulterated flaxseed oil. In the present study, the qualitative and quantitative analysis of phytosterol of flaxseed oil from different varieties and different production areas in the Qinghai area was first performed by gas chromatography-mass spectrometry (GC-MS) and the phytosterol standard profile of flaxseed oil was established. Then, a combination of similarity evaluation and cluster analysis was used to distinguish pure flaxseed oil from flaxseed oil adulterated with concentrations of 10-50% rapeseed oil, peanut oil, sunflower oil, and sesame oil, and discriminant analysis was used to identify the types of adulterated flaxseed oil. The results showed that similarity evaluation combined with cluster analysis can distinguish pure and adulterated flaxseed oil when the concentration of the adulterant was greater than 10%. Discriminant analysis models accurately identified the types of adulterating oil in flaxseed oil when the concentration of rapeseed, peanut, or sunflower oil was greater than 20%, and that of sesame oil was greater than 30%. This study shows that the determination of the phytosterol composition and chemometrics is a valuable tool to evaluate the purity of flaxseed oil.


Subject(s)
Linseed Oil , Phytosterols , Gas Chromatography-Mass Spectrometry , Sesame Oil/analysis , Sesame Oil/chemistry , Chemometrics , Plant Oils , Sunflower Oil
6.
BMC Complement Med Ther ; 24(1): 6, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167049

ABSTRACT

Flaxseed is an ancient commercial oil that historically has been used as a functional food to lower cholesterol levels. However, despite its longstanding treatment, there is currently a lack of scientific evidence to support its role in the management of cardiac remodeling. This study aimed to address this gap in knowledge by examining the molecular mechanism of standardized flaxseed oil in restoring cardiac remodeling in the heart toxicity vivo model. The oil fraction was purified, and the major components were standardized by qualitative and quantitative analysis. In vivo experimental design was conducted using isoproterenol ISO (85 mg/kg) twice subcutaneously within 24 h between each dose. The rats were treated with flaxseed oil fraction (100 mg/kg orally) and the same dose was used for omega 3 supplement as a positive control group. The GC-MS analysis revealed that α-linolenic acid (24.6%), oleic acid (10.5%), glycerol oleate (9.0%) and 2,3-dihydroxypropyl elaidate (7%) are the major components of oil fraction. Physicochemical analysis indicated that the acidity percentage, saponification, peroxide, and iodine values were 0.43, 188.57, 1.22, and 122.34 respectively. As compared with healthy control, ISO group-induced changes in functional cardiac parameters. After 28-day pretreatment with flaxseed oil, the results indicated an improvement in cardiac function, a decrease in apoptosis, and simultaneous prevention of myocardial fibrosis. The plasma levels of BNP, NT-pro-BNP, endothelin-1, Lp-PLA2, and MMP2, and cTnI and cTn were significantly diminished, while a higher plasma level of Topo 2B was observed. Additionally, miRNA - 1 and 29b were significantly downregulated. These findings provide novel insight into the mechanism of flaxseed oil in restoring cardiac remodeling and support its future application as a cardioprotective against heart diseases.


Subject(s)
Linseed Oil , MicroRNAs , Rats , Animals , Linseed Oil/pharmacology , Linseed Oil/chemistry , Ventricular Remodeling , Apoptosis , Gene Expression
7.
Nutr Res ; 121: 16-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039598

ABSTRACT

Induction of obesity by dietary fats and oils differs according to the type of fat. Adiponectin is believed to be related to obesity prevention. We hypothesized that flaxseed oil is important for preventing obesity and producing adiponectin. To clarify this hypothesis, we investigated the relationship between obesity and different fat sources in mice fed diets with 6 types of fat and oils. C57BL/6J mice were given a control diet containing 5% corn oil or a high-fat diet containing 20% of either lard, palm oil, rapeseed oil, oleate-rich safflower oil, corn oil, or flaxseed oil for 14 weeks. In another experiment, mice were given a control diet and rosiglitazone (10 mg/kg body weight) by oral gavage for 1 week. At the end of study, plasma adiponectin and expression of fatty acid metabolism-related factors in white and brown adipose tissue and the liver were measured. Dietary flaxseed oil, which is rich in α-linolenic acid, did not induce obesity. Flaxseed oil resulted in increased ß-oxidation-related factors in epididymal white adipose tissue, decreased fatty acid synthesis-related factors in the liver, and thermogenesis-related factor in brown adipose tissue following increase of plasma adiponectin. The results suggested that increase in plasma adiponectin after intake of flaxseed oil may be due to altered expression of AdipoQ and peroxisome proliferator-activated receptor γ in epididymal white adipose tissue. Flaxseed oil increased expression of adiponectin in visceral fat and regulated obesity-controlling fatty acid metabolism-related factors in white adipose tissue and liver, and thermogenesis-related factor in brown adipose tissue.


Subject(s)
Flax , Linseed Oil , Mice , Animals , Linseed Oil/pharmacology , Adiponectin , Corn Oil , Intra-Abdominal Fat , Mice, Inbred C57BL , Obesity/etiology , Obesity/prevention & control , Diet, High-Fat/adverse effects , alpha-Linolenic Acid
8.
Article in English | MEDLINE | ID: mdl-37977491

ABSTRACT

Ahiflower® oil is high in α-linolenic and stearidonic acids, however, tissue/blood docosahexaenoic acid (DHA, 22:6n-3) turnover from dietary Ahiflower oil has not been investigated. In this study, we use compound-specific isotope analysis to determine tissue DHA synthesis/turnover from Ahiflower, flaxseed and DHA oils. Pregnant BALB/c mice (13-17 days) were placed on a 2 % algal DHA oil diet of high carbon-13 content (δ13C) and pups (n = 132) were maintained on the diet until 9 weeks old. Mice were then randomly allocated to a low δ13C-n-3 PUFA diet of either: 1) 4 % Ahiflower oil, 2) 4.35 % flaxseed oil or 3) 1 % fish DHA ethyl ester oil for 1, 3, 7, 14, 30, 60 or 120 days (n = 6). Serum, liver, adipose and brains were collected and DHA levels and δ13C were determined. DHA concentrations were highest (p < 0.05) in the liver and adipose of DHA-fed animals with no diet differences in serum or brain (p > 0.05). Based on the presence or absence of overlapping 95 % C.I.'s, DHA half-lives and synthesis/turnover rates were not different between Ahiflower and DHA diets in the liver, adipose or brain. DHA half-lives and synthesis/turnover rates from flaxseed oil were significantly slower than from the DHA diet in all serum/tissues. These findings suggest that the distinct Ahiflower oil n-3 PUFA composition could support tissue DHA needs at a similar rate to dietary DHA, making it a unique plant-based dietary option for maintaining DHA turnover comparably to dietary DHA.


Subject(s)
Docosahexaenoic Acids , Fatty Acids, Omega-3 , Mice , Animals , Linseed Oil , Fish Oils , Diet
9.
Food Res Int ; 175: 113728, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129043

ABSTRACT

Flaxseed oil (FO) has been demonstrated its multiple beneficial effects in vivo due to high concentration of α-linolenic acid. The deterioration of FO can be triggered by high temperature heating during the deep frying process resulting in alteration of healthy properties. In this study, the effect of FO before and after deep frying on lipid metabolism and gut homeostasis of rats was investigated compared to deep-fried palm oil (DPO) treated group. Deep-fried flaxseed oil (DFO) treatment significantly enhanced the triglyceride accumulation in serum and liver tissues of rats. A greater increase of peroxides and proinflammatory cytokine levels was found in the serum of DFO treated rats compared to other groups. The histopathologic data indicated that DFO and DPO reduced the villus height of intestinal and colonic tissues and increased the inflammatory cell infiltration. The inflammatory cytokines (TNFα and IL-6) were enhanced and the key markers of epithelia colonic tissues (occludin and MUC-2) were suppressed in rats with DFO interventions, which is in consistency with histopathologic results. In addition, FO could increase the number of beneficial bacteria while the relative abundance of obesity and inflammatory-related bacteria was promoted by DFO treatment, including Ruminococcaceae, Prevotellaceae, and Selenomonadales. In conclusion, DFO intake had a significant impact on the disruption of gut barrier homeostasis, potentially worsening the dysbiosis than DPO. The beneficial effects of FO in vivo could be significantly reduced by extreme deep frying, which suggests the need for moderate cooking edible oils such as FO.


Subject(s)
Linseed Oil , Lipid Metabolism , Rats , Animals , Linseed Oil/pharmacology , Linseed Oil/metabolism , Liver/metabolism , Palm Oil/metabolism , Homeostasis
10.
Animal ; 17(12): 101034, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38070473

ABSTRACT

Camelina (Camelina sativa) is a hardy, low-input oilseed crop that provides a rich source of the n-3 fatty acid, α-linolenic acid (ALA). The primary purpose of the present study was to assess the effects of dietary camelina oil (CAM) consumption on various health parameters, as compared to horses fed canola oil (OLA) or flax oil (FLX). Secondly, to determine how dietary CAM, FLX, and OLA alter circulating plasma total lipids across time. Thirty horses, from three separate herds, were used for this study [14.9 years ± 5.3 years; 544 ± 66 kg calculated BW (mean ± SD)]. After a 4-week gradual acclimation period using sunflower oil mixed with soaked hay cubes, horses were balanced by location, age, sex, weight, and breed and randomly allocated to one of three treatment oils (CAM, OLA, or FLX) at an inclusion of 370 mg of oil/kg BW/day. Horses had ad libitum access to hay and/or pasture for the duration of the study. Body condition score (BCS), BW, oil intake, complete blood counts, plasma biochemical profiles, and plasma total lipids were measured on weeks 0, 2, 4, 8, and 16 throughout the 16-week treatment period. BW, BCS, and oil intake were analyzed using an ANOVA using PROC GLIMMIX in SAS Studio. Complete blood counts and biochemical profiles were analyzed using an ANCOVA, and fatty acids were analyzed using an ANOVA in PROC MIXED in SAS Studio. No differences were observed among treatment groups for BW, BCS, oil intake, complete blood counts, and biochemical parameters. Individual fatty acids that differed among treatments and/or across time were largely reflective of the different FA profiles of the oils provided. Most notably, plasma ALA was greater for FLX than OLA, but neither differed from CAM (P = 0.01). Linoleic acid did not differ among treatments or over time (P > 0.05). The n-6:n-3 ratio decreased over time for both CAM and FLX, and ratios were lower for FLX than OLA at week 16, but not different from CAM (P = 0.02). These results suggest that dietary CAM had no adverse effects on health parameters and that daily supplementation of CAM and FLX at 370 mg of oil/kg BW/day induces positive changes (a decrease) in the n-6:n-3 status of the horse. Consequently, CAM may be considered as an alternative oil to FLX in equine diets.


Subject(s)
Fatty Acids , Flax , Horses , Animals , Rapeseed Oil , Plant Breeding , Diet/veterinary , Dietary Supplements
11.
Nutrients ; 15(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960203

ABSTRACT

Hyperammonemia is characterized by the excessive accumulation of ammonia in the body as a result of the loss of liver detoxification, leading to the development of hepatic encephalopathy (HE). These metabolic alterations carry cognitive and motor deficits and cause neuronal damage, with no effective treatment at present. In this study, we aimed to evaluate the effect of two subacute oral administrations of flaxseed oil (0.26 and 0.52 mL/kg) on short- and long-term memory, visuospatial memory, locomotor activity, motor coordination, and the neuronal morphology of the prefrontal cortex (PFC) via tests on Wistar rats with hyperammonemia. The goal was to identify its role in the regulation of cerebral edema, without liver damage causing cerebral failure. In contrast with an ammonium-rich diet, flaxseed oil and normal foods did not cause cognitive impairment or motor alterations, as evidenced in the short-term and visuospatial memory tests. Furthermore, the flaxseed oil treatment maintained a regular neuronal morphology of the prefrontal cortex, which represents a neuroprotective effect. We conclude that the oral administration of flaxseed oil prevents cognitive and motor impairments as well as neuronal alterations in rats with hyperammonemia, which supports the potential use of this oil to ameliorate the changes that occur in hepatic encephalopathy.


Subject(s)
Flax , Hepatic Encephalopathy , Hyperammonemia , Rats , Animals , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/prevention & control , Hepatic Encephalopathy/metabolism , Rats, Wistar , Linseed Oil/pharmacology , Hyperammonemia/complications , Cognition
12.
J Food Sci ; 88(12): 4988-5001, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37872781

ABSTRACT

To investigate the effects of different extraction methods on volatile compounds in flaxseed oil (FSO), we first carried out solvent extraction, cold pressing, and hot pressing treatments of flaxseed [Linum usitatissimum (L.)], then applied the headspace-gas chromatography-ion mobility spectrometry technology to identify the volatile substance compositions, and established flavor fingerprints of solvent-extracted FSO, cold-pressed FSO, and hot-pressed FSO. In total, 81 volatile compounds were detected, including 27 aldehydes, 14 alcohols, 13 ketones, 9 heterocycles, 8 esters, 5 acids, 4 hydrocarbons, and 1 sulfur compound (dimethyl disulfide). Extraction methods had a great influence on the volatile profile of FSO. Solvent-extracted FSO had more sweet, mild, floral, and sour volatile profiles, cold-pressed FSO had stronger volatile profiles of winey, spicy, and fatty, and hot-pressed FSO had green, grass, and plastic volatile profiles. Principal component analysis and Euclidean distance demonstrated that the volatile compounds of three FSO samples could be clearly distinguished. Of note, the cold-pressed FSO and hot-pressed FSO had similar volatile profiles, and they were different from solvent-extracted FSO. This study could provide some guidance for improving the flavor quality of FSO and selecting the proper extraction method for FSO productions. PRACTICAL APPLICATION: Practical Application: This study shows extraction methods significantly affect the formation of aroma characteristics in flaxseed oil (FSO), and it provides theoretical guidance for production to use the appropriate extraction methods for high-quality FSO.


Subject(s)
Flax , Volatile Organic Compounds , Linseed Oil , Gas Chromatography-Mass Spectrometry/methods , Alcohols/analysis , Solvents , Volatile Organic Compounds/analysis
13.
Nutrients ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630732

ABSTRACT

The microbiota gut-brain axis (mGBA) is an important contributor to mental health and neurological and mood disorders. Lipopolysaccharides (LPS) are endotoxins that are components of Gram-negative bacteria cell walls and have been widely shown to induce both systemic and neuro-inflammation. Flaxseed (Linum usitatissimum) is an oilseed rich in fibre, n3-poly-unsaturated fatty acid (alpha-linolenic acid (ALA)), and lignan, secoisolariciresinol diglucoside, which all can induce beneficial effects across varying aspects of the mGBA. The objective of this study was to determine the potential for dietary supplementation with flaxseed or flaxseed oil to attenuate LPS-induced inflammation through modulation of the mGBA. In this study, 72 5-week-old male C57Bl/6 mice were fed one of three isocaloric diets for 3 weeks: (1) AIN-93G basal diet (BD), (2) BD + 10% flaxseed (FS), or (3) BD + 4% FS oil (FO). Mice were then injected with LPS (1 mg/kg i.p) or saline (n = 12/group) and samples were collected 24 h post-injection. Dietary supplementation with FS, but not FO, partially attenuated LPS-induced systemic (serum TNF-α and IL-10) and neuro-inflammation (hippocampal and/or medial prefrontal cortex IL-10, TNF-α, IL-1ß mRNA expression), but had no effect on sickness and nest-building behaviours. FS-fed mice had enhanced fecal microbial diversity with increased relative abundance of beneficial microbial groups (i.e., Lachnospiraceae, Bifidobacterium, Coriobacteriaceae), reduced Akkermansia muciniphila, and increased production of short-chain fatty acids (SCFAs), which may play a role in its anti-inflammatory response. Overall, this study highlights the potential for flaxseed to attenuate LPS-induced inflammation, in part through modulation of the intestinal microbiota, an effect which may not be solely driven by its ALA-rich oil component.


Subject(s)
Flax , Gastrointestinal Microbiome , Male , Animals , Mice , Linseed Oil/pharmacology , Lipopolysaccharides , Interleukin-10 , Brain-Gut Axis , Tumor Necrosis Factor-alpha , Diet
14.
Nutr Neurosci ; : 1-11, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589276

ABSTRACT

BACKGROUND: Omega-3 fatty acids (omega-3 FAs) have attracted the attention of researchers because of their influence on circulatory levels of brain-derived neurotrophic factor (BDNF). Our objective was to review systematically and Meta-analyze randomized controlled trials (RCTs) to assess the effects of omega-3 FAs supplementation on serum BDNF concentration. METHODS: Scopus, PubMed, Web of Science, and Cochrane Library were systematically searched until April 2023. The Cochrane risk of bias assessment tool was utilized to evaluate the quality of the studies. A random-effects model was employed to estimate the overall effect size of BDNF levels, using the Standard Mean Difference (SMD) and a 95% confidence interval (CI). The heterogeneity among the studies was assessed using chi-squared and I2 statistics. RESULTS: A total of 12 studies involving 587 subjects were included. The supplementation of PUFA was found to be associated with a significant increase in serum levels of BNDF in the group receiving the supplements, as compared to the placebo group (SMD: 0.72 pg/mL, 95% CI: 0.28, 1.15; P < 0.001) (I2 = 84.39%, P < 0.001). Sub-group analyses revealed similar findings in trials with fewer than 10 weeks, which utilized both animal (fish oil) and herbal (flaxseed) forms of omega-3 supplements with a high daily dosage of 2000mg. CONCLUSION: The present systematic review and meta-analysis indicate the efficacy of omega-3 FAs in increasing the serum concentration of BDNF. Therefore, omega-3 FAs should be prioritized as agents for increasing BDNF in interventions.

15.
Eur J Med Res ; 28(1): 240, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464425

ABSTRACT

Flaxseed (Linum usitatissimum L) is an ancient perennial plant species regarded as a multipurpose plant owing to its richness in omega-3 polyunsaturated fatty acids (PUFA) including α-linolenic acid (ALA). The extensive biochemical analysis of flaxseed resulted in the identification of its bioactive, i.e., lignans with potential application in the improvement of human health. Flaxseed oil, fibers, and lignans exert potential health benefits including reduction of cardiovascular disease, atherosclerosis, diabetes, cancer, arthritis, osteoporosis, and autoimmune and neurological disorders that have led to the diversification of flaxseed plant applications. This comprehensive review focuses on flaxseed oil as the major product of flaxseed with emphasis on the interrelationship between its chemical composition and biological effects. Effects reviewed include antioxidant, anti-inflammatory, antimicrobial, anticancer, antiulcer, anti-osteoporotic, cardioprotective, metabolic, and neuroprotective. This study provides an overview of flaxseed oil effects with the reported action mechanisms related to its phytochemical composition and in comparison, to other PUFA-rich oils. This study presents the most updated and comprehensive review summarizing flaxseed oil's health benefits for the treatment of various diseases.


Subject(s)
Cardiovascular Diseases , Flax , Lignans , Humans , Linseed Oil/therapeutic use , Linseed Oil/chemistry , Linseed Oil/metabolism , Flax/chemistry , Flax/metabolism , Antioxidants/therapeutic use
16.
Meat Sci ; 204: 109254, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37354834

ABSTRACT

This study evaluates the characteristics of n-3-enriched meat spread that is in development for consumption by elderly individuals. Herein, flaxseed oil was used as a source of n-3 fatty acid, and macro- and nano-sized flaxseed oil emulsions (FOE) were prepared for the fabrication of meat spreads. As the level of FOE was increased in the meat spreads, significant increases in the levels of omega-3 fatty acids (α-linolenic acid) were observed. Emulsion stability and cooking loss were also improved in meat spreads formulated with FOE compared with those the control. In particular, the addition of FOE generated softer and less chewy meat, owing to its lower melting point and rheological properties. However, the high content of unsaturated fatty acids in the FOE-containing meat spreads increased their susceptibility to lipid oxidation meat. These findings indicate that FOE, particularly macro-sized FOE, has the potential for use in n-3 fatty acid enriched meat products that are intended for consumption by elderly individuals but need to be evaluated for their impacts on shelf-life and sensory quality.


Subject(s)
Fatty Acids, Omega-3 , Meat Products , Humans , Aged , Linseed Oil/chemistry , Fatty Acids, Omega-3/chemistry , Meat/analysis , Fatty Acids, Unsaturated , Meat Products/analysis
17.
J Nutr ; 153(7): 2105-2116, 2023 07.
Article in English | MEDLINE | ID: mdl-37187351

ABSTRACT

BACKGROUND: There is a lack of nutrition guidelines for the feeding of omega-3 polyunsaturated fatty acids (PUFA) to laying hens. Knowledge as to whether the type and concentrations of α-linolenic acid (ALA) and/or docosahexaenoic acid (DHA) in the diet can make a difference to the birds' immune responses when subjected to a lipopolysaccharide (LPS) challenge is limited. OBJECTIVES: The study was designed to determine the potential nutritional and health benefits to laying hens when receiving dietary omega-3 PUFA from either ALA or DHA. METHODS: A total of 80 Lohmann LSL-Classic (white egg layer, 20 wk old) were randomly assigned to 1 of 8 treatment diets (10 hens/treatment), provided 0.2%, 0.4%, 0.6%, or 0.8% of total dietary omega-3 PUFA, provided as either ALA-rich flaxseed oil or DHA-enriched algal biomass. After an 8-wk feeding period, the birds were challenged with Escherichia coli-derived LPS (8 mg/kg; i.v. injection), with terminal sample collection 4 h after challenge. Egg yolk, plasma, liver, and spleen samples were collected for subsequent analyses. RESULTS: Increasing dietary omega-3 supplementation yielded predictable responses in egg yolk, plasma, and liver fatty acid concentrations. Dietary intake of ALA contributed mainly to ALA-derived oxylipins. Meanwhile, eicosapentaenoic acid- and DHA-derived oxylipins were primarily influenced by DHA dietary intake. LPS increased the concentrations of almost all the omega-6 PUFA-, ALA-, and DHA-derived oxylipins in plasma and decreased hepatic mRNA expression of COX-2 and 5-LOX (P < 0.001) involved in the biosynthesis of oxylipins. LPS also increased mRNA expression of proinflammatory cytokine IFN-γ and receptor TLR-4 (P < 0.001) in the spleen. CONCLUSIONS: These results revealed that dietary intake of ALA and DHA had unique impacts on fatty acid deposition and their derived oxylipins and inflammatory responses under the administration of LPS in laying hens.


Subject(s)
Docosahexaenoic Acids , Fatty Acids, Omega-3 , Animals , Female , Linseed Oil , Oxylipins , Fatty Acids/metabolism , Chickens , Lipopolysaccharides , Dietary Supplements/analysis , Diet/veterinary , Animal Feed/analysis
18.
Front Endocrinol (Lausanne) ; 14: 1139725, 2023.
Article in English | MEDLINE | ID: mdl-37124753

ABSTRACT

Introduction: Flaxseed oil (FO) and vitamin E (VE) both have antioxidant effects on sperm. The present study investigated the effects of dietary supplementation with FO and/or VE on semen quality. Methods: 16 fertile Simmental bulls were selected and randomly divided into 4 groups (n = 4): the control group (control diet), FO group (control diet containing 24 g/kg FO), VE group (control diet containing 150 mg/kg VE) and FOVE group (control diet containing 150 mg/kg VE and 24 g/kg FO), and the trial lasted 10 weeks. Results: The results showed that the addition of FO independently can increase sperm motion parameters, the levels of catalase (CAT), glutathione peroxidase (GSH-Px), testosterone (T) and estradiol (E2), while reduce oxidative stress in seminal plasma (P < 0.05). Supplement of VE independently can increased the motility, motility parameters, CAT and superoxide dismutase (SOD) levels, and reduce oxidative stress in seminal plasma (P < 0.05). There was an interaction effect of FO × VE on motility and reactive oxygen species (ROS), while GSH-Px and ROS were affected by week × VE 2-way interaction, levels of T and E2 were also affected by the dietary FO × week interaction (P < 0.05). The triple interaction effects of FO, VE and week were significant for malondialdehyde (MDA) (P < 0.05). Compared with the control group, sperm from the FOVE group had a significantly higher in vitro fertilization (IVF) rate, and subsequent embryos had increased developmental ability with reduced ROS levels at the eight-cell stage, then increased adenosine triphosphate (ATP) content and gene expression levels of CAT, CDX2, Nanog, and SOD at the blastocyst stage (P < 0.05). Metabolomic and transcriptomic results indicated that dietary supplementation of FO and VE increased the expression of the metabolite aconitic acid, as well as the expression of ABAT and AHDHA genes. Conclusion: With in-silico analysis, it can be concluded that the effects of dietary FO and VE on improving semen quality and embryo development may be related to increased aconitic acid via the ABAT and AHDHA genes involved in the propionic acid metabolism pathway.


Subject(s)
Dietary Fats, Unsaturated , Flax , Male , Animals , Cattle , Semen Analysis , Vitamin E/pharmacology , Linseed Oil/pharmacology , Reactive Oxygen Species , Aconitic Acid , Seeds/metabolism , Diet , Superoxide Dismutase/metabolism
19.
J Dairy Res ; 90(2): 124-131, 2023 May.
Article in English | MEDLINE | ID: mdl-37154291

ABSTRACT

Our objective was to study the effect of increasing postruminal supply of linseed oil (L-oil), as a source of cis-9, cis-12, cis-15 18:3, on milk fatty acid profile and to assess the resulting impact on the development of volatile degradation products during the storage of homogenized milk. Five Holstein dairy cows fitted with a rumen cannula were randomly distributed in a 5 × 5 Latin square design. Abomasal infusion of L-oil was performed at the rate of 0, 75, 150, 300, and 600 ml/d during periods of 14 d. The concentration of cis-9, cis-12, cis-15 18:3 in milk fat increased linearly with L-oil dose. Concentrations of primary (conjugated diene and triene hydroperoxides) and secondary oxidation products (1-octen-3-one, propanal, hexanal, trans-2 + cis-3-hexenals, cis-4-heptenal, trans-2, cis-6-nonadienal trans-2, trans-4-nonadienal) increased during 11 d of storage at 4°C of homogenized milk under fluorescent light. The magnitude of the increase (difference between final and initial measurements) was linearly greater for all nine lipid oxidation products evaluated in response to increasing level of infusion. Results of the current experiment have shown that milk enriched in cis-9, cis-12, cis-15 18:3 via postruminal supply of L-oil is highly prone to oxidative degradation. This low oxidative stability, exposed under controlled experimental conditions, would represent a major obstacle to those who aim to market milk enriched in polyunsaturated fatty acids.


Subject(s)
Fatty Acids , Milk , Female , Cattle , Animals , Milk/metabolism , Fatty Acids/metabolism , Linseed Oil/metabolism , Lactation/physiology , Diet/veterinary , Oxidative Stress
20.
Nutrients ; 15(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986229

ABSTRACT

The effects of docosahexaenoic acid supplements on cognitive function have long been demonstrated, but the effects of alpha-linolenic acid, a precursor of docosahexaenoic acid, have not been fully tested. The search for functional foods that delay cognitive decline in the older adults is considered a very important area from a preventive perspective. The aim of this study was to conduct an exploratory evaluation of alpha-linolenic acid on various cognitive functions in healthy older subjects. Sixty healthy older adults aged 65 to 80 years, living in Miyagi prefecture, without cognitive impairment or depression, were included in the randomized, double-blinded, placebo-controlled clinical trial. Study subjects were randomly divided into two groups and received either 3.7 g/day of flaxseed oil containing 2.2 g of alpha-linolenic acid, or an isocaloric placebo (corn oil) containing 0.04 g of alpha-linolenic acid for 12 weeks. The primary endpoints were six cognitive functions closely related to everyday life: attention and concentration, executive function, perceptual reasoning, working memory, processing speed and memory function. After 12 weeks of intake, changes in verbal fluency scores on the frontal assessment battery at bedside, a neuropsychological test assessing executive function, in which participants are asked to answer as many words as possible in Japanese, were significantly greater in the intervention group (0.30 ± 0.53) than in the control group (0.03 ± 0.49, p < 0.05). All other cognitive test scores were not significantly different between the groups. In conclusion, daily consumption of flaxseed oil containing 2.2 g alpha-linolenic acid improved cognitive function, specifically verbal fluency, despite the age-related decline, in healthy individuals with no cognitive abnormalities. Further validation studies focusing on the effects of alpha-linolenic acid on verbal fluency and executive function in older adults are needed, as verbal fluency is a predictor of Alzheimer's disease development, important for cognitive health.


Subject(s)
Cognitive Dysfunction , Linseed Oil , Humans , Aged , Linseed Oil/pharmacology , alpha-Linolenic Acid , Docosahexaenoic Acids , Cognitive Dysfunction/prevention & control , Dietary Supplements , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL