Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 369
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Eur Arch Paediatr Dent ; 25(3): 385-392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664350

ABSTRACT

OBJECTIVE: Colour stability is important in the long-term aesthetic success of restorative materials and is affected by both internal and external factors. Internal discolourations are due to the properties of the restorative materials. External discolourations can be associated with frequent consumption of food and beverages and the use of suspensions or syrups containing colourants/additives. Fluoride varnish application has an important place in preventive dentistry. The purpose of the research was to examine the protective effect of fluoride varnish application on the colour change on polyacid-modified composite resin restorative materials caused by the use of various paediatric drugs. METHODS: Two hundred ten discs were prepared from polyacid-modified composite resin material and divided into two groups: flouride varnish was applied to one group and flouride varnish was not applied to the other group. The groups were further divided into seven subgroups and the samples were kept in artificial saliva, amoxicillin + clavulanic acid, cefuroxime axetil, clarithromycin, paracetamol, ibuprofen, and iron supplement drug solutions. The colour change values of the discs were measured using a spectrophotometer device before immersion in the drug solutions and on the 7th, 14th, 21st, and 28th days after the immersion. The obtained data were calculated and statistically evaluated using IBM SPSS V23 software. RESULTS: It was found that the application of fluoride varnish in the iron supplement drug group prevented the colour change of the polyacid-modified composite resins for 28 days. In the amoxicillin + clavulanic acid, cefuroxime axetil, and paracetamol groups, the fluoride varnish did not prevent colour change in the polyacid-modified composite resin restorative materials at the end of the 14th day. CONCLUSION: It is thought that fluoride varnish application may be beneficial as a preservative in the colour change of polyacid-modified composite resins due to the use of various paediatric drugs, and this protective feature may be effective for a specific period of time.


Subject(s)
Color , Composite Resins , Fluorides, Topical , Composite Resins/chemistry , Fluorides, Topical/chemistry , Humans , In Vitro Techniques , Materials Testing , Spectrophotometry , Saliva, Artificial/chemistry , Sodium Fluoride/chemistry , Dental Materials/chemistry
2.
Environ Sci Pollut Res Int ; 31(18): 27388-27402, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512573

ABSTRACT

In aluminum electrolysis, the iron-rich cover material is formed on the cover material and the steel rod connecting the carbon anode. Due to the high iron content in the iron-rich cover material, it differs from traditional cover material and thus requires harmless recycling and treatment. A process was proposed and used in this study to recovery F, Al, and Fe elements from the iron-rich cover material. This process involved aluminum sulfate solution leaching for fluorine recovery and alkali-acid synergistic leaching for α-Al2O3 and Fe2O3 recovery were obtained. The optimal leaching rates for F, Na, Ca, Fe, and Si were 93.92, 96.25, 94.53, 4.48, and 28.87%, respectively. The leaching solution and leaching residue were obtained. The leaching solution was neutralized to obtain the aluminum hydroxide fluoride hydrate (AHFH, AlF1.5(OH)1.5·(H2O)0.375). AHFH was calcined to form a mixture of AlF3 and Al2O3 with a purity of 96.14%. The overall recovery rate of F in the entire process was 92.36%. Additionally, the leaching residue was sequentially leached with alkali and acid to obtain the acid leach residue α-Al2O3. The pH of the acid-leached solution was adjusted to produce a black-brown precipitate, which was converted to Fe2O3 under a high-temperature calcination, and the recovery rate of Fe in the whole process was 94.54%. Therefore, this study provides a new method for recovering F, Al, and Fe in iron-rich cover material, enabling the utilization of aluminum hazardous waste sources.


Subject(s)
Aluminum Oxide , Aluminum , Electrolysis , Ferric Compounds , Fluorides , Ferric Compounds/chemistry , Aluminum/chemistry , Fluorides/chemistry , Aluminum Oxide/chemistry , Iron/chemistry , Aluminum Compounds/chemistry , Recycling
3.
J Agric Food Chem ; 72(12): 6143-6154, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38475697

ABSTRACT

Male reproductive toxicity of fluoride is of great concern worldwide, yet the underlying mechanism is unclear. Pyroptosis is a novel mode of inflammatory cell death, and riboflavin with anti-inflammatory properties has the potential to protect against fluoride damage. However, it is unknown whether pyroptosis is involved in fluoride-induced testicular injury and riboflavin intervention. Here, we first found that riboflavin could alleviate fluoride-caused lower sperm quality and damaged testicular morphology by reducing pyroptosis based on a model of ICR mice treated with NaF (100 mg/L) and/or riboflavin supplementation (40 mg/L) via drinking water for 13 weeks. And then, together with the results of in vitro Leydig cell modelsm it was confirmed that the pyroptosis occurs predominantly through classical NLRP3/Caspase-1/GSDMD pathway. Furthermore, our results reveal that interleukin-17A mediates the process of pyroptosis in testes induced by fluoride and riboflavin attenuation according to the results of our established models of riboflavin- and/or fluoride-treated IL-17A knockout mice. The results not only declare a new mechanism by which fluoride induces testicular injury via interleukin 17A-mediated classical pyroptosis but also provide evidence for the potential clinical application of riboflavin as an effective therapy for fluoride toxicity.


Subject(s)
Fluorides , Pyroptosis , Animals , Mice , Male , Fluorides/pharmacology , Interleukin-17 , Mice, Inbred ICR , Semen/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
4.
Odontology ; 112(4): 1186-1196, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38498244

ABSTRACT

To evaluate the effect of 1100 ppm F toothpastes supplemented with micrometric or nanosized ß-CaGP (ß-CaGPm/ß-CaGPn) on artificial enamel remineralization, using a pH cycling model. Enamel blocks with artificial caries were randomly allocated into ten groups (n = 10), according to the toothpastes: without fluoride/ß-CaGPm/ß-CaGPn (negative control); 1100 ppm F (1100F); 1100F plus 0.125%, 0.25%, 0.5%, and 1.0% of ß-CaGPm or ß-CaGPn. The blocks were treated 2×/day with slurries of toothpastes. After pH cycling, the percentage of surface hardness recovery (%SHR); integrated loss of subsurface hardness (ΔKHN); integrated mineral loss (ΔIMR); fluoride (F), calcium (Ca), and phosphorus (P) concentrations in the enamel; polydispersity index (PdI); and zeta potential (Zp) were determined. The data were analyzed by ANOVA (p < 0.001). For Zp/PdI, no significance was observed when comparing the means (p > 0.001). The treatment with 1100F-0.25%ß-CaGPn led to %SHR ∼57 higher when compared to the 1100F group (p < 0.001). The lowest ΔKHN was observed for the 1100F-0.25%ß-CaGPn group (p < 0.001). The ΔIMR was lower (∼201%) for the 1100F-0.25%ß-CaGPn when compared to 1100F (p < 0.001). The association of ß-CaGPm and ß-CaGPn to 1100F did not influence its F concentration (p > 0.001). The highest increase in Ca and P was observed for 1100F-0.25%ß-CaGPn (p < 0.001). The addition of 0.25%ß-CaGPn to 1100F toothpaste was able to promote an additional remineralizing effect of artificial caries lesions.


Subject(s)
Glycerophosphates , Tooth Remineralization , Toothpastes , Glycerophosphates/pharmacology , In Vitro Techniques , Toothpastes/pharmacology , Toothpastes/chemistry , Tooth Remineralization/methods , Nanoparticles , Biomineralization , Fluorides/pharmacology , Dental Enamel/drug effects , Hydrogen-Ion Concentration
5.
J Dent ; 148: 104965, 2024 09.
Article in English | MEDLINE | ID: mdl-38548164

ABSTRACT

OBJECTIVE: The study objectives were to examine the physical properties and enamel remineralization potential of fluoride (F) varnishes incorporated with arginine (Arg). METHODS: Four commercial F varnishes: 1) Duraphat®; 2) Flúor Protector®, 3) Fluor Protector S®, and 4) Fluorimax™ were supplemented with 2% w/v. Arg. The control/experimental varnishes underwent rheometric analysis to assess varnish density (δ), velocity (ν), and associated viscosity, both quantitatively (ν/δ) and qualitatively based on determined mass, volume, distance flow, and time under experimentation. The varnish wet/dry weights (at 2 h) were also analysed. Further, sound enamel specimens (T0) with artificial incipient caries-like lesions (T1) were treated with control/experimental varnishes and subjected to remineralization assay with artificial saliva for 6 h. Thereafter (T2), the specimens were characterized to estimate precipitated Ca and net enamel F uptake. Additionally, mineral density (MD) was assessed using micro-CT at T0, T1, and T2 to derive mineral gain (MG) and % remineralization for the treatment groups. RESULTS: When Arg is incorporated, the physical properties of the F-containing varnishes undergo a significant transformation, resulting in higher density, varnish weight, dry varnish weight, and viscosity compared to their respective control varnishes (p < 0.05). Incorporating Arg-in Duraphat®, Fluor Protector S®, and Fluorimax™ significantly improved both enamel Ca precipitation and F uptake compared to the respective controls (p < 0.05). Additionally, the enamel F uptake was significantly higher with all the tested varnishes when enriched with Arg (p < 0.05). The combined data for MD, MG, and % remineralization suggests that the remineralization potential of F-varnishes significantly increased when enriched with Arg (p < 0.05). CONCLUSION: Incorporating Arg in inorganic F varnishes improves their physical properties and enhances the enamel remineralization potential of the varnishes. CLINICAL SIGNIFICANCE: This study highlights the possibility of incorporating Arg in distinct F-source varnishes. The synergism between active components (Arg-F) aids in enhanced remineralization and superior varnish physical properties, demonstrating a promising approach for high caries-risk patients.


Subject(s)
Arginine , Cariostatic Agents , Dental Enamel , Fluorides, Topical , Tooth Remineralization , Arginine/therapeutic use , Arginine/pharmacology , Dental Enamel/drug effects , Tooth Remineralization/methods , Fluorides, Topical/pharmacology , Cariostatic Agents/therapeutic use , Cariostatic Agents/pharmacology , Viscosity , X-Ray Microtomography , Sodium Fluoride/therapeutic use , Sodium Fluoride/pharmacology , Animals , Calcium , Dental Caries , Humans , Rheology , Materials Testing , Saliva, Artificial/chemistry , Cattle , Fluorides/therapeutic use
6.
Cardiovasc Toxicol ; 24(3): 240-257, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38315346

ABSTRACT

High dose of fluoride intake is associated with toxic effects on kidney and cardiac tissues. This study evaluated the potential protective effect of fermented rooibos tea (RTE) on sodium fluoride (NaF)-induced cardiorenal toxicity in rats. Male Wistar rats (n = 56) were randomly allocated into one of seven equal groups: control, NaF (100 mg/kg orally), NaF + RTE (2%, w/v), NaF + RTE (4%, w/v), NaF + lisinopril (10 mg/kg orally), 2% RTE, and 4% RTE. The experiment lasted for 14 days and RTE was administered to the rats as their sole source of drinking fluid. NaF induced cardiorenal toxicity indicated by elevated level of urea, creatinine, LDH, creatinine kinase-MB, and cardiac troponin I in the serum, accompanied by altered histopathology of the kidney and heart. Furthermore, levels of H2O2, malondialdehyde, and NO were elevated, while GSH level was depleted in the kidney and heart due to NaF intoxication. Protein levels of c-reactive protein, TNFα, IL-1B, and NF-κB were increased by NaF in the serum, kidney, and heart. RTE at 2% and 4% (w/v) reversed cardiorenal toxicity, resolved histopathological impairment, attenuated oxidative stress and inhibited formation of pro-inflammatory markers. RTE at both concentrations down-regulates the mRNA expression of NF-κB, and upregulates the mRNA expression of both IκB and IκKB, thus blocking the activation of NF-κB signaling pathway. Taken together, these results clearly suggest that the protective potential of rooibos tea against NaF-induced cardiorenal toxicity, oxidative stress, and inflammation may be associated with the modulation of the NF-κB signaling pathway.


Subject(s)
Aspalathus , Sodium Fluoride , Rats , Male , Animals , Rats, Wistar , NF-kappa B/metabolism , Aspalathus/metabolism , Creatinine/pharmacology , Hydrogen Peroxide , Oxidative Stress , Signal Transduction , Inflammation/metabolism , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Tea
7.
BMC Oral Health ; 24(1): 279, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413983

ABSTRACT

BACKGROUND: Several methods were introduced for enamel biomimetic remineralization that utilize a biomimetic analogue to interact and absorb bioavailable calcium and phosphate ions and induce crystal nucleation on demineralized enamel. Amelogenin is the most predominant enamel matrix protein that is involved in enamel biomineralization. It plays a major role in developing the enamel's hierarchical microstructure. Therefore, this study was conducted to evaluate the ability of an amelogenin-inspired peptide to promote the remineralization potential of fluoride and a supersaturated calcium phosphate solution in treating artificially induced enamel carious lesions under pH-cycling regimen. METHODS: Fifty enamel slices were prepared with a window (4*4 mm2 ) on the surface. Five samples were set as control healthy enamel and 45 samples were subjected to demineralization for 3 days. Another 5 samples were set as control demineralized enamel and 40 enamel samples were assigned into 8 experimental groups (n=5) (P/I, P/II, P/III, P/AS, NP/I, NP/II, NP/III and NP/AS) according to peptide treatment (peptide P or non-peptide NP) and remineralizing solution used (I; calcium phosphate solution, II; calcium phosphate fluoride solution, III; fluoride solution and AS; artificial saliva). Samples were then subjected to demineralization/remineralization cycles for 9 days. Samples in all experimental groups were evaluated using Raman spectroscopy for mineral content recovery percentage, microhardness and nanoindentation as healthy, demineralized enamel and after pH-cycling. Data were statistically analysed using two-way repeated measures Anova followed by Bonferroni-corrected post hoc test for pairwise multiple comparisons between groups. Statistical significance was set at p= 0.05. Additionally, XRD, FESEM and EDXS were used for crystal orientation, surface morphology and elemental analysis after pH-cycling. RESULTS: Nanocrystals clumped in a directional manner were detected in peptide-treated groups. P/II showed the highest significant mean values in mineral content recovery (63.31%), microhardness (268.81±6.52 VHN), elastic modulus (88.74±2.71 GPa), nanohardness (3.08±0.59 GPa) and the best crystal orientation with I002/I300 (1.87±0.08). CONCLUSION: Despite pH changes, the tested peptide was capable of remineralizing enamel with ordered crystals. Moreover, the supplementary use of calcium phosphate fluoride solution with peptide granted an enhancement in enamel mechanical properties after remineralization.


Subject(s)
Dental Caries , Fluorides , Humans , Fluorides/pharmacology , Amelogenin/pharmacology , Amelogenin/therapeutic use , Cariostatic Agents/pharmacology , Cariostatic Agents/therapeutic use , Biomimetics , Calcium Phosphates/pharmacology , Calcium Phosphates/therapeutic use , Minerals , Phosphates , Tooth Remineralization/methods , Hydrogen-Ion Concentration
8.
Crit Rev Toxicol ; 54(1): 2-34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38318766

ABSTRACT

INTRODUCTION: Fluoride is a naturally occurring substance that is also added to drinking water, dental hygiene products, and food supplements for preventing dental caries. Concerns have been raised about several other potential health risks of fluoride. OBJECTIVE: To conduct a robust synthesis of evidence regarding human health risks due to exposure to fluoride in drinking water, and to develop a point of departure (POD) for setting a health-based value (HBV) for fluoride in drinking water. METHODS: A systematic review of evidence published since recent reviews of human, animal, and in vitro data was carried out. Bradford Hill considerations were used to weigh the evidence for causality. Several key studies were considered for deriving PODs. RESULTS: The current review identified 89 human studies, 199 animal studies, and 10 major in vitro reviews. The weight of evidence on 39 health endpoints was presented. In addition to dental fluorosis, evidence was considered strong for reduction in IQ scores in children, moderate for thyroid dysfunction, weak for kidney dysfunction, and limited for sex hormone disruptions. CONCLUSION: The current review identified moderate dental fluorosis and reduction in IQ scores in children as the most relevant endpoints for establishing an HBV for fluoride in drinking water. PODs were derived for these two endpoints, although there is still some uncertainty in the causal weight of evidence for causality for reducing IQ scores in children and considerable uncertainty in the derivation of its POD. Given our evaluation of the overall weight of evidence, moderate dental fluorosis is suggested as the key endpoint until more evidence is accumulated on possible reduction of IQ scores effects. A POD of 1.56 mg fluoride/L for moderate dental fluorosis may be preferred as a starting point for setting an HBV for fluoride in drinking water to protect against moderate and severe dental fluorosis. Although outside the scope of the current review, precautionary concerns for potential neurodevelopmental cognitive effects may warrant special consideration in the derivation of the HBV for fluoride in drinking water.


Subject(s)
Drinking Water , Fluorides , Fluorosis, Dental , Humans , Fluorides/toxicity , Drinking Water/chemistry , Animals , Fluorosis, Dental/epidemiology , Risk Assessment
9.
Int Dent J ; 74(3): 559-565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38184459

ABSTRACT

INTRODUCTION: The objective of this in vitro study was to compare the effectiveness of a propolis-based herbal toothpaste with 5% sodium fluoride varnishin obstructing human dentinal tubules; Scanning electron microscopy was utilised to obtain quantitative and qulitative data on tubular obstruction. METHODS: Thirty-nine extracted human premolar teeth were collected. The cementum layer was removed using a water-cooled diamond bur and the smear layer using ethylenediaminetetraacetic acid (EDTA) 17%. Then, the samples were randomly divided into 3 groups (n = 13 each), as follows: group 1: dentin discs exposed to the propolis-based herbal toothpaste (Herbex); group 2: dentin discs exposed to 5% sodium fluoride varnish; and group 3: control. Then, all discs were observed and imaged in 4 non-overlapping fields by an electron microscope at 2000× magnification. The topography and number of open, closed, and semi-closed tubules were counted in all images. The data were analysed using Kruskal-Wallis test, Mann-Whitney U test, and Friedman test. The statistical analysis was performed with SPSS statistic 22.0 software, with a significance level of α = 0.05. RESULTS: In pairwise comparisons of the groups considering the percentage of open, closed, and semi-closed tubules, the difference was not statistically significant between the 5% sodium fluoride varnish and propolis groups in the closed and semi-closed tubules, but it was statistically significant with the control group. Additionally, the percentage of open tubules in the propolis-based herbal toothpaste group was significantly lower than in the 5% sodium fluoride varnish and control group. CONCLUSIONS: Both propolis-based herbal toothpaste and 5% sodium fluoride varnish is effective in blocking human dentin tubules to various extents.


Subject(s)
Dentin Sensitivity , Fluorides, Topical , Microscopy, Electron, Scanning , Propolis , Sodium Fluoride , Toothpastes , Propolis/therapeutic use , Propolis/pharmacology , Humans , Toothpastes/therapeutic use , Sodium Fluoride/therapeutic use , Fluorides, Topical/therapeutic use , Dentin Sensitivity/prevention & control , Dentin Sensitivity/drug therapy , In Vitro Techniques , Dentin/drug effects , Dentin/ultrastructure , Dentin Desensitizing Agents/therapeutic use , Bicuspid
10.
ACS Appl Mater Interfaces ; 16(6): 6743-6755, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295315

ABSTRACT

In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on T1 and T2 signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the T1 relaxation time and contrast and a parallel decrease in the T2 signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 µg mL-1, which also corresponds to a iron dose of 52 µg mL-1. Nontoxic nanostructures with such enzyme-triggered release mechanisms and T1 signal enhancement are desirable for tracking tumor microenvironment release with remote T1-guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.


Subject(s)
Hyperthermia, Induced , Nanostructures , Contrast Media/chemistry , Gadolinium/chemistry , Nanostructures/chemistry , Magnetic Resonance Imaging/methods , Peptide Hydrolases
11.
Photobiomodul Photomed Laser Surg ; 42(1): 81-89, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38252494

ABSTRACT

Objective: The aim of this study is to evaluate the efficacy of two different fluoride varnishes used alone or in combination with laser treatment on permanent and primary tooth enamel. Methods: Ninety-six primary and 96 permanent molar samples were divided into six groups. The levels of calcium, phosphorus, fluoride, and silver ions of each sample were analyzed using energy-dispersive X-ray spectroscopy (EDS). Six different treatments were applied to 12 different groups (n = 15) as control (g1/G1), fluoride varnish (g2/G2), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-fluoride varnish (g3/G3), laser (g4/G4), laser+fluoride varnish (g5/G5), and laser+CPP-ACP-fluoride varnish (g6/G6). After the procedures, ion levels were reanalyzed with EDS. The teeth were subjected to the artificial caries-forming procedure and ion levels were again evaluated by EDS. One sample from each group was prepared separately for the focused ion beam-scanning electron microscope measurement; initial and final images were recorded. The obtained data were statistically analyzed with the SPSS 23.0 program. Results: Compared with the initial measurement, phosphorus percentages increased in most of the groups in the last measurement. Calcium percentages of primary teeth increased in the last measurement, except for the g1 group, but in permanent teeth, there was an increase only in the G6 group. There was a statistically significant difference between g1/G1 and g6/G6 groups in the last measurement of phosphorus and calcium percentages. Conclusions: The combined use of laser with CPP-ACP-fluoride varnish enhanced remineralization in the primary and permanent teeth. However, in permanent teeth, the use of laser alone was not as effective as in primary teeth. Therefore, combined usage with CPP-ACP-fluoride varnish can enhance its efficacy. This in vitro study was approved by the local ethics committee of Hacettepe University (Project No.: GO 20/441).


Subject(s)
Lasers, Solid-State , Humans , Calcium , Fluorides, Topical , Minerals , Phosphorus , Ions , Dental Enamel
12.
Sci Total Environ ; 914: 169810, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38184246

ABSTRACT

Drinking tea, which is globally one of the most widely consumed beverages, is a potential source of fluoride toxicity. This research aimed at fluoride estimation in the infusions of commercial black tea and green tea samples, purchased from the local Indian market, systematic evaluation of the factors influencing the fluoride release and the adsorptive removal of fluoride using the indigenously developed nanoadsorbents. All the prepared infusions had fluoride content above the permissible WHO limits. Various factors, which affect the release of fluoride from tea leaves into the infusion include type of water, tea dosage and brewing time. The investigations revealed that, the fluoride content in the black tea infusions was much higher than the green tea infusions. Further, it also depended on the amount of tea leaves used for brewing. The fluoride, present in tea leaves, is released gradually and within just 1 min of brewing, the concentration of fluoride in the infusions was well above the permissible WHO limits. It was also observed that, the dried unprocessed tea leaves, when brewed in water, had high fluoride content. This further confirmed the presence of fluoride in tea infusion, which demands an efficient remediation technique. The developed nanoadsorbents exhibited efficient defluoridation of groundwater, and were therefore tested for their efficiency in defluoridating tea infusions as well. These nanoadsorbents could efficiently eliminate fluoride from both green and black tea infusions, bringing down the fluoride content below the WHO limits, thereby rendering the infusions safe. They exhibited rapid kinetics with high efficiency in adsorbing fluoride from tea infusions. These properties make them potential adsorbents for defluoridating tea infusion, which provides a probable solution to the problem of fluoride toxicity from drinking tea. This is one of the first reports on a technique for eliminating fluoride from tea infusions.


Subject(s)
Camellia sinensis , Fluorides , Tea , Beverages/analysis , Water
13.
J Mech Behav Biomed Mater ; 151: 106354, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232670

ABSTRACT

The aim of this study was to evaluate the effects of supplementing toothpastes containing 1100 ppm F with micrometric or nanometric [beta]-calcium glycerophosphate (ß-CaGPm/ß-CaGPn) on artificial enamel demineralization, using a pH cycling model. Bovine enamel blocks (4 mm × 4 mm, n = 120) selected using initial surface hardness were randomly allocated to ten toothpaste groups (n = 12): without fluoride or ß-CaGPm or ß-CaGPn (Negative control), 1100 ppm F (1100 F), and 1100 ppm F plus 0.125%, 0.25%, 0.5%, and 1.0% of ß-CaGPm or ß-CaGPn. Blocks were treated two times per day with toothpaste slurry and subjected to five pH cycles (demineralizing and remineralizing solutions) at 37 °C. The final surface hardness, percentage of surface hardness loss (%SH), cross-sectional hardness (ΔKHN), and profile analysis and lesion depth subsurface were analysed using polarized light microscopy (PLM). Fluoride (F), calcium (Ca), and phosphorus (P) concentrations were also measured. Data were analysed using ANOVA and Student-Newman-Keuls tests ([alpha] = 0.001). Blocks treated with 1100 F toothpaste containing 0.5%ß-CaGPm or 0.25%ß-CaGPn showed with reduced %SH values when compared with those treated with 1100 F alone (p < 0.001). Reduced lesion depths (ΔKHN and PLM) were observed for the slurry made up of 1100 F and 0.25%ß-CaGPn (p < 0.001). The addition of ß-CaGPm and ß-CaGPn did not influence the enamel F concentration, with the 1100 F/0.25%ß-CaGPn group exhibiting the highest Ca and P enamel concentrations (p < 0.001). Based on the findings of this in vitro study, we can conclude that the fluoride toothpaste produced a superior effect when combined at an appropriate ß-CaGP molar ratio. This effect was achieved with a lower proportion of ß-CaGP in the form of nanometric particles.


Subject(s)
Fluorides , Tooth Demineralization , Humans , Animals , Cattle , Fluorides/pharmacology , Fluorides/analysis , Toothpastes/pharmacology , Calcium , Glycerophosphates , Cross-Sectional Studies , Tooth Demineralization/prevention & control , Hardness , Dietary Supplements , Hydrogen-Ion Concentration
14.
Sci Total Environ ; 912: 169323, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104806

ABSTRACT

Fluoride (F-) contamination of groundwater is a prevalent environmental issue threatening public health worldwide and in India. This study targets an investigation into spatial distribution and contamination sources of fluoride in Dhanbad, India, to help develop tailored mitigation strategies. A triad of Multi Criteria Decision Making (MCDM) models (Fuzzy-TOPSIS), machine learning algorithms {logistic regression (LR), classification and regression tree (CART), Random Forest (RF)}, and classical methods has been undertaken here. Groundwater samples (n = 283) were collected for the purpose. Based on permissible limit (1.5 ppm) of fluoride in drinking water as set by the World Health Organization, samples were categorized as Unsafe (n = 67) and Safe (n = 216) groups. Mean fluoride concentration in Safe (0.63 ± 0.02 ppm) and Unsafe (3.69 ± 0.3 ppm) groups differed significantly (t-value = -10.04, p < 0.05). Physicochemical parameters (pH, electrical conductivity, total dissolved solids, total hardness, NO3-, HCO3-, SO42-, Cl-, Ca2+, Mg2+, K+, Na+ and F-) were recorded from samples of each group. The samples from 'Unsafe group' showed alkaline pH, the abundance of Na+ and HCO3- ions, prolonged rock water interaction in the aquifer, silicate weathering, carbonate dissolution, lack of Ca2+ and calcite precipitation which together facilitated the F- abundance. Aspatial distribution map of F- contamination was created, pinpointing the "contaminated pockets." Fuzzy- TOPSIS identified that samples from group Safe were closer to the ideal solution. Among these models, the LR proved superior, achieving the highest AUC score of 95.6 % compared to RF (91.3 %) followed by CART (69.4 %). This study successfully identified the primary contributors to F- contamination in groundwater and the developed models can help predicting fluoride contamination in other areas. The combination of different methodologies (Fuzzy-TOPSIS, machine learning algorithms, and classical methods) results in a synergistic effect where the strengths of each approach compensate for the limitations of the other.

15.
Biomed Pharmacother ; 170: 116080, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147737

ABSTRACT

The current study aimed to explore the possible prophylactic and therapeutic effect of Nigella sativa L. oil (NSO) against disruption of endocrine signals and injuries in the thyroid gland, ovary, and uterine tissues induced by sodium fluoride (NaF). Twenty-eight mature female Wistar rats were randomly allocated into four experimental groups (n = 7/group) as follows: control group; NaF group, orally received NaF (20 mg/kg b.wt.) daily; NSO/NaF, orally received NSO (300 mg/kg b.wt.) two weeks before being given NaF and continued throughout the experiment; and NSO+NaF group orally received NSO concurrently with NaF. Our results indicated that NSO restored hormonal balance and suppressed oxidative damage and inflammation. Moreover, the levels of triiodothyronine, thyroxine, thyroid peroxidase, estrogen (E2), progesterone, follicle-stimulating hormone, and luteinizing hormone were elevated, while prostaglandins F2-α and cortisol levels were decreased in NSO treated groups compared to NaF-intoxicated rats. As well, NSO significantly boosted levels of antioxidant molecules, and lowered lipid peroxidation of examined tissues, unlike NaF-treated group. NSO also up-regulated antioxidant enzymes, anti-apoptotic protein, zona pellucida sperm-binding protein, bone morphogenetic protein, and thyroid stimulating hormone, conversely down-regulated inflammatory cytokines, apoptotic proteins, estrogen receptor-α, estrogen receptor-ß, and thyroid stimulating hormone receptors compared to NaF-intoxicated group. Additionally, NSO ameliorated tissue damage of the thyroid gland, ovary, and uterus induced by NaF. -Overall, the prophylactic group (NSO/NaF) performed better antioxidant and anti-inflammatory activities than the treated group almost in all examined tissues, which is reflected by the improvement in the structure of the thyroid, ovarian, and uterine tissues.


Subject(s)
Nigella sativa , Thyroid Gland , Rats , Female , Male , Animals , Rats, Wistar , Antioxidants/pharmacology , Antioxidants/metabolism , Ovary , Sodium Fluoride/toxicity , Sodium Fluoride/metabolism , Plant Oils/pharmacology , Oxidative Stress , Uterus/metabolism , Receptors, Estrogen/metabolism , Seeds
16.
Environ Res ; 238(Pt 2): 117229, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37778605

ABSTRACT

Urbanization and economic development have increased the demand for fertilizers to sustain food crop yields. Huge amounts of by-products, especially phosphogypsum (PG), are generated during the wet processing of rock phosphate to produce fertilizers. Chronic exposure to fluoride in phosphogypsum in groundwater as a result of the weathering of fluoride-containing waste poses a significant health risk to millions of people. We propose a method for using calcium aluminate cement (CAC) to remediate high fluoride contents in solid waste. Column leaching tests under harsh rainfall conditions confirmed the efficient fluoride immobilization capacity of a CAC binder. Although the fluoride concentrations in leachates during the first 1-2 days (1.25 mg/L) slightly exceeded the threshold of 1.00 mg/L, the concentrations over 3-28 days (ranging from 0.98 to 0.83 mg/L) consistently remained well within the acceptable range. Furthermore, our characterization and geochemical modeling revealed the fluoride retention mechanisms of CAC-stabilized PG under laboratory-simulated conditions of torrential rainfall. During leaching, physical encapsulation prevents fluoride from contacting leachate. However, an unfavorable pH value can cause the release of fluoride from the cement matrix, which is subsequently captured by aluminate hydrate through adsorption or co-precipitation. We quantified the carbon footprint of CAC for immobilizing 1 mg of fluoride in PG, obtaining a remarkably low value of 4.4 kg of CO2, in contrast to the emissions associated with the use of ordinary Portland cement (OPC). The findings suggest a unique opportunity for extensive PG remediation. This opportunity extends the horizons of achieving zero-waste emissions in the phosphorus industry and has practical significance in the context of reducing carbon emissions.


Subject(s)
Fertilizers , Fluorides , Humans , Phosphorus
17.
Ecotoxicol Environ Saf ; 266: 115568, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37832482

ABSTRACT

The tea plant accumulates elevated levels of fluoride (F) from environmental sources. Drinking tea containing high F levels poses a potential threat to human health. Selenium (Se) was applied by foliar spray to investigate its effects on F accumulation and physiology in tea plant. Foliar application of different forms of Se, i.e., Na2SeO3, Kappa-selenocarrageenan, Selenomethionine and Nanoselenium, reduced F content in tea leaves by 10.17 %-44.28 %, 16.12 %-35.41 %, 22.19 %-45.99 % and 22.24 %-43.82 %, respectively. Foliar spraying Se could increase F accumulation in pectin through increasing pectin content and pectin demethylesterification to bind more F in the cell wall, which decreased the proportion of water-soluble fluoride in tea leaves. Application of Se significantly decreased the contents of chromium (39.6 %-72.0 %), cadmium (48.3 %-84.4 %), lead (2.2 %-44.4 %) and copper (14.1 %-44.6 %) in tea leaves. Foliar spraying various forms of Se dramatically increased the Se content and was efficiently transformed into organic Se accounting for more than 80 % in tea leaves. All Se compounds increased peroxidase activity by 3.3 %-35.5 % and catalase activity by 2.6 %-99.4 %, reduced malondialdehyde content by 5.6 %-37.1 %, and increased the contents of chlorophyll by 0.65 %-31.8 %, carotenoids by 0.24 %-27.1 %, total catechins by 1.6 %-21.0 %, EGCG by 4.4 %-17.6 % and caffeine by 9.1 %-28.6 %. These results indicated that Se application could be served as a potential efficient and safe strategy diminishing the concentration of F in tea leaves.


Subject(s)
Camellia sinensis , Selenium , Humans , Selenium/metabolism , Fluorides/analysis , Antioxidants/metabolism , Camellia sinensis/chemistry , Plant Leaves/metabolism , Tea , Pectins/metabolism
18.
J Dent ; 138: 104719, 2023 11.
Article in English | MEDLINE | ID: mdl-37741503

ABSTRACT

OBJECTIVES: This in situ study aimed to assess the remineralizing effect of a fluoride toothpaste supplemented with ß-calcium glycerophosphate in both micro (ß-CaGPm) and nano-sized forms (ß-CaGPn). METHODS: This blind and cross-over study was performed in 4 phases, each spanning 3 days. Twelve volunteers utilized palatal appliances containing four bovine enamel blocks with artificial caries lesions. Volunteers were randomly assigned to the following treatment groups: Placebo (no F-ß-CaGPm-ß-CaGPn); 1100 ppm F alone (1100F); 1100F plus 0.5% micrometric ß-CaGP (1100F-0.5%ß-CaGPm); and 1100F plus 0.25%nano-sized ß-CaGP (1100F-0.25%ß-CaGPn). Participants were instructed to brush their natural teeth with the palatal appliances in the mouth for 1 min (3 times/day), ensuring that the enamel blocks were exposed to the natural toothpaste slurries. Following each phase, evaluations were conducted to determine the percentage of surface hardness recovery (%SHR), integrated recovery of subsurface hardness (ΔIHR), profile subsurface lesion through polarized light microscopy (PLM), as well as fluoride (F), calcium (Ca), and phosphorus (P) concentrations within the enamel. Data were analyzed by ANOVA and Student-Newman-Keuls test (p < 0.001). RESULTS: Treatment with 1100F-0.25%ß-CaGPn resulted in %SHR ∼69 % and ∼40 % higher when compared to 1100F and 1100F-0.5%ß-CaGPm (p < 0.001). The reduction in lesion body (ΔIHR; PLM) was ∼40 % higher with 1100F-0.25%ß-CaGPn (p < 0.001) compared to 1100F. The addition of ß-CaGPm and ß-CaGPn did not influence enamel F concentration (p > 0.001). Treatment with 1100F-0.25%ß-CaGPn led to an increase in the concentration of Ca and P in the enamel (p < 0.001). CONCLUSION: The addition of 0.25%ß-CaGPn into 1100F formulation increased the bioavailability of calcium and phosphate, promoting a higher remineralizing effect. CLINICAL SIGNIFICANCE: Toothpaste containing 1100F-0.25%ß-CaGPn showed a potential of higher remineralization to 1100 ppm F and 1100 ppm F micrometric ß-CaGP could be a strategy for patients at caries activity.


Subject(s)
Fluorides , Toothpastes , Animals , Cattle , Humans , Calcium/pharmacology , Cariostatic Agents/pharmacology , Cross-Over Studies , Dental Enamel , Fluorides/pharmacology , Glycerophosphates/pharmacology , Hardness , Tooth Remineralization/methods , Toothpastes/pharmacology , Toothpastes/therapeutic use
19.
Caries Res ; 57(3): 255-264, 2023.
Article in English | MEDLINE | ID: mdl-37699359

ABSTRACT

Green tea-derived catechins, which can be divided into galloylated (epicatechin gallate: ECG, epigallocatechin gallate: EGCG) and non-galloylated (catechin: C, epicatechin: EC, epigallocatechin: EGC) catechins, are considered to be the main contributors to the caries control potential of green tea. In this study, we intended to compare the antimicrobial effects of these representative green tea-derived catechins and their combined effects with fluoride on the acid production and aggregation of Streptococcus mutans. The effects of different catechins on the growth, aggregation and acid production of S. mutans, and the combined effect of catechins and potassium fluoride (2 mm at pH 7.0, 0.3 mm at pH 5.5) on S. mutans acid production were measured by anaerobic culture, turbidity changes due to aggregation, and pH-stat methods. Molecular docking simulations were also performed to investigate the interactions between catechins and membrane-embedded enzyme II complex (EIIC), a component of the phosphoenolpyruvate-dependent phosphotransferase system (sugar uptake-related enzyme). ECG or EGCG at 1 mg/mL significantly inhibited the growth of S. mutans, induced bacterial aggregation, and decreased glucose-induced acid production (p < 0.05). All catechins were able to bind to EIIC in silico, in the following order of affinity: EGCG, ECG, EGC, EC, and C. Furthermore, they enhanced the inhibitory effects of fluoride at pH 5.5 and significantly inhibited S. mutans acid production by 47.5-86.6% (p < 0.05). These results suggest that both galloylated and non-galloylated catechins exhibit antimicrobial activity, although the former type demonstrates stronger activity, and that the caries control effects of green tea may be due to the combined effects of multiple components, such as catechins and fluoride. The detailed mechanisms underlying these phenomena and the in vivo effect need to be explored further.


Subject(s)
Anti-Infective Agents , Catechin , Humans , Tea/chemistry , Catechin/pharmacology , Catechin/analysis , Catechin/metabolism , Streptococcus mutans/metabolism , Fluorides/pharmacology , Molecular Docking Simulation
20.
Molecules ; 28(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37687225

ABSTRACT

In recent years, the quality and sourcing of tea have gained importance in Europe, but information remains scarce. The aim of this study was to determine the concentrations of fluoride (F-) and total aluminium (Al) species in infusions of commercially available teas in Slovenia, and thus in Europe, and to relate them to tea quality and their impact on consumer safety. F- concentrations were determined using a fluoride-ion-selective electrode and Al concentrations using inductively coupled plasma optical emission spectroscopy. A comparison of the results obtained for four selected tea samples using the calibration curve and a standard addition technique showed good agreement, with no interferences caused by the sample matrix. The concentrations of 35 commercial teas ranged from 0.34 to 4.79 and 0.51 to 8.90 mg/L for F- and Al, respectively. The average concentrations of the two elements followed the same descending order: black filter > green filter > black leaves ≈ green leaves. Single and multivariate statistical methods supported the categorisation of teas by packaging but not by type, with tea in filter bags being more expensive than loose tea. The linear relationship between F- and Al concentrations in infusions (C(Al) = 1.2134 · C(F-)) allows for the determination of one element and estimation of the other, leading to a significant reduction in laboratory effort and cost. This research advances tea assessment by proposing Al concentration alongside F- as a quality indicator and provides the basis for tea-monitoring protocols. Finally, the daily consumption of larger quantities of tea (≈1 L) with elevated F- and Al concentrations could potentially pose a health risk.


Subject(s)
Camellia sinensis , Fluorides , Aluminum , Quality Indicators, Health Care , Risk Factors , Tea
SELECTION OF CITATIONS
SEARCH DETAIL