Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 968-980, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621904

ABSTRACT

This study aims to characterize and identify the chemical constituents in 11 parts of Forsythia suspensa by using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with a self-established chemical constituent database, including leaves, flowers, fruits, green F. suspensa, old F. suspensa, and seeds. The quality attributes and differences of different parts of F. suspensa were evaluated by principal component analysis, partial least square discriminant analysis, and other stoichiometric methods. A total of 79 compounds were identified, including 13 phenylethanol glycosides, 10 lignans, 12 flavonoids, 10 organic acids, 14 terpenoids, and 20 other types of compounds. Among them, 34 compounds were the main variables of difference between the different parts of F. suspensa, and the content of each component was relatively higher in the leaves and green F. suspensa. The LPS-induced inflammation model of RAW264.7 cells was applied to study the anti-inflammatory activity of the extracts of the different parts of F. suspensa and the main constituents. The results show that the extracts of green F. suspensa, flower, twig, and stem exhibited anti-inflammatory activity, and the constituents such as forsythoside A, phyllyrin, phillygenin, and(+)-pinoresinol-ß-D-glucopyranoside could significantly inhibit anti-inflammatory activity released by NO. The chemical constituent in different parts of F. suspensa is analyzed comprehensively, and the anti-inflammatory activity is evaluated in this study, which provides a reference for the development and comprehensive utilization of F. suspensa resources.


Subject(s)
Forsythia , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Forsythia/chemistry , Chromatography, High Pressure Liquid , Flavonoids , Anti-Inflammatory Agents/pharmacology
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 594-604, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597452

ABSTRACT

OBJECTIVE: To compare the anti-inflammatory, antitumor and anti-bacterial effects of the single extract (in granules) and the prepared drug in pieces of Forsythia Suspense (Lianqiao, a traditional Chinese herbal medicine). METHODS: In zebrafish embryo models of CuSO4 exposure, tail transection and LPS microinjection-induced inflammation, the anti-inflammatory effects of 10 µg/mL DEX, single extract of Forsythia Suspense, and the water extract of the prepared drug (400, 600, and 800 µg/mL) were evaluated by observing neutrophil counts, RT- qPCR, HE staining and survival analysis. Zebrafish embryo models bearing different human tumor cell xenografts were used to assess the anti-tumor effect of the drugs in different dosage forms by fluorescence staining and HE staining. The microbroth dilution method was used to evaluate the antibacterial efficacy of the drugs. RESULTS: In the zebrafish embryo models of inflammation, both of the two dosage forms of Forsythia Suspense significantly inhibited neutrophil aggregation, reduced the mRNA expressions of TNF-α, IL-6, P38, Jnk, Erk and P65, and increased the survival rate of zebrafish. They both showed obvious inhibitory effects against xenografts of different human cancer cells including colon cancer cells (HCT116), pancreas adenocarcinoma cells (PANC-1), lung cancer cells (A549), liver cancer cells (Hep3B) and cervical carcinoma cells (Hela) in zebrafish embryos, and exhibited strong anti-bacterial effects at the concentration of 15.63 mg/mL. CONCLUSION: The two dosage forms of Forsythia Suspense have similar anti-inflammatory, antitumor and antibacterial effects, but their effects for inhibiting IL-6, P65, and Jnk mRNA expressions and HCT116 cell proliferation differ significantly at low doses in zebrafish.


Subject(s)
Drugs, Chinese Herbal , Forsythia , Animals , Humans , Zebrafish , Interleukin-6 , Anti-Inflammatory Agents/pharmacology , Inflammation , Anti-Bacterial Agents/pharmacology , RNA, Messenger
3.
Phytother Res ; 38(4): 1863-1881, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358766

ABSTRACT

Forsythia suspensa tea is a popular traditional Chinese medicine decoction for its healthy and therapeutic benefits. However, its effects in bone metabolism were not clear. In recent study, we uncovered anti-osteoclastogenesis property of Phillygenin (Phi), a compound abundant in Forsythia suspensa leaves, and aimed to investigate the effect and mechanism of Phi on bone metabolism in vivo and in vitro. Lipopolysaccharides-induced murine calvaria osteolysis and ovariectomy-induced bone loss animal models were used to identify the bone-protective effect of Phi in vivo and micro-CT, pQCT, and TRAP staining were applied. We used CCK8, TUNEL, BrdU, and TRAP staining to evaluate the efficacy of Phi on the proliferation and formation of OCs in primary mBMMs. RNA sequence, activity-based protein profiling, molecular docking, G-LISA, and WB were used to inspect the target and underlying mechanism of Phi's actions in mBMMs. We found Phi significantly inhibited bone resorption in vivo and inhibited mBMMs osteoclastogenesis in vitro. Ras homolog gene family member A (RhoA) was identified as the direct target of Phi. It counteracted the effects of RhoA activator and acted as a RhoA inhibitor. By targeting RhoA, Phi modulated Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activity and regulated its downstream NF-κB/NFATc1/c-fos pathway. Furthermore, Phi depressed the disassembling of F-actin ring through cofilin and myosin1a. Our findings provided Phi as a potential option for treating bone loss diseases by targeting RhoA and highlighted the importance of F. suspensa as a preventive approach in bone disorders.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Lignans , Osteolysis , Animals , Female , Mice , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Cell Differentiation , Lignans/pharmacology , Molecular Docking Simulation , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/pharmacology , Osteoclasts , Osteogenesis , Osteolysis/chemically induced
4.
Phytomedicine ; 125: 155336, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295660

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) was a chronic intestinal disease related to autoimmunity, and its pathogenesis was complex. Forsythia suspensa (F. suspensa) had good anti-inflammatory and antioxidant effects. The active component polyphenols had significant effects in the treatment of intestinal inflammation. Researches had found that polarization, pyroptosis and apoptosis of macrophages can drive the occurrence and development of colitis. PURPOSE: In this study, we examined whether F. suspensa polyphenols (FPP) mitigated DSS-induced colitis, and explored its potential mechanisms. METHODS: The potential targets of F. suspensa in intestinal inflammation were predicted through network pharmacology. Using LPS and IFN-γ induced macrophage M1 polarization in J774A.1 cells. Macrophage polarization was detected through RT-qPCR, flow cytometry and ELISA. Ulcerative colitis (UC) in mice was induced by 2.5% DSS for 7 days, and then oral administrated different doses of FPP for another 7 days. Then we assessed the body weight, diarrhea, bleeding in stool, colon length, cytokines of serum and pathology of colon. The effects of FPP on the gut microbiota in mice also tested and evaluated. RESULTS: Our results showed that the main active ingredient of F. suspensa in protecting intestinal inflammation were polyphenols and F. suspensa was multi-targeted in the treatment of intestinal inflammation. FPP inhibited M1 polarization and polarizes towards M2 in J774A.1 cells. FPP inhibited pyroptosis and apoptosis to exert anti-inflammatory effects. FPP had a good protective effect on DSS induced UC in mice. In unison, FPP inhibited M1 polarization, apoptosis, and pyroptosis in UC mice. FPP regulated intestinal homeostasis in mice with UC by improving the gut microbiota and enhancing the intestinal metabolites short-chain fatty acid (SCFAs). CONCLUSIONS: These data indicated that FPP may alleviate UC by inhibiting M1 polarization in mice. Collectively, these findings suggest that the reduction of colitis by FPP may related to macrophage polarization, pyroptosis and apoptosis.


Subject(s)
Colitis, Ulcerative , Colitis , Forsythia , Animals , Mice , Polyphenols/pharmacology , Polyphenols/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
5.
J Chromatogr A ; 1713: 464505, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37976901

ABSTRACT

Analysis of exposure to traditional Chinese medicine (TCM) in vivo based on mass spectrometry is helpful for the screening of effective ingredients of TCM and the development of new drugs. The method of screening biomarkers through metabolomics technology is a nontargeted research method to explore the differential components between two sets of biological samples. By taking this advantage, this study aims to takes Forsythia suspensa, which is a TCM also known as Lian Qiao (LQ), as the research object and to study its in vivo exposure by using metabolomics technology. By comparing the significant differences between biological samples before and after administration, it could be focused on the components that were significantly upregulated, where a complete set of analysis strategies for nontargeted TCM in vivo exposure mass spectrometry was established. Furthermore, the threshold parameters for peak extraction, parameter selection during statistical data analysis, and sample concentration multiples in this method have also been optimized. More interestingly, by using the established analysis strategy, we found 393 LQ-related chemical components in mice after administration, including 102 prototypes and 291 LQ-related metabolites, and plotted their metabolic profiles in vivo. In short, this study has obtained a complete mass spectrum of LQ exposure in mice in vivo for the first time, which provides a reference for research on the active ingredients of LQ in vivo. More importantly, compared with other methods, the analysis strategy of nontargeted exposure of TCM in vivo-based mass spectrometry, constructed by using this research method, has good universality and does not require self-developed postprocessing software. It is worth mentioning that, for the identification and characterization of trace amounts of metabolites in vivo, this analysis strategy has no discrimination and has a detection capability similar to that of highly exposed components.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Mice , Animals , Drugs, Chinese Herbal/chemistry , Mass Spectrometry/methods , Medicine, Chinese Traditional , Metabolomics/methods , Herbal Medicine , Plants, Medicinal/metabolism
6.
BMC Genomics ; 24(1): 708, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996801

ABSTRACT

BACKGROUND: Forsythia suspensa (Thunb.) Vahl is a valuable ornamental and medicinal plant. Although the nuclear and chloroplast genomes of F. suspensa have been published, its complete mitochondrial genome sequence has yet to be reported. In this study, the genomic DNA of F. suspensa yellowish leaf material was extracted, sequenced by using a mixture of Illumina Novaseq6000 short reads and Oxford Nanopore PromethION long reads, and the sequencing data were assembled and annotated. RESULT: The F. suspensa mitochondrial genome was obtained in the length of 535,692 bp with a circular structure, and the GC content was 44.90%. The genome contains 60 genes, including 36 protein-coding genes, 21 tRNA genes, and three rRNA genes. We further analyzed RNA editing of the protein-coding genes, relative synonymous codon usage, and sequence repeats based on the genomic data. There were 25 homologous sequences between F. suspensa mitochondria and chloroplast genome, which involved the transfer of 8 mitochondrial genes, and 9473 homologous sequences between mitochondrial and nuclear genomes. Analysis of the nucleic acid substitution rate, nucleic acid diversity, and collinearity of protein-coding genes of the F. suspensa mitochondrial genome revealed that the majority of genes may have undergone purifying selection, exhibiting a slower rate of evolution and a relatively conserved structure. Analysis of the phylogenetic relationships among different species revealed that F. suspensa was most closely related to Olea europaea subsp. Europaea. CONCLUSION: In this study, we sequenced, assembled, and annotated a high-quality F. suspensa mitochondrial genome. The results of this study will enrich the mitochondrial genome data of Forsythia, lay a foundation for the phylogenetic development of Forsythia, and promote the evolutionary analysis of Oleaceae species.


Subject(s)
Forsythia , Genome, Chloroplast , Genome, Mitochondrial , Nucleic Acids , Plants, Medicinal , Forsythia/genetics , Forsythia/chemistry , Genome, Mitochondrial/genetics , Phylogeny , Plants, Medicinal/chemistry , Plants, Medicinal/genetics
7.
Huan Jing Ke Xue ; 44(5): 2879-2888, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177959

ABSTRACT

Shanxi is one of the main producing areas of Forsythia suspensa in China. In order to explore the safety of the soil in the areas where Forsythia suspensa grows,70 surface (0-25 cm) soil samples were collected from the main growing areas of F. suspensa in the eastsouth of Shanxi Province in July 2017. The concentration and composition characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in the sample soils were analyzed using chemical extraction and gas chromatography-mass spectrometry (GC-MS). The diagnostic ratio method was used to determine the source of PAHs in the areas. The potential ecological risk was assessed by using the method of calculating the equivalent carcinogenic concentration of benzo[a]pyrene. The results showed that the average concentration of total PAHs (Σ16PAHs) in all of the soil samples was 1.85 µg·g-1, which was dominated by three ring number PAHs, accounting for 76.7% of the total PAHs. The detection rates of phenanthrene (Phe) and anthracene (Ant) were both 100% of all the sample sites. The soil PAHs in the wild F. suspensa growing areas mainly originated from coal, biomass burning, and motor vehicle exhaust emissions, which resulted from air transport and sedimentation pathways. In all of the sample sites, the concentration of Σ16PAHs the limit standard level (0.2 µg·g-1) of Maliszewska-Kordybach for agricultural soil pollution and exceeded the soil heavy pollution level limit value (1.0 µg·g-1) in 41.4% of the sample sites. The concentration of BaP was above the risk control standard for soil contamination of agricultural land (0.55 µg·g-1) in 10% of all the soil samples. A total of 11.4% of the sample soil ΣBaPeq16PAHs and ΣBaPeq8BPAHs exceeded the agricultural soil screening value (0.55 µg·g-1). These results indicate that the contamination of PAHs was at a detectable level in the soil of wild F. suspensa growing in Shanxi, and thus their potential ecological risks should not be ignored. It is necessary to enhance the research regarding these areas to ensure the safe production of medicinal plants.


Subject(s)
Forsythia , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Environmental Monitoring/methods , Soil Pollutants/analysis , China , Vehicle Emissions/analysis , Environmental Pollution/analysis , Risk Assessment
8.
Tree Physiol ; 43(9): 1641-1652, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37171622

ABSTRACT

Weeping forsythia is an important ornamental, ecological and medicinal plant. Brown leaf spots limit the large-scale production of weeping forsythia as a medicinal crop. Alternaria alternata is a pathogen causing brown leaf spots in weeping forsythia; however, its pathogenesis and the immune response mechanisms of weeping forsythia remain unclear. In this study, we identified two mechanisms based on morphological anatomy, physiological indexes and gene expression analyses. Our results showed that A. alternata induced leaf stomata to open, invaded the mesophyll, dissolved the cell wall, destroyed the cell membrane and decreased the number of chloroplasts by up-regulating the expression of auxin-activated signaling pathway genes. Alternaria alternata also down-regulated iron-ion homeostasis and binding-related genes, which caused an increase in the levels of iron ions and reactive oxygen species in leaves. These processes eventually led to programmed cell death, destroying palisade and spongy tissues and causing the formation of iron rust spots. Alternaria alternata also caused defense and hypersensitive responses in weeping forsythia through signaling pathways mediated by flg22-like and elf18-like polypeptides, ethylene, H2O2 and bacterial secretion systems. Our study provides a theoretical basis for the control of brown leaf spots in weeping forsythia.


Subject(s)
Forsythia , Hydrogen Peroxide , Transcriptome , Gene Expression Profiling
9.
Plant Dis ; 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510418

ABSTRACT

Forsythia suspensa (Thunb.) Vahl (Oleaceae) is a well-known traditional Chinese medicine. It exhibits antioxidant activity and exerts antibacterial, antiviral, and antiemetic effects (Li and Chen 2005). From May 2020 to October 2021, a disease was observed on field-grown forsythia plants in Lingbao City, Henan Province, China (110°33'25.74″E, 34°30'19.34″W). The diseased plants were characterized by stem rot, retarded growth, a declined fruit quality, and in extreme cases, death of F. suspensa. Approximately 3.0% to 5.0% individuals exhibited stem rotten in the main branches. On average, 60% of the branches of infected individual trees were affected by this disease. During the initial infection stage, the bark of the plants was raised and curled, and the xylem and phloem of the stems turned brown color, whereas in the late stage of the infection, the outer bark had dried and become detached, and the inner xylem and phloem had blackened. Upon infection, the growth of plants was reduced, and the main branches became desiccated as the disease progressed. We randomly selected five diseased branches from five plant fields, the bark tissues (about 25 mm²) of which were surface-sterilized in 75% ethanol for 30 s, treated with 1% NaClO for 5 min, rinsed five times with sterile water, and placed on potato dextrose agar (PDA). After incubating 3 days, 20 clones were observed, and two representative strains (FSJF11 and FSJF13, three replicates for each) was selected for intensive study. Samples of these strains have been deposited in Institutes of Traditional Chinese Medicine, Henan University. On PDA, the colonies of FSJF11 were initially white and fluffy in appearance, later turning gray, and finally black. The vigorously growing hyphae were branched and septate. However, no spores was observed during culture. FSJF13 colonies were rapidly growing, initially white in color and later turning gray. After culturing for 20 days, black conidia appeared and yellow conidial horns were released. The alpha conidia were elliptical, slightly pointed at both ends, and each end possessed an oil ball (6.40±0.60 × 1.86±0.25 µm). The beta conidia were slender, linear, and hook shaped with a slightly curved end (28.92±2.81 × 0.96±0.14 µm). DNA of the isolates was extracted using a Fungal Genome DNA Extraction Kit (Sangon Biotech, Shanghai), and selected genes were amplified using the primer pairs ITS1/ITS4 (Tian et al. 2018), LROR/ LR5, and NS1/NS4 (Aiello et al. 2020). Sequences have been deposited in GenBank (ITS: MW834579 and MW834580; LSU: MW829566 and MW829567; SSU: MW834582 and MW834583). The lengths of the amplified ITS, LSU and SSU sequences were 491, 759, and 1013 bp for FSJF11, respectively, and these in FSJF13 were 543, 927, and 901 bp, respectively. The ITS, LSU, and SSU sequences of FSJF11 were found to have sequence identities of 99.19%, 100%, and 100% with those of Botryosphaeria dothidea stains AY259092, EU673243, and Eu673174, respectively, and a phylogenetic tree was constructed based on the concatenated sequences (ITS, LSU, and SSU) revealed that FSJF11 and B. dothidea formed a clade with 96% support. A BLAST search of the Genbank database revealed that the ITS sequence of FSJF13 showed 99.81% identity with that of Phomopsis velata (MN183778). Given that no LSU or SSU sequences of this species are currently available, we constructed a phylogenetic tree based solely on ITS sequences, which revealed that FSJF13 and P. velata formed a clade with 99% support. Based on the morphological and molecular characteristics(Qi et al. 2007), the isolates of FSJF11 and FSJF13 were identified as B. dothidea and P. velata, respectively. Healthy branches of F. suspensa were wounded in vitro after inoculating active fungal cake of B. dothidea or P. velata (diameter = 5 mm) on the bark, and control branches were treated with PDA. In total, each branch was inoculated via four holes were inoculated on each branch, and three branches were used for each treatment. The inoculation sites were covered with a piece of wet absorbent cotton and then wrapped with plastic film, and the branches were incubated at 26 °C. The branches continued to grow after removal of the cotton and the film on the fourth day. All inoculated points on the branches showed lesions similar to those observed in the field, whereas the control branches were asymptomatic. The pathogenicity rates of FSJF11 and FSJF13 (three replicates for each) were 66.67% and 83.33%, respectively. Both species were re-isolated from the symptomatic branches respectively, thereby fulfilling Koch's postulates. To the best of our knowledge, this is the first report of B. dothidea and P. velata causing branches rot in F. suspensa. The findings of this study will contribute to developing effective strategies for the control of this newly emerging plant disease.

10.
J Food Biochem ; 46(12): e14460, 2022 12.
Article in English | MEDLINE | ID: mdl-36200742

ABSTRACT

Forsythia suspensa (Thunb.) Vahl (Oleaceae) leaves are valuable sources of phillygenin. This study aimed to isolate phillygenin from F. suspensa leaves and examine its analgesic and anti-inflammatory effects. Phillygenin was successfully extracted and isolated from F. suspensa leaves after fermentation. Phillygenin significantly reduced the number of writhing induced by acetic acid, prolonged the latency period in the hot plate test, and inhibited the xylene-induced ear edema and carrageenan-induced paw edema in mice. IL-6, TNF-α, IL-1ß, NO, and PGE2 levels in the carrageenan-induced paw edema were notably reduced after pretreatment with phillygenin. Phillygenin significantly decreased the iNOS and COX-2 protein expressions and the IκB-α and NF-κB p65 phosphorylation. This study demonstrated that phillygenin is a potential therapeutic candidate for managing pain and inflammation-mediated disorders. The study contributes to the comprehensive development and utilization of F. suspensa leaves for economic and health care. PRACTICAL APPLICATIONS: Phillygenin is one of the major active ingredients in Forsythia suspensa. But the content of phillygenin in F. suspensa is very low which limits its application. Phillygenin has potential pharmacological activity and anti-inflammatory properties. However, the potential effects of phillygenin on analgesic activity have not been clarified. Furthermore, the data on its anti-inflammatory activity in vivo are relatively limited. This study evaluated the analgesic activity for the first time and the acute anti-inflammatory effect of phillygenin from F. suspensa leaves by fermentation, which indicated phillygenin is a potential therapeutic candidate for managing pain and inflammation-mediated disorders.


Subject(s)
Forsythia , Mice , Animals , Carrageenan/adverse effects , Plant Extracts , Anti-Inflammatory Agents/pharmacology , Analgesics/adverse effects , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Inflammation/drug therapy , Pain/drug therapy
11.
Molecules ; 27(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296648

ABSTRACT

In this study, a green process of ß-cyclodextrin (ß-CD)-assisted extraction of active ingredients from Forsythia suspensa leaves was developed. Firstly, the optimal process of extraction was as follows: the ratio between Forsythia suspensa leaves and ß-CD was 3.61:5, the solid-liquid ratio was 1:36.3, the temperature was 75.25 °C and the pH was 3.94. The yields of forsythoside A, phillyrin and phillygenol were 11.80 ± 0.141%, 5.49 ± 0.078% and 0.319 ± 0.004%, respectively. Then, the structure characteristics of the ß-CD-assisted extract of Forsythia suspensa leaves (FSE-ß-CD) were analyzed using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and molecular docking to demonstrate that the natural active products from Forsythia suspensa leaves had significant interactions with the ß-CD. Additionally, the loss of forsythoside A from aqueous FSE-CD at 80 °C was only 12%, compared with Forsythia suspensa leaf extract (FSE) which decreased by 13%. In addition, the aqueous solubility of FSE-CD was significantly increased to 70.2 g/L. The EC50 for scavenging DPPH and ABTS radicals decreased to 28.98 ug/mL and 25.54 ug/mL, respectively. The results showed that the ß-CD-assisted extraction process would be a promising technology for bioactive compounds extracted from plants.


Subject(s)
Cyclodextrins , Forsythia , beta-Cyclodextrins , Forsythia/chemistry , Spectroscopy, Fourier Transform Infrared , Molecular Docking Simulation , Powders , Plant Extracts/chemistry
12.
Front Plant Sci ; 13: 998911, 2022.
Article in English | MEDLINE | ID: mdl-36204048

ABSTRACT

Forsythia suspensa is a famous ornamental and medicinal plant in Oleaceae. CCD family is involved in the synthesis of pigments, volatiles, strigolactones, and abscisic acid (ABA) in plants. In this study, the CCD family in F. suspensa was analyzed at the genome level. A total of 16 members of the CCD family were identified, which included 11 members of the carotenoid cleavage dioxygenases (CCD) subfamily and 5 members of the 9-cis epoxycarotenoid dioxygenases (NCED) subfamily. The expression analysis of different tissues demonstrated that three FsCCD1 genes might be involved in the synthesis of pigments and volatiles in flowers and fruits. Three CCD4 genes were effectively expressed in flowers, while only FsCCD4-3 was effectively expressed in fruits. Comparison of CCD4 between Osmanthus fragrans and F. suspensa showed that the structure of FsCCD4-1 is was comparable that of OfCCD4-1 protein, indicating that the protein might be performing, especially in catalyzing the synthesis of ß-ionone. However, further comparison of the upstream promoter regions showed that the proteins have major differences in the composition of cis-elements, which might be responsible for differences in ß-ionone content. On the other hand, four NCED genes were significantly up-regulated under cold stress while two were up-regulated in drought stress. The data showed that these genes might be involved in the synthesis of ABA. Taken together, our data improves understanding of the CCD family and provides key candidate genes associated with cold and drought stresses in F. suspensa.

13.
Fitoterapia ; 162: 105285, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36041592

ABSTRACT

As a traditional Chinese medicine, Forsythia suspensa (F. suspensa) has attracted much attention due to its significant pharmacological activity. Revealing the spatial distribution of metabolites during F. suspensa development is important for understanding its biosynthesis rules and improving the quality of medicinal materials. However, there is currently a lack of information on the spatial distribution of F. suspensa metabolites. In this work, the spatial distribution and growth metabolism patterns of important metabolites of F. suspensa were studied for the first time using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Using 2,5-dimethylnaphthalene (DAN) as the matrix and detecting in negative ion mode, the spatial distribution and growth patterns of 11 metabolites obtained from longitudinal sections of F. suspensa included pinoresinol, phillygenin, forsythoside A, forsythoside E, rutin, caffeic acid, malic acid, citric acid, stearic acid, oleic acid, and linoleic acid. These results showed the mesocarp and endosperm tissues of F. suspensa were important for storing important functional metabolites. Changes in mesocarp and endosperm growth and development tissues caused large changes in the content of important functional metabolites in F. suspensa. These results provide a basis for understanding the spatial distribution of metabolites in F. suspensa tissues and the significant changes that occur during growth and development, exploring the mechanism of important synthesis of metabolites, regulating the harvest of F. suspensa, and improving the quality of medicinal herbs.


Subject(s)
Forsythia , Citric Acid , Forsythia/chemistry , Linoleic Acid , Molecular Structure , Oleic Acid , Rutin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
J Taiwan Inst Chem Eng ; 135: 104365, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35578714

ABSTRACT

Background: Traditional Chinese medicine (TCM) has been used as an "immune booster" for disease prevention and clinical treatment since ancient China. However, many studies were focused on the organic herbal extract rather than aqueous herbal extract (AHE; decoction). Due to the COVID-19 pandemics, this study tended to decipher phytochemical contents in the decoction of herbs and derived bioactivities (e.g., anti-oxidant and anti-inflammatory properties). As prior works revealed, the efficacy of Parkinson's medicines and antiviral flavonoid herbs was strongly governed by their bioenergy-stimulating proficiency. Methods: Herbal extracts were prepared by using a traditional Chinese decoction pot. After filtration and evaporation, crude extracts were used to prepare sample solutions for various bioassays. The phytochemical content and bioactivities of AHEs were determined via ELISA microplate reader. Microbial fuel cells (MFCs) were used as a novel platform to evaluate bioenergy contents with electron-transfer characteristics for antiviral drug development. Significant findings: Regarding 18 TCM herbal extracts for the prevention of SARS and H1N1 influenza, comparison on total polyphenol, flavonoid, condensed tannins and polysaccharides were conducted. Moreover, considerable total flavonoid contents were detected for 11 herb extracts. These AEHs were not only rich in phytonutrient contents but also plentiful in anti-oxidant and anti-inflammatory activities. Herbs with high polyphenol content had higher antioxidant activity. Forsythia suspensa extract expressed the highest inhibition against nitric oxide production for anti-inflammation. MFC bioenergy-stimulating studies also revealed that top ranking COVID-19 efficacious herbs were both bioenergy driven and electron mediated. That is, electron transfer-controlled bioenergy extraction was significant to antiviral characteristics for anti-COVID-19 drug development.

15.
Phytochem Anal ; 33(3): 490-501, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35194875

ABSTRACT

INTRODUCTION: Forsythia suspensa (Thunb.) Vahl (FS), the fruit of Oleaceae plants, as a large part of traditional Chinese medicine, is classified as "Qingqiao (Q)" and "Laoqiao (L)" based on the harvest time. Because the maturation of FS is a gradual process, its accurate identification based on different maturity levels is an important issue. OBJECTIVES: We suggest colorimetric, electronic tongue, and high-performance liquid chromatography (HPLC) characteristic fingerprints to discriminate FS in different harvest periods. MATERIAL AND METHODS: First, FS fruits from different harvest times were collected, and then, their colour parameters, E-tongue sensory properties, HPLC characteristic fingerprints, and contents of nominal ingredients were determined. Finally, multivariate statistical analyses, including three-dimensional scatter plots, hierarchical cluster, principal component, linear discriminant, similarity, and partial least squares discriminant analyses were performed. RESULTS: The results demonstrated that the three experimental techniques could effectively discriminate FS based on different harvest times with 100% accuracy. Under the qualitative conditions, nine common peaks were identified in the HPLC fingerprints of 60 samples, among which, six peaks [variable importance in projection (VIP) > 1] could be used as index peaks for qualitative identification. In fact, the contents of quality marker components, including forsythin, phillygenin, rutin and forsythoside A, were significant different (P < 0.001) at different harvest times. Interestingly, the quality markers not only accurately reflected the maturity of FS but also showed close correlations with the colour parameters and sensory E-tongue responses. CONCLUSION: In our present investigation, bionic technologies, including a colorimeter, E-tongue analysis, and HPLC characteristic fingerprints, combined with chemometrics, were employed to develop a novel and accurate method for discriminating FS based on different harvest times.


Subject(s)
Drugs, Chinese Herbal , Forsythia , Chemometrics , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Forsythia/chemistry , Fruit/chemistry , Medicine, Chinese Traditional
16.
Zhongguo Zhong Yao Za Zhi ; 47(1): 54-61, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178911

ABSTRACT

Forsythiae Fructus is the dried fruit of Forsythia suspensa and the volatile compounds are its main bioactive components. According to the different harvest periods, F. suspensa can be divided into Qingqiao(mature F. suspensa) and Laoqiao(ripe F. suspensa). To investigate dynamic changes of volatile components in Qingqiao and Laoqiao samples collected at different periods, the present study extracted and analyzed the total volatile oils in Qingqiao and Laoqiao samples(four harvest periods for Qingqiao and two for Laoqiao) by steam distillation method. The results indicated that the content of volatile oils in F. suspensa samples at different harvest periods was significantly different. The content of volatile oils in Qingqiao samples(except those harvested in the first period) was higher than that of Laoqiao, and the content of volatile oils in both Qingqiao and Laoqiao increased with the harvest period. Furthermore, volatile compounds in F. suspensa were qualitatively analyzed by the gas chromatography-mass spectrometry(GC-MS), and 28 volatile compounds were identified. Chemometrics analyses including principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were further applied to explore differential markers and dynamic changes of volatile components in Qingqiao and Laoqiao samples at different harvest periods. Finally, four volatile compounds, including α-pinene, sabinene, ß-pinene, and 4-terpenol were selected as potential differential markers. The relative content of α-pinene and 4-terpenol was consistent with that of total volatile oils in the changing trend.


Subject(s)
Forsythia , Oils, Volatile , Chemometrics , Fruit , Gas Chromatography-Mass Spectrometry
17.
J Pers Med ; 12(1)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35055377

ABSTRACT

Psoriasis is a recurrent inflammatory skin disease characterized by redness and scaly skin lesions with itchy or painful sensations. Forsythoside A, one of the main active compounds isolated from the fruit of Forsythia suspensa, has been widely applied to treat inflammatory diseases in the clinical use of traditional oriental medicine. However, the effect of forsythoside A on psoriasis remains unclear. This study aimed to explore the therapeutic effects and immune regulation of forsythoside A on psoriasis. C57BL/6 mice were divided into six groups and treated with imiquimod cream on their shaved back skin to induce psoriasis-like dermatitis. Different doses of forsythoside A (5 mg/kg, 10 mg/kg, or 20 mg/kg) were administered to the respective treatment groups. Skin redness, scaling, and ear thickness were measured; keratinocyte proliferation and inflammatory cytokine expression were detected by hematoxylin-eosin and immunohistochemical staining. Th17 cells in the inguinal lymph nodes were detected by flow cytometric analysis. IL-17A levels were measured using ELISA. The results showed that forsythoside A relieved psoriatic skin symptoms such as skin redness, thickness, scaling, and reduced epidermal thickening. The expression of IL-6, IL-17, and Ki-67 was downregulated in the forsythoside-A-treated groups. Th17 cell expression in inguinal lymph nodes and IL-17A secretion was suppressed by forsythoside A. In conclusion, forsythoside A was found to alleviate imiquimod-induced psoriasis-like dermatitis in mice by suppressing Th17 development and IL-17A secretion. These findings demonstrate the feasibility of forsythoside A in treating human psoriasis.

18.
Drug Chem Toxicol ; 45(4): 1825-1832, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33588684

ABSTRACT

Forsythia suspensa leaves (FSL), rich in phillyrin, forsythiaside A, phillygenin, rutin, and other compounds, is a known traditional Chinese medicine (TCM). It has been effective in heat retreat and detoxification. In this study, we performed the mutagenic and teratogenic toxicity evaluation of FSL aqueous extract (FSLAE) using the bacterial reverse mutation assay (Ames test), mouse bone marrow micronucleus assay, spermatocyte chromosomal aberration assay in mice. Kunming mice and SD rats were used were for the mutagenic and the teratogenic studies, respectively. We found that FSLAE was not mutagenic and did not induce unfavorable chromosomal events. Additionally, the Ames test revealed FSLAE was not genotoxic and showed no mutagenic activity in histidine dependent strains of Salmonella typhimurium at concentrations up to 5000 µg/plate. Likewise, in vivo test revealed no induced micronucleus of mouse bone marrow or chromosome aberration in spermatocytes up to the dose of 10.00 g/kg BW. For the teratogenic evaluations, pregnant rats were treated with 1.04, 2.08, and 4.17 g/kg FSL, and fetuses were examined on the 6-15 day of pregnancy. We observed no maternal toxicity and embryotoxicity related to the treatment. Based on these in vitro and in vivo studies, we concluded the genotoxic and teratogenic safety of FSL.


Subject(s)
Forsythia , Animals , Chromosome Aberrations/chemically induced , Male , Mice , Micronucleus Tests , Mutagenicity Tests , Mutagens/toxicity , Plant Leaves , Rats , Rats, Sprague-Dawley , Teratogens/toxicity , Water
19.
Bioorg Chem ; 113: 105025, 2021 08.
Article in English | MEDLINE | ID: mdl-34082247

ABSTRACT

Neuroinflammation is emerging as a crucial reason of major neurodegenerative diseases in recent years. Increasingly evidences have supported that bioactive natural products from traditional Chinese medicines have efficiency for neuroinflammation. Forsythia suspensa, a typical medicinal herb, showed potential neuroprotective and anti-inflammatory properties in previous pharmacological studies. In our research to obtain neuroprotective and anti-inflammatory natural products, three unprecedented C6-C7'/C6-C16' linked phenylethanoidglycoside dimers (1-3), three new phenylethanoidglycosides (4-6), and six known compounds (7-12) were isolated from the fruits of Forsythia suspensa. Their structures were determined by comprehensive spectroscopic data and comparison to the literature data. All isolated compounds were evaluated their neuroprotective and anti-inflammatory activities. Compounds 1 and 10 exhibited significant neuroprotective activities with the cell viability values of 75.24 ± 8.05% and 93.65 ± 10.17%, respectively, for the serum-deprivation and rotenone induced pheochromocytoma (PC12) cell injury. Meanwhile, compound 1 exhibited excellent anti-inflammatory activity against tumor necrosis factor (TNF)-α expression in LPS induced RAW264.7 cells with the IC50 value of 1.30 µM. This study revealed that the bioactive phenylethanoidglycosides may attenuate neuroinflammation through their neuroprotective and anti-inflammatory activities.


Subject(s)
Anti-Inflammatory Agents/chemistry , Forsythia/chemistry , Glycosides/chemistry , Neuroprotective Agents/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Forsythia/metabolism , Fruit/chemistry , Fruit/metabolism , Glycosides/isolation & purification , Glycosides/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Conformation , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , PC12 Cells , Plant Extracts/chemistry , RAW 264.7 Cells , Rats , Tumor Necrosis Factor-alpha/metabolism
20.
J Anim Sci ; 99(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34014312

ABSTRACT

The aim of this study was to determine the effect of dietary Forsythia suspensa extract (FSE) supplementation to lactating sows and nursery pigs on post-weaning performance, antioxidant capacity, immunoglobulins, and intestinal health. Based on backfat, body weight (BW), and parity, 24 gestating sows (Landrace × Yorkshire) with average parity of 3.38 ± 0.61 and BW of 234 ± 6.81 kg were allotted into two dietary treatments (control vs. 100 mg/kg FSE) with 12 sows per treatment from day 107 of gestation to day 21 of lactation. After weaning, based on the initial BW and source litter, 192 nursery pigs (Duroc × [Landrace × Yorkshire], average BW of 6.98 ± 0.32 kg, weaned at day 21) were allotted into four dietary treatments with eight replicate pens per treatment, six pigs per pen for a 4-wk study. The treatments included the following: 1) CC (sows and their piglets both fed control diet); 2) CF (sows fed control diet and their piglets fed FSE diet [containing 100 mg/kg FSE]); 3) FC (sows fed FSE diet and their piglets fed control diet); and 4) FF (sows and their piglets both fed FSE diet). The MIXED procedures of SAS for a split-plot arrangement with sow diet as the whole plot and nursery diet as split plot were used to analyze the data. After weaning, piglets from FSE-fed sows had improved (P < 0.05) average daily gain and feed efficiency, and lower (P < 0.05) diarrhea rate in overall (day 1 to 28) compared with those from sows fed control diet. Piglets from FSE-fed sows also had higher (P < 0.05) contents of immunoglobulin G (IgG), growth hormone, superoxide dismutase (SOD), total antioxidant capacity in serum, villus height in ileum, and villus height to crypt depth ratio in jejunum, as well as lower (P < 0.05) content of malondialdehyde (MDA) in serum and crypt depth in ileum compared with those from sows fed control diet. Piglets fed FSE during nursery had increased (P < 0.05) concentrations of IgG, SOD, and catalase, and decreased (P < 0.05) MDA and tumor nuclear factor-α levels in serum compared with those fed control diet during nursery. Piglets from FC group had increased (P < 0.05) protein expression of occludin in jejunal mucosa and relative abundance of Lactobacillus on genus level in colon compared with those from CC group. In conclusion, for the performance and intestinal health, diets supplemented with FSE during lactation phase seemed more efficient to alleviate weaning stress than the nursery phase. In terms of the antioxidant status and immunoglobulins, FSE supplemented in both phases were efficient for nursery pigs.


Subject(s)
Antioxidants , Forsythia , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Female , Immunoglobulins , Lactation , Nutrients , Plant Extracts , Pregnancy , Swine , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL