Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124244, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38579425

ABSTRACT

Clinical and experimental evidences have confirmed the significant therapeutic effects of rhubarb on ulcerative colitis (UC), but the strong purgative function of rhubarb also aggravates UC symptoms such as bloody diarrhea. Stir-baking to scorch is a traditional Chinese medicinal processing method that can eliminate the adverse purgative function while keep or even enhance the UC therapeutic function of rhubarb. However, the under-baked rhubarb still have the undesirable purgative function, but the over-baked rhubarb may lose the required medicinal functions. Therefore, the determination of the right endpoint is the primary quality concern about the baking process of rhubarb. In this research, typical anthraquinone compounds and mid-infrared (MIR) spectra were recruited to determine the best baking degree of rhubarb for UC therapy. Raw rhubarb slices were baked at 180 °C with rotation to prepare the rhubarbs with different baking degrees. The right-baked rhubarb was defined according to the UC therapeutic responses as well as the traditional color criterion. Referring to the typical anthraquinone compounds in rhubarb slices and extracts, the baking degree of rhubarb may be assessed by the conversion ratio of anthraquinone glycosides to anthraquinone aglycones. MIR spectra showed the gradual decompositions of organic compounds including anthraquinone glycosides and tannins during the baking process. Rhubarbs with different baking degrees can be distinguished clearly by MIR-based principal component analysis. In conclusion, the ratio of anthraquinone glycosides to anthraquinone aglycones may be a reasonable chemical indicator of the right-baked rhubarb. Meanwhile, MIR spectroscopy can identify the right-baked rhubarb simply and rapidly.


Subject(s)
Colitis, Ulcerative , Drugs, Chinese Herbal , Rheum , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Colitis, Ulcerative/drug therapy , Rheum/chemistry , Cathartics/pharmacology , Anthraquinones/analysis , Glycosides
2.
Environ Sci Pollut Res Int ; 31(17): 25524-25537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472585

ABSTRACT

Biodiesel is a highly promising and viable alternative to fossil-based diesel that also addresses the urgent need for effective waste management. It can be synthesized by the chemical modification of triglycerides sourced from vegetable origin, animal fat, or algal oil. The transesterification reaction is the preferred method of producing biodiesel. However, the non-miscibility of alcohol and oil layer causes excessive utilization of alcohol, catalyst, and a substantial reacting time and temperature. In the current investigation, transesterification of waste fish oil was performed with petro-diesel as cosolvent, under the influence of ultrasound energy. The combination of both techniques is a unique and efficient way to minimize the mass transfer limitations considerably and hence reduces the parameters of the reaction. It is also a sincere effort to comply with the principles of green chemistry. The optimum reaction conditions were obtained using response surface methodology (RSM) that were as follows: molar ratio of methanol to oil 9.09:1, catalyst concentration of 0.97 wt%, cosolvent concentration of 29.1 wt%, temperature 60.1℃, and a reacting time 30 min. Under these listed conditions, 98.1% biodiesel was achievable, which was in close agreement with the expected result. In addition, the cosolvent removal step from the crude biodiesel was also eliminated as it could be employed as a blended fuel in CI engines.


Subject(s)
Biofuels , Plant Oils , Animals , Esterification , Methanol , Catalysis
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124009, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38335588

ABSTRACT

Microemulsion is usually a transparent and isotropic liquid mixture composed of oil phase, water phase, surfactant and cosurfactant. The surfactant-framed nanoscale droplets in the microemulsion can penetrate into the skin surface to reduce its barrier function. This makes microemulsion an ideal preparation for the transdermal drug delivery. The permeability of microemulsion may be further enhanced when botanical essential oils that can dissolve the stratum corneum are used as the oil phase. However, the volatility of essential oils is possible to shorten the retention time of the microemulsion on the skin surface. Therefore, analytical methods are required to understand the volatilization process of the microemulsion composed of essential oils to develop the reasonable topical drug carrier system. In this research, Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflection (ATR) accessory cooperated with two-dimensional correlation spectroscopy (2DCOS) to elucidate the volatilization processes of some microemulsions composed of peppermint essential oil. Principal component analysis (PCA) and moving-window two-dimensional correlation spectroscopy (MW2DCOS) revealed the multiple stages of the volatilization processes of the microemulsions. Synchronous 2D correlation infrared spectra indicated the compositional changes during each stage. It was found that the successive volatilizations of ethanol, water and menthone were the major events during the volatilization process of the microemulsion composed of peppermint essential oil. Ethanol can accelerate the volatilization of water, while the composite herbal extract seemed to not influence the volatilization of the other ingredients. After a 20-min-long volatilization process, the remaining microemulsion still contained considerable peppermint essential oil to affect the skin. The above results showed the feasibility of developing the microemulsion composed of peppermint essential oil for the transdermal drug delivery of composite herbal extract. This research also proved that the combination of ATR-FTIR spectroscopy and 2DCOS was valuable to study the volatilization process of the microemulsion.


Subject(s)
Oils, Volatile , Volatilization , Mentha piperita , Surface-Active Agents/chemistry , Water/chemistry , Ethanol , Emulsions/chemistry
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123922, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38295589

ABSTRACT

The fruit of Crataegus sp. is known as "Shanzha (SZ)" in China and is widely used in the food, beverage, and traditional Chinese medicine (TCM) industries. SZ usually requires thermal processing to reduce the irritation of its acidity to the gastric mucosa. Different processed products of SZ resulting from thermal processing have different or even opposite functions in clinical applications. In addition, 5-hydroxymethylfurfural (5-HMF) intermediates produced during thermal processing are carcinogenic to humans. Therefore, the aim of this study was to explore a rapid and accurate method by Fourier transform infrared spectroscopy (FT-IR) for the identification of different processed products and the determination of 5-HMF in extracts. In qualitative identification, a three-stage infrared spectroscopy identification method (raw spectra, the second derivative spectra, and two-dimensional correlation (2DCOS) spectra) was developed to distinguish different processed products of SZ step by step. In quantitative determination, partial least squares regression combined with different variable selection methods, especially the 2DCOS method, was applied to determine the 5-HMF content. The results show that temperature-induced 2DCOS synchronous spectra can effectively identify different processed products of SZ by shape, intensity, and position of auto-peaks or cross-peaks, and the variables selected by power spectra from concentration-induced 2DCOS synchronous spectra have better prediction ability for 5-HMF compared to full variables. The above results demonstrate that 2D-COS analysis is a potential tool in qualitative and quantitative analysis, which can improve sample identification accuracy and determination capabilities. This study not only establishes a rapid and accurate method for the identification of different processed products but also provides a practical reference for food safety and the efficient use of TCM.


Subject(s)
Crataegus , Fruit , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectrophotometry, Infrared/methods , Medicine, Chinese Traditional
5.
Molecules ; 28(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959670

ABSTRACT

Potato peel waste (PPW) was utilized as a bio-template for the production of valuable compounds such as reducing sugars (RS), total sugar (TS) and total phenolic compounds (TPC). Two methods of alkali treatments, i.e., chemical (NaOH) and thermochemical (NaOH assisted with autoclaving) processes, were employed for the deconstruction of PPW. Response surface methodology (RSM) was used to study the effects of alkali concentration (0.6-1.0 w/v), substrate concentration (5-15 g) and time (4-8 h) on the extraction of RS, TS and TP from PPW. The application of alkali plus steam treatment in Box-Behnken design (BBD) with three levels yielded the optimum releases of RS, TS and TP as 7.163, 28.971 and 4.064 mg/mL, respectively, corresponding to 10% substrate loading, in 0.6% NaOH for 8 h. However, the alkali treatment reported optimum extractions of RS, TS and TP as 4.061, 17.432 and 2.993 mg/mL, respectively. The thermochemical pretreatment was proven a beneficial process as it led to higher productions of TP. FTIR and SEM were used to analyze the deterioration levels of the substrate. The present work was used to explore the sustainable management of PPW, which is a highly neglected substrate bioresource but is excessively dumped in open environment, raising environmental concerns. The cost-effective methods for the breakdown of PPW starch into fermentable sugars might be utilized to extract valuable compounds.


Subject(s)
Solanum tuberosum , Solanum tuberosum/chemistry , Sugars/metabolism , Spectroscopy, Fourier Transform Infrared , Sodium Hydroxide , Starch/metabolism
6.
Molecules ; 28(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959765

ABSTRACT

Natural products and their analogues have contributed significantly to treatment options, especially for anti-inflammatory and infectious diseases. Thus, the primary objective of this work was to compare the bioactivity profiles of selected medicinal plants that are historically used in folk medicine to treat inflammation and infections in the body. Chemical HPTLC fingerprinting was used to assess antioxidant, phenolic and flavonoid content, while bioassay-guided HPTLC was used to detect compounds with the highest antibacterial and anti-inflammatory activities. The results of this study showed that green tea leaf, walnut leaf, St. John's wort herb, wild thyme herb, European goldenrod herb, chamomile flower, and immortelle flower extracts were strong radical scavengers. Green tea and nettle extracts were the most active extracts against E. coli, while calendula flower extract showed significant potency against S. aureus. Furthermore, green tea, greater celandine, and fumitory extracts exhibited pronounced potential in suppressing COX-1 activity. The bioactive compounds from the green tea extract, as the most bioactive, were isolated by preparative thin-layer chromatography and characterized with their FTIR spectra. Although earlier studies have related green tea's anti-inflammatory properties to the presence of catechins, particularly epigallocatechin-3-gallate, the FTIR spectrum of the compound from the most intense bioactive zone showed the strongest anti-inflammatory activity can be attributed to amino acids and heterocyclic compounds. As expected, antibacterial activity in extracts was related to fatty acids and monoglycerides.


Subject(s)
Biological Products , Plants, Medicinal , Antioxidants/pharmacology , Antioxidants/chemistry , Plants, Medicinal/chemistry , Chromatography, Thin Layer/methods , Staphylococcus aureus , Escherichia coli , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Biological Assay , Tea
7.
Molecules ; 28(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37959822

ABSTRACT

Lately, the essential oils industry has been one of the most expanding markets globally. However, the byproducts generated after the distillation of aromatic plants and their transformation to novel high-added value products consist of a major up-to-date challenge. Thus, the scope of the current study is the optimization of ultrasound-assisted extraction (UAE) for the recovery of phenolic compounds from rose (Rosa damascena) post-distillation side streams using Box-Behnken design. In particular, the highest total phenolic content (TPC) was achieved at 71% v/v ethanol-water solution, at 25 min, 40 mL/g dry sample and 53% ultrasound power, while ethanol content and extraction time were the most crucial factors (p-value ≤ 0.05) for UAE. Both solid (RSB) and liquid (LSB) rose side streams exhibited significant antiradical and antioxidant activities. The interpretation of attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra confirmed the presence of compounds with properties such as phenolic compounds, phenolic amide derivatives, and alcohols in the extracts. Moreover, the flavonoids naringenin, quercetin, and kaempferol were the major phenolic compounds, identified in the extracts by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS), followed by gallic, protocatechuic, p-hydroxybenzoic, and rosmarinic acids. Furthermore, the LC-MS/MS results pinpointed the effect of factors other than the extraction conditions (harvesting parameters, climatic conditions, plant growth stage, etc.) on the phenolic fingerprint of RSB extracts. Therefore, RSB extracts emerge as a promising alternative antioxidant agent in food products.


Subject(s)
Antioxidants , Rosa , Antioxidants/chemistry , Chromatography, Liquid , Rivers , Plant Extracts/chemistry , Tandem Mass Spectrometry , Phenols/chemistry , Ethanol/chemistry
8.
J Pharm Bioallied Sci ; 15(Suppl 1): S608-S615, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37654275

ABSTRACT

Background: Bioceramics are widely used as a biomaterial to promote bone regeneration. Bone defect management requires the placement of bone grafts. Though there are many bone grafts available, these have certain limitations like limited supply and second surgical site morbidity. Phytochemicals in plants are known to have bone regeneration capacity and are used in traditional medicine for bone fracture healing. Objective: The purpose of the study was to create a novel biomaterial consisting of a composite of biphasic calcium phosphate (BCP), chitosan (CH), casein (CA), and ethanolic leaves extract of Ormocarpum Cochinchinense (OC) fabricated and characterized for physicochemical properties. Materials and Methods: BCP-CH-CA-OC material was prepared and immersed in Simulated body fluid (SBF) for 21 days. Physical properties were analysed through X-Ray diffraction (XRD), Fourier Transform Spectroscopy (FTIR), and Scanning Electron Microscopy with Energy dispersion spectroscopy (SEM/EDS). Mechanical properties were analysed by compressive strength and diametral tensile strength tests. Using BET (Brunauer-Emmett-Teller) analysis and Nano computed tomography (CT) scan, porosity measurements were made. Results: XRD did not show any significant change after immersion in SBF, indicating that the material was not under change and is stable. FTIR showed an increase in chitosan content, due to the loss of casein. SEM analysis showed the deposition of crystals and porous structure. EDS showed the deposition of minerals. Nano CT and BET analysis showed clinically significant porosity of 30%. Conclusion: The mechanical and physical properties of this novel biomaterial could be used in tissue engineering for the repair of bone defects in non-load-bearing areas. The physicochemical properties are at par with other materials used for the purpose of bone grafting. The novel biomaterial has the potential to be used in bone regenerative medicine in non-load-bearing applications.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123228, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37579664

ABSTRACT

Despite the invaluable role of transition metals in every living organism, it should be remembered that failure to maintain the proper balance and exceed the appropriate dose may have the opposite effect. In the era of such a popular and propagated need for supplementation in the media, one should bear in mind the harmful effects that may become the result of improper and excessive intake of transition metals. This article establishes the feasibility of Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopic imaging at the single-cell level to investigate the cellular response to various transition metals. These two non-destructive and perfectly complementary methods allow for in-depth monitoring of changes taking place within the cell under the influence of the agent used. HepG2 liver carcinoma cells were exposed to chromium, iron, cobalt, molybdenum, and nickel at 1 and 2 mM concentrations. Spectroscopic results were further supported by biological evaluation of selected caspases concentration. The caspase- 3, 6, 8, 9, and 12 concentrations were determined with the use of the enzyme-linked immunosorbent assay (ELISA) method. This study shows the induction of apoptosis in the intrinsic pathway by all studied transition metals. Cellular metabolism alterations are induced by mitochondrial metabolism changes and endoplasmic reticulum (ER) metabolism variations. Moreover, nickel induces not only the intrinsic pathway of apoptosis but also the extrinsic pathway of this process.


Subject(s)
Carcinoma , Nickel , Humans , Spectroscopy, Fourier Transform Infrared/methods , Apoptosis , Liver
10.
Food Chem ; 427: 136706, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37379750

ABSTRACT

Lipids are relevant during the seed aging process, for which it is pertinent to choose an extraction method that does not alter their nature. Thus, three methods were applied to extract lipids from chia seeds: one used as reference (Soxhlet) and two at room temperature using hexane/ethanol (COBio) and hexane/isopropanol (COHar). The fatty acid composition and the tocopherol content of the oils were analyzed. Also, their oxidative status through the peroxide index, conjugated dienes and trienes, and malondialdehyde were determined. Besides, biophysical techniques, such as DSC and FT-IR, were applied. The extraction yield was not affected by the extraction method, while the fatty acid composition presented slight differences. Despite the high content of PUFAs, the oxidation level was low in all cases, especially in COBio, associated with the high content of α-tocopherol. DSC and FT-IR outcomes coincided with those obtained by conventional studies, resulting in efficient and fast characterization tools.


Subject(s)
Hexanes , Plant Oils , Hexanes/chemistry , Plant Oils/chemistry , Spectroscopy, Fourier Transform Infrared , Oxidation-Reduction , Fatty Acids/analysis , Seeds/chemistry
11.
Food Chem ; 423: 136308, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37182490

ABSTRACT

Aroma is a key factor used to evaluate tea quality. Illegal traders usually add essence to expired or substandard tea to improve its aroma so as to gain more profit. Traditional physical and chemical testing methods are time-consuming and costly. Furthermore, rapid detection techniques, such as near-infrared spectroscopy and machine vision, can only be used to detect adulterated powdered solid essences in tea. In this study, proton-transfer reaction mass spectrometry (PTR-MS) and Fourier-transform infrared spectroscopy (FTIR) were employed to detect volatile organic compounds (VOCs) in samples, and rapid detection of different tea adulterated liquid essence was achieved. The prediction accuracies of PTR-MS and FTIR reached over 0.941 and 0.957, respectively, and the minimum detection limits were lower than the actual used values in both. In this study, the different application scenarios of the two technologies are discussed based on their performance characteristics.


Subject(s)
Volatile Organic Compounds , Spectroscopy, Fourier Transform Infrared , Volatile Organic Compounds/analysis , Protons , Mass Spectrometry/methods , Tea/chemistry
12.
Turk J Pharm Sci ; 20(2): 108-114, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37161659

ABSTRACT

Objectives: Mefenamic acid (MA) is a strong non-steroidal anti-inflammatory drug, but because of its limited oral bioavailability and the side effects that come with taking it systemically, it is better to apply it topically. The major goal of this study was to see how certain permeation enhancers affected MA is in vitro skin permeability. In manufactured Franz diffusion cells, MA permeability tests using rat skin pretreatment with several permeation enhancers such as corn oil, olive oil, clove oil, eucalyptus oil, and menthol were conducted and compared to hydrate rat skin as a control. Materials and Methods: The steady-state flux (Jss), permeability coefficient (Kp), and diffusion coefficient are among the permeability metrics studied. The permeability enhancement mechanisms of the penetration enhancer were investigated using fourier transform infrared spectroscopy (FTIR) to compare changes in peak position and intensities of asymmetric and symmetric C-H stretching, C=O stretching, C=O stretching (amide I), and C-N stretching of keratin (amide II) absorbance, as well as differential scanning calorimetry (DSC) to compare mean transition temperature and their enthalpies. Results: Clove oil, olive oil, and eucalyptus oil were the most effective enhancers, increasing flux by 7.91, 3.32, and 2.6 times, as well as diffusion coefficient by 3.25, 1.34, and 1.25, respectively, when compared to moist skin. FTIR and DSC data show that permeation enhancers caused lipid fluidization, extraction, disruption of lipid structures in the SC layer of skin, and long-term dehydration of proteins in this area of the skin. Conclusion: According to the findings, the permeation enhancers used improved drug permeability through excised rat skin. The most plausible mechanisms for greater ERflux, ERD, and ERP ratios were lipid fluidization, disruption of the lipid structure, and intracellular keratin irreversible denaturation in the SC by eucalyptus oil, menthol, corn oil, olive oil, and clove oil.

13.
Plants (Basel) ; 12(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37111925

ABSTRACT

The demand for medicinal plants is on a rise due to their affordability, accessibility and relatively non-toxic nature. Combretum molle (Combretaceae) is used in African traditional medicine to treat a number of diseases. This study aimed to screen the phytochemical composition of the hexane, chloroform and methanol extracts of C. molle leaves and stems using qualitative phytochemical screening. Additionally, the study aimed to identify the functional phytochemical groups, determine the elemental composition and provide a fluorescence characterization of the powdered leaves and stems by performing Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray (EDX) microanalyses and fluorescence microscopy. Phytochemical screening revealed the presence of alkaloids, flavonoids, phenolic compounds, polyphenols, terpenoids, tannins, coumarins, saponins, phytosterols, gums, mucilage, carbohydrates, amino acids and proteins within all leaf and stem extracts. Lipids and fixed oils were additionally present within the methanol extracts. FTIR demonstrated significant peaks in absorption frequency in the leaf at wavelengths of 3283.18, 2917.81, 1617.72, 1318.83, 1233.97, 1032.32 and 521.38 cm-1, and in the stem at 3318.91, 1619.25, 1317.13, 1032.68, 780.86 and 516.39 cm-1. These corresponded to the functional groups of chemical compounds including alcohols, phenols, primary amines, alkyl halides, alkanes and alkyl aryl ethers, corroborating the presence of the detected phytochemicals within the plant. EDX microanalyses showed the elemental composition of the powdered leaves (68.44% C, 26.72% O, 1.87% Ca, 0.96% Cl, 0.93% Mg, 0.71% K, 0.13% Na, 0.12 % Mn and 0.10% Rb) and stems (54.92% C, 42.86% O, 1.7% Ca, 0.43% Mg and 0.09% Mn). Fluorescence microscopy provided a characteristic evaluation of the plant in its powdered form and revealed distinct colour changes in the material when treated with various reagents and viewed under ultraviolet light. In conclusion, the phytochemical constituents of the leaves and stems of C. molle confirm the suitability of this species for use in traditional medicine. The findings from this study suggest the need to validate the use of C. molle in the development of modern medicines.

14.
Appl Spectrosc ; 77(7): 774-785, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37101402

ABSTRACT

Herbal powder preparations (HPPs) are common forms of traditional medicine made by blending the powder of two or more ingredients. The first step to ensure the safety and efficacy of HPPs is to confirm the prescribed ingredients and screen the abnormal ingredients. With the help of attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) imaging or mapping, the particles of different ingredients in an HPP sample can be measured individually. In this way, the overlapped absorption signals of different ingredients in the ATR FT-IR spectrum of the bulk sample can be isolated in the ATR FT-IR spectra of the microscopic particles, which leads to the substantial increase of the specificity and sensitivity of the infrared spectral identification method. The characteristic particles of each ingredient can be identified by the objective comparison of the microscopic ATR FT-IR spectra against the reference spectra based on the correlation coefficients. Since the ATR FT-IR imaging or mapping tests of HPPs are free of the separation preprocess, multiple organic and inorganic ingredients are able to be recognized by a single identification procedure simultaneously rather than by different separation and identification procedures. As an example, the ATR FT-IR mapping method was used in this research to successfully identify three prescribed ingredients and two abnormal ingredients in oral ulcer pulvis, which is a classic HPP for oral ulcer in traditional Chinese medicine. The results show the feasibility of the ATR FT-IR microspectroscopic identification method for the objective and simultaneous identification of the prescribed and abnormal ingredients of HPPs.


Subject(s)
Oral Ulcer , Humans , Spectroscopy, Fourier Transform Infrared/methods , Powders , Fourier Analysis
15.
Molecules ; 28(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36903631

ABSTRACT

INTRODUCTION: Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in childhood. FTIR spectroscopy provides a holistic view of the chemical composition of biological samples, including the detection of molecules such as nucleic acids, proteins, and lipids. This study evaluated the applicability of FTIR spectroscopy as a potential diagnostic tool for MB. MATERIALS AND METHODS: FTIR spectra of MB samples from 40 children (boys/girls: 31/9; age: median 7.8 years, range 1.5-21.5 years) treated in the Oncology Department of the Children's Memorial Health Institute in Warsaw between 2010 and 2019 were analyzed. The control group consisted of normal brain tissue taken from four children diagnosed with causes other than cancer. Formalin-fixed and paraffin-embedded tissues were sectioned and used for FTIR spectroscopic analysis. The sections were examined in the mid-infrared range (800-3500 cm-1) by ATR-FTIR. Spectra were analysed using a combination of principal component analysis, hierarchical cluster analysis, and absorbance dynamics. RESULTS: FTIR spectra in MB were significantly different from those of normal brain tissue. The most significant differences related to the range of nucleic acids and proteins in the region 800-1800 cm-1. Some major differences were also revealed in the quantification of protein conformations (α-helices, ß-sheets, and others) in the amide I band, as well as in the absorbance dynamics in the 1714-1716 cm-1 range (nucleic acids). It was not, however, possible to clearly distinguish between the various histological subtypes of MB using FTIR spectroscopy. CONCLUSIONS: MB and normal brain tissue can be distinguished from one another to some extent using FTIR spectroscopy. As a result, it may be used as a further tool to hasten and enhance histological diagnosis.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Nucleic Acids , Male , Child , Female , Humans , Infant , Child, Preschool , Adolescent , Young Adult , Adult , Spectroscopy, Fourier Transform Infrared/methods , Proteins
16.
Molecules ; 28(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36838586

ABSTRACT

Cottonseed is a natural product of cotton (Gossypium spp.) crops. This work evaluated the oxidative stability of cottonseed butters through accelerated autoxidation by storage at 60 °C for 25 days. Three oxidative stability parameter values (peroxide value, p-anisidine value, and total oxidation value) were monitored over the storage time. These chemical measurements revealed that the storage stability of the butter products was dominated by primary oxidation of lipid (oil) components, while the secondary oxidation levels were relatively unchanged over the storage time. An analysis of the tocopherols (natural oxidants in cottonseed) suggested not only the protection function of the molecules against oxidation of the cottonseed butter during storage, but also the dynamic mechanism against the primary oxidation of lipid components. Attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) data confirmed no changes in the major C functional groups of cottonseed butters over the storage time. On the other hand, characteristic minor peaks of conjugated dienes and trienes related to lipid oxidation were impacted by the accelerated storage. As each day of accelerated oxidation at 60 °C is equivalent to 16 days of storage at 20 °C, observations in this work should have reflected the oxidative stability behaviors of the cottonseed butters after about 13 months of shelf storage under ambient storage conditions. Thus, these data that were collected under the accelerated oxidation testing would be useful not only to create a better understanding of the autooxidation mechanism of lipid molecules in cottonseed butters, but also in developing or recommending appropriate storage conditions for cottonseed end products to prevent them from quality degradation.


Subject(s)
Butter , Cottonseed Oil , Cottonseed Oil/chemistry , Oxidation-Reduction , Antioxidants/chemistry , Oxidative Stress
17.
J Dairy Sci ; 106(4): 2716-2728, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36823015

ABSTRACT

Cows undergo immense physiological stress to produce milk during early lactation. Monitoring early lactation milk through Fourier-transform infrared (FTIR) spectroscopy might offer an understanding of which cows transition successfully. Daily patterns of milk constituents in early lactation have yet to be reported continuously, and the study objective was to initially describe these patterns for cows of varying parity groups from 3 through 10 d postpartum, piloted on a single dairy. We enrolled 1,024 Holstein cows from a commercial dairy farm in Cayuga County, New York, in an observational study, with a total of 306 parity 1 cows, 274 parity 2 cows, and 444 parity ≥3 cows. Cows were sampled once daily, Monday through Friday, via proportional milk samplers, and milk was stored at 4°C until analysis using FTIR. Estimated constituents included anhydrous lactose, true protein, and fat (g/100 g of milk); relative % (rel%) of total fatty acids (FA) and concentration (g/100 g of milk) of de novo, mixed, and preformed FA; individual fatty acids C16:0, C18:0, and C18:1 cis-9 (g/100 g of milk); milk urea nitrogen (MUN; mg/100 g of milk); and milk acetone (mACE), milk ß-hydroxybutyrate (mBHB), and milk-predicted blood nonesterified fatty acids (mpbNEFA) (all expressed in mmol/L). Differences between parity groups were assessed using repeated-measures ANOVA. Milk yield per milking differed over time between 3 and 10 DIM and averaged 8.7, 13.3, and 13.3 kg for parity 1, 2, and ≥3 cows, respectively. Parity differences were found for % anhydrous lactose, % fat, and preformed FA (g/100 g of milk). Parity differed across DIM for % true protein, de novo FA (rel% and g/100 g of milk), mixed FA (rel% and g/100 g of milk), preformed FA rel%, C16:0, C18:0, C18:1 cis-9, MUN, mACE, mBHB, and mpbNEFA. Parity 1 cows had less true protein and greater fat percentages than parity 2 and ≥3 cows (% true protein: 3.52, 3.76, 3.81; % fat: 5.55, 4.69, 4.95, for parity 1, 2, ≥3, respectively). De novo and mixed FA rel% were reduced and preformed FA rel% were increased in primiparous compared with parity 2 and ≥3 cows. The increase in preformed FA rel% in primiparous cows agreed with milk markers of energy deficit, such that mpbNEFA, mBHB, and mACE were greatest in parity 1 cows followed by parity ≥3 cows, with parity 2 cows having the lowest concentrations. When measuring milk constituents with FTIR, these results suggest it is critical to account for parity for the majority of estimated milk constituents. We acknowledge the limitation that this study was conducted on a single farm; however, if FTIR technology is to be used as a method of identifying cows maladapted to lactation, understanding variations in early lactation milk constituents is a crucial first step in the practical adoption of this technology.


Subject(s)
Lactose , Milk , Pregnancy , Female , Cattle , Animals , Milk/chemistry , New York , Lactose/analysis , Diet/veterinary , Dietary Supplements/analysis , Lactation/physiology , Fatty Acids/analysis , Fatty Acids, Nonesterified
18.
Toxicol Rep ; 10: 104-116, 2023.
Article in English | MEDLINE | ID: mdl-36685271

ABSTRACT

Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.

19.
Front Pharmacol ; 13: 931203, 2022.
Article in English | MEDLINE | ID: mdl-36238551

ABSTRACT

Camellia nitidissima C.W. Chi is a golden camellia recognized in Chinese herbology and widely used as tea and essential oil in Chinese communities. Due to its diverse pharmacological properties, it can be used to treat various diseases. However, unethical sellers adulterated the flower with other parts of Camellia nitidissima in their product. This study used an integrated tri-step infrared spectroscopy method and a chemometric approach to distinguish C. nitidissima's flowers, leaves, and seeds. The three different parts of C. nitidissima were well distinguished using Fourier transform infrared spectroscopy (FT-IR), second-derivative infrared (SD-IR) spectra, and two-dimensional correlation infrared (2D-IR) spectra. The FT-IR and SD-IR spectra of the samples were subjected to principal component analysis (PCA), PCA-class, and orthogonal partial least square discriminant analysis (OPLS-DA) for classification and discrimination studies. The three parts of C. nitidissima were well separated and discriminated by PCA and OPLS-DA. The PCA-class model's sensitivity, accuracy, and specificity were all >94%, indicating that PCA-class is the good model. In addition, the RMSEE, RMSEP, and RMSECV values for the OPLS-DA model were low, and the model's sensitivity, accuracy, and specificity were all 100%, showing that it is the excellent one. In addition, PCA-class and OPLS-DA obtained scores of 27/32 and 26/32, respectively, for detecting adulterated and other TCM reference flower samples from C. nitidissima. Combining an infrared spectroscopic method with a chemometric approach proved that it is possible to differentiate distinct sections of C. nitidissima and discriminate adulterated samples of C.nitidissima flower.

20.
Food Chem ; 385: 132661, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35299015

ABSTRACT

A novel improved method for the authentication of edible oil samples based on Fourier-transform infrared (FTIR) spectroscopy coupled with chemometrics has been developed. A discrimination analysis model has been developed. On this basis, 100% correct classification of 135 samples from eleven species has been achieved. Recognition rates with respect to external validation for 91 pure oil samples and 231 blend samples were 100% and 92.6%, respectively. A general quantitative model for detecting edible oil adulteration (taking Camellia oil as an example) has also been built. An optimal backward interval partial least-squares model, based on the spectral regions ν = 3100-2900, 1800-1700, 1500-1400, and 1200-1100 cm-1, has been determined, giving good performances. A specific sub-model using a single adulterant oil has also been constructed, which showed higher prediction accuracy. Based on the developed qualitative and quantitative FTIR methods, adulterant oils in Camellia blends could be rapidly detected, effectively differentiated, and accurately quantified.


Subject(s)
Camellia , Chemometrics , Camellia/chemistry , Food Contamination/analysis , Least-Squares Analysis , Plant Oils/chemistry , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL