Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Heliyon ; 10(3): e25256, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333789

ABSTRACT

Diabetes is a dangerous metabolic disorder by increasing incidence in human societies worldwide. Recently, much attention has been focused on the development of hypoglycemic agents, particularly the derivatives of herbal drugs, in the treatment of diabetes. This research aimed to study the anti-diabetic effect of Salvia mirzayanii in the diabetic rat models. First, the plant material was extracted from the leaves, and orally administered to the rats. After treating the animals with the aqueous extract of S. mirzayanii at a dose of 600 mg/kg, animal body weight for 12 weeks, fasting blood glucose, oral glucose tolerance test (OGTT), and body weight changes were examined. To analyze the anti-diabetic function of S. mirzayanii, we measured the expression of glucose transporter-4 (GLUT4), phosphoenolpyruvate carboxykinase (PEPCK), and glucose 6-phosphatase (G6Pase) genes in healthy and streptozotocin (STZ)-diabetic rats. The expression levels of the genes of interest in muscle and liver tissues were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). There were no significant differences in fasting blood glucose and OGTT between normal control (NC) group and the diabetic control (DC) group treated with S. mirzayanii. In contrast, there was a significant difference with the untreated DC (P < 0.05). The treatment of diabetic rats with S. mirzayanii significantly increased the expression of GLUT4 in the muscle and decreased the expression levels of PEPCK and G6Pase in the liver compared to the DC group (P < 0.05). These findings clearly show that S. mirzayanii can improve hyperglycemia by increasing the GLUT4 expression, and inhibiting the gluconeogenesis pathway in the liver. In general, the obtained results provided a new insight into the efficacy of S. mirzayanii aqueous extract as an anti-diabetic herbal medicine.

2.
J Complement Integr Med ; 20(4): 804-813, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37474486

ABSTRACT

OBJECTIVES: Adipogenesis is the fat cell formation process regulated by peroxisome proliferator-activated receptors (PPARγ). The insulin-responsive glucose transporter 4 (GLUT4) has a major role in glucose uptake and metabolism in insulin target tissues (i.e., adipose and muscle cells). The interplay between PPARγ and GLUT4 is essential for proper glucose homeostasis. This study aimed to isolate, elucidate, and investigate the effect of an isolated compound from Penicillium citrinum XT6 on adipogenesis, PPARγ, and GLUT4 expression in 3T3-L1 adipocytes. METHODS: The isolated compound was determined by analyzing spectroscopic data (LC-MS, FT-IR, Spectrophotometry UV-Vis, and NMR). The adipogenesis activity of the isolated compound in 3T3-L1 cells was determined by the Oil Red O staining method. RT-PCR was used to analyze the gene expression of PPARγ and GLUT4. RESULTS: Di-(2-ethylhexyl)-phthalate (DEHP) was the isolated compound from P.citrinum XT6. The results revealed adipogenesis stimulation and inhibition, as well as PPARγ and GLUT4 expressions. CONCLUSIONS: DEHP showed a non-monotonic dose-response (NMDR) effect on adipogenesis and PPARγ and GLUT4 expression. It is the first study that reveals DEHP's NMDR effects on lipid and glucose metabolism in adipocytes.


Subject(s)
Adipogenesis , Diethylhexyl Phthalate , Mice , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , PPAR gamma/pharmacology , 3T3-L1 Cells , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Spectroscopy, Fourier Transform Infrared , Glucose/metabolism , Glucose/pharmacology , Adipocytes/metabolism
3.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241795

ABSTRACT

Our early work indicated that methanolic extracts from the flowers, leaves, bark, and isolated compounds of Acacia saligna exhibited significant antioxidant activities in vitro. The overproduction of reactive oxygen species (ROS) in the mitochondria (mt-ROS) interfered with glucose uptake, metabolism, and its AMPK-dependent pathway, contributing to hyperglycemia and diabetes. This study aimed to screen the ability of these extracts and isolated compounds to attenuate the production of ROS and maintain mitochondrial function via the restoration of mitochondrial membrane potential (MMP) in 3T3-L1 adipocytes. Downstream effects were investigated via an immunoblot analysis of the AMPK signalling pathway and glucose uptake assays. All methanolic extracts effectively reduced cellular ROS and mt-ROS levels, restored the MMP, activated AMPK-α, and enhanced cellular glucose uptake. At 10 µM, (-)-epicatechin-6 (from methanolic leaf and bark extracts) markedly reduced ROS and mt-ROS levels by almost 30% and 50%, respectively, with an MMP potential ratio 2.2-fold higher compared to the vehicle control. (-)-Epicatechin 6 increased the phosphorylation of AMPK-α by 43%, with an 88% higher glucose uptake than the control. Other isolated compounds include naringenin 1, naringenin-7-O-α-L-arabinopyranoside 2, isosalipurposide 3, D-(+)-pinitol 5a, and (-)-pinitol 5b, which also performed relatively well across all assays. Australian A. saligna active extracts and compounds can reduce ROS oxidative stress, improve mitochondrial function, and enhance glucose uptake through AMPK-α activation in adipocytes, supporting its potential antidiabetic application.


Subject(s)
Acacia , Catechin , Hypoglycemic Agents , Animals , Mice , 3T3-L1 Cells , Acacia/chemistry , Adipocytes/metabolism , AMP-Activated Protein Kinases/metabolism , Australia , Catechin/chemistry , Catechin/pharmacology , Glucose/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism
4.
BMC Complement Med Ther ; 23(1): 151, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37158952

ABSTRACT

BACKGROUND: Paliurus spina-christi Mill. (PSC) fruit is frequently used in the treatment of diabetes mellitus in Mediterranean regions. Here, we investigated the effects of various PSC fruit extracts (PSC-FEs) on glucose consumption and some key mediators of insulin signaling pathways in high glucose and high insulin-induced insulin-resistant HepG2 cells. METHODS: The effects of methanolic, chloroform and total extracts on cell proliferation were assessed by the MTT assay. The potential of non-toxic extracts on glucose utilization in insulin-resistant HepG2 cells was checked using a glucose oxidase assay. AKT and AMP-activated protein kinase (AMPK) pathway activation and mRNA expression levels of insulin receptor (INSR), glucose transporter 1 (GLUT1), and glucose transporters 4 (GLUT4) were determined by western blotting and real-time PCR, respectively. RESULTS: We found that high concentrations of methanolic and both low and high concentrations of total extracts were able to enhance glucose uptake in an insulin-resistant cell line model. Moreover, AKT and AMPK phosphorylation were significantly increased by the high strength of methanolic extract, while total extract raised AMPK activation at low and high concentrations. Also, GLUT 1, GLUT 4, and INSR were elevated by both methanolic and total extracts. CONCLUSIONS: Ultimately, our results shed new light on methanolic and total PSC-FEs as sources of potential anti-diabetic medications, restoring glucose consumption and uptake in insulin-resistant HepG2 cells. These could be at least in part due to re-activating AKT and AMPK signaling pathways and also increased expression of INSR, GLUT1, and GLUT4. Overall, active constituents present in methanolic and total extracts of PCS are appropriate anti-diabetic agents and explain the use of these PSC fruits in traditional medicine for the treatment of diabetes.


Subject(s)
Rhamnaceae , Signal Transduction , Hep G2 Cells , Humans , Rhamnaceae/chemistry , Fruit/chemistry , Insulin Resistance , Signal Transduction/drug effects , Glucose/metabolism , Insulin/metabolism , Plant Extracts/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects
5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37111292

ABSTRACT

Plantago australis Lam. Subsp. hirtella (Kunth) Rahn is a medicinal plant used as a diuretic, anti-inflammatory, antibacterial, throat cancer treatment and for the control of diabetes. P. australis was collected in the state of Morelos, México. The hydroalcoholic extract (HAEPa) of P. australis was obtained by maceration and concentrated in vacuo. Once dry, it was evaluated through an oral glucose tolerance test (OGTT) in normoglycemic mice and in a non-insulin-dependent diabetic mice model. The expression of PPARγ and GLUT-4 mRNA was determined by rt-PCR, and GLUT-4 translocation was confirmed by confocal microscopy. The toxicological studies were conducted in accordance with the guidelines suggested by the OECD, sections 423 and 407, with some modifications. HAEPa significantly decreased glycemia in OGTT curves, as well as in the experimental diabetes model compared to the vehicle group. In vitro tests showed that HAEPa induced an α-glucosidase inhibition and increased PPARγ and GLUT-4 expression in cell culture. The LD50 of HAEPa was greater than 2000 mg/kg, and sub-chronic toxicity studies revealed that 100 mg/kg/day for 28 days did not generate toxicity. Finally, LC-MS analysis led to the identification of verbascoside, caffeic acid and geniposidic acid, and phytochemical approaches allowed for the isolation of ursolic acid, which showed significant PPARγ overexpression and augmented GLUT-4 translocation. In conclusion, HAEPa induced significant antidiabetic action by insulin sensitization through PPARγ/GLUT-4 overexpression.

6.
Nutrients ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049568

ABSTRACT

Convolvulus pluricaulis (CP) is a common Indian herb, largely employed in Ayurvedic medicine and known for its neuroprotective and neuroinflammatory action. Its effectiveness against several pathologic/sub-pathologic conditions is widely accepted, but it is not yet completely chemically characterized. In recent years, several researchers have pointed out the involvement of CP and other Convolvulaceae in lipidic and glucidic metabolism, particularly in the control of hyperlipidaemia and diabetic conditions. In this scenario, the aim of the study was to chemically characterize the medium polarity part of the CP whole plant and its fractions and to shed light on their biological activity in adipocyte differentiation using the 3T3-L1 cell model. Our results demonstrated that the CP extract and fractions could upregulate the adipocyte differentiation through the modulation of the nuclear receptor PPARγ (Peroxisome Proliferator-Activated Receptor γ), broadly recognized as a key regulator of adipocyte differentiation, and the glucose transporter GLUT-4, which is fundamental for cellular glucose uptake and for metabolism control. CP also showed the ability to exert an anti-inflammatory effect, downregulating cytokines such as Rantes, MCP-1, KC, eotaxin, and GM-CSF, which are deeply involved in insulin resistance and glucose intolerance. Taken together, these data suggest that CP could exert a potential beneficial effect on glycemia and could be employed as an anti-diabetic adjuvant or, in any case, a means to better control glucose homeostasis.


Subject(s)
Convolvulus , Mice , Animals , Convolvulus/chemistry , Convolvulus/metabolism , 3T3-L1 Cells , Cell Differentiation , Adipocytes , Plant Extracts/pharmacology , Plant Extracts/metabolism , PPAR gamma/metabolism
7.
J Pineal Res ; 75(1): e12869, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37002642

ABSTRACT

Ever-increasing occurrence of plastic-manufacturing industries leads to environmental pollution that has been associated with declined human health and increased incidence of compromised reproductive health. Female subfertility/infertility is a complex phenomenon and environmental toxicants as well as lifestyle factors have a crucial role to play. Bisphenol S (BPS) was believed to be a "safer" replacement of bisphenol A (BPA) but recent data documented its neurotoxic, hepatotoxic, nephrotoxic, and reprotoxic attributes. Hence based on the scarcity of reports, we investigated molecular insights into BPS-induced ovarian dysfunction and protective actions of melatonin against it in adult golden hamsters, Mesocricetus auratus. Hamsters were administered with melatonin (3 mg/kg BW i.p. alternate days) and BPS (150 mg/kg BW orally every day) for 28 days. BPS treatment disrupted hypothalamo-pituitary-ovarian (HPO) axis as evident by reduced gonadotropins such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH), ovarian steroids such as estradiol (E2) and progesterone (P4), thyroid hormones namely triiodothyronine (T3) and thyroxine (T4) and melatonin levels along with their respective receptors (ERα, TRα, and MT-1) thereby reducing ovarian folliculogenesis. BPS exposure also led to ovarian oxidative stress/inflammation by increasing reactive oxygen species and metabolic disturbances. However, melatonin supplementation to BPS restored ovarian folliculogenesis/steroidogenesis as indicated by increased number of growing follicles/corpora lutea and E2/P4 levels. Further, melatonin also stimulated key redox/survival markers such as silent information regulator of transcript-1 (SIRT-1), forkhead box O-1 (FOXO-1), nuclear factor E2-related factor-2 (Nrf2), and phosphoinositide 3-kinase/protein kinase B (PI3K/pAkt) expressions along with enhanced ovarian antioxidant capacity. Moreover, melatonin treatment reduced inflammatory load including ovarian nuclear factor kappa-B (NFĸB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) expressions, serum tumor necrosis factor α (TNFα), C-reactive protein (CRP) and nitrite-nitrate levels as well as upregulated ovarian insulin receptor (IR), glucose uptake transporter-4 (GLUT-4), connexin-43, and proliferating cell nuclear antigen (PCNA) expressions in ovary thereby ameliorating inflammatory and metabolic alterations due to BPS. In conclusion, we found severe deleterious impact of BPS on ovary while melatonin treatment protected ovarian physiology from these detrimental changes suggesting it to be a potential preemptive candidate against environmental toxicant-compromised female reproductive health.


Subject(s)
Melatonin , Cricetinae , Animals , Humans , Female , Mesocricetus , Melatonin/pharmacology , Phosphatidylinositol 3-Kinases , NF-E2-Related Factor 2 , Receptor, Insulin , Estradiol
8.
Pharmaceutics ; 15(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986806

ABSTRACT

Orthosiphon stamineus is a popular folk herb used to treat diabetes and some other disorders. Previous studies have shown that O. stamineus extracts were able to balance blood glucose levels in diabetic rat animal models. However, the antidiabetic mechanism of O. stamineus is not fully known. This study was carried out to test the chemical composition, cytotoxicity, and antidiabetic activity of O. stamineus (aerial) methanol and water extracts. GC/MS phytochemical analysis of O. stamineus methanol and water extracts revealed 52 and 41 compounds, respectively. Ten active compounds are strong antidiabetic candidates. Oral treatment of diabetic mice with O. stamineus extracts for 3 weeks resulted significant reductions in blood glucose levels from 359 ± 7 mg/dL in diabetic non-treated mice to 164 ± 2 mg/dL and 174 ± 3 mg/dL in water- and methanol-based-extract-treated mice, respectively. The efficacy of O. stamineus extracts in augmenting glucose transporter-4 (GLUT4) translocation to the plasma membrane (PM) was tested in a rat muscle cell line stably expressing myc-tagged GLUT4 (L6-GLUT4myc) using enzyme-linked immunosorbent assay. The methanol extract was more efficient in enhancing GLUT4 translocation to the PM. It increased GLUT4 translocation at 250 µg/mL to 279 ± 15% and 351 ± 20% in the absence and presence of insulin, respectively. The same concentration of water extract enhanced GLUT4 translocation to 142 ± 2.5% and 165 ± 5% in the absence and presence of insulin, respectively. The methanol and water extracts were safe up to 250 µg/mL as measured with a Methylthiazol Tetrazolium (MTT) cytotoxic assay. The extracts exhibited antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. O. stamineus methanol extract reached the maximal inhibition of 77 ± 10% at 500 µg/mL, and O. stamineus water extract led to 59 ± 3% inhibition at the same concentration. These findings indicate that O. stamineus possesses antidiabetic activity in part by scavenging the oxidants and enhancing GLUT4 translocation to the PM in skeletal muscle.

9.
J Tradit Complement Med ; 13(1): 11-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685073

ABSTRACT

Common treatments for the management of diabetes have limitations due to side effects, hence the need for continuous research to discover new remedies with better therapeutic efficacy. Previously, we have reported that the combination treatment of gallic acid (20 mg/kg) and andrographolide (10 mg/kg) for 15 days demonstrated synergistic hypoglycemic activity in the streptozotocin (STZ)-induced insulin-deficient diabetes rat model. Here, we attempt to further elucidate the effect of this combination therapy at the biochemical, histological and molecular levels. Our biochemical analyses showed that the combination treatment significantly increased the serum insulin level and decreased the total cholesterol and triglyceride level of the diabetic animals. Histological examinations of H&E stained pancreas, liver, kidney and adipose tissues of combination-treated diabetic animals showed restoration to the normalcy of the tissues. Besides, the combination treatment significantly enhanced the level of glucose transporter-4 (GLUT4) protein expression in the skeletal muscle of treated diabetic animals compared to single compound treated and untreated diabetic animals. The molecular docking analysis on the interaction of gallic acid and/or andrographolide with the adiponectin receptor 1 (AdipoR1), a key component in the regulation of pancreatic insulin secretion, revealed a greater binding affinity of AdipoR1 to both compounds compared to individual compounds. Taken together, these findings suggest the combination of gallic acid and andrographolide as a potent therapy for the management of diabetes mellitus.

10.
Pharm Biol ; 61(1): 189-200, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36625086

ABSTRACT

CONTEXT: Lysiphyllum strychnifolium (Craib) A. Schmitz (LS) (Fabaceae) has traditionally been used to treat diabetes mellitus. OBJECTIVE: This study demonstrates the antidiabetic and antioxidant effects of aqueous extract of LS leaves in vivo and in vitro. MATERIALS AND METHODS: The effects of aqueous LS leaf extract on glucose uptake, sodium-dependent glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) mRNA expression in Caco-2 cells, α-glucosidase, and lipid peroxidation were evaluated in vitro. The antidiabetic effects were evaluated using an oral glucose tolerance test (OGTT) and a 28-day consecutive administration to streptozotocin (STZ)-nicotinamide (NA)-induced type 2 diabetic mice. RESULTS: The extract significantly inhibited glucose uptake (IC50: 236.2 ± 36.05 µg/mL) and downregulated SGLT1 and GLUT2 mRNA expression by approximately 90% in Caco-2 cells. Furthermore, it non-competitively inhibited α-glucosidase in a concentration-dependent manner with the IC50 and Ki of 6.52 ± 0.42 and 1.32 µg/mL, respectively. The extract at 1000 mg/kg significantly reduced fasting blood glucose levels in both the OGTT and 28-day consecutive administration models as compared with untreated STZ-NA-induced diabetic mice (p < 0.05). Significant improvements of serum insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and GLUT4 levels were observed. Furthermore, the extract markedly decreased oxidative stress markers by 37-53% reduction of superoxide dismutase 1 (SOD1) in muscle and malondialdehyde (MDA) in muscle and pancreas, which correlated with the reduction of MDA production in vitro (IC50: 24.80 ± 7.24 µg/mL). CONCLUSION: The LS extract has potent antihyperglycemic activity to be used as alternative medicine to treat diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , alpha-Glucosidases , Humans , Mice , Animals , alpha-Glucosidases/metabolism , Blood Glucose , Caco-2 Cells , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Niacinamide , RNA, Messenger , Streptozocin
11.
Article in English | MEDLINE | ID: mdl-35538807

ABSTRACT

AIMS: The present study aimed to provide summarized data related to the phytocompouds improving glucose uptake in the diabetic state. BACKGROUND: Glucose uptake in peripheral tissues such as skeletal muscle and adipose tissue is considered as an important step in the regulation of glucose homeostasis. Reducing high blood glucose levels in diabetic patients via targeting peripheral glucose uptake is a promising strategy to develop new antidiabetic medications derived from natural products. OBJECTIVE: The current review focused on antidiabetic natural phytocompounds acting on glucose uptake in adipocytes and skeletal muscles to highlight their phytochemistry, the mechanistic pathway involved, toxicity, and clinical assessment. METHODS: A systematic search was conducted in the scientific database with specific keywords on natural phytocompounds demonstrated to possess glucose uptake stimulating activity in vitro or ex vivo during the last decade. RESULTS: In total, 195 pure molecules and 7 mixtures of inseparable molecules isolated from the plants kingdom, in addition to 16 biomolecules derived from non-herbal sources, possess a potent glucose uptake stimulating capacity in adipocytes and/or skeletal muscles in adipocytes and/or skeletal muscles in vitro or ex vivo. Molecular studies revealed that these plant-derived molecules induced glucose uptake via increasing GLUT-4 expression and/or translocation through insulin signaling pathway, AMPK pathway, PTP1B activity inhibition or acting as partial PPARγ agonists. These phytocompounds were isolated from 91 plants, belonging to 57 families and triterpenoids are the most sous-class of secondary metabolites showing this activity. Among all the phytocompounds listed in the current review, only 14 biomolecules have shown an interesting activity against diabetes and its complications in clinical studies. CONCLUSION: Epicatechin, catechin, epigallocatechin 3-gallate, quercetin, quercetin 3-glucoside, berberine, rutin, linoleic acid, oleanolic acid, oleic acid, chlorogenic acid, gallic acid, hesperidin, and corosolic acid are promising phytocompounds that showed great activity against diabetes and diabetes complications in vitro and in vivo. However, for the others phytocompounds further experimental studies followed by clinical trials are needed. Finally, foods rich in these compounds cited in this review present a healthy diet for diabetic patients.


Subject(s)
Glucose , Hypoglycemic Agents , Humans , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Insulin/metabolism , Quercetin/pharmacology , Signal Transduction , Biological Transport/drug effects
12.
Arch Physiol Biochem ; 129(5): 1071-1083, 2023 Oct.
Article in English | MEDLINE | ID: mdl-33733926

ABSTRACT

OBJECTIVE: This study was designed to investigate whether the glucose lowering effects of Potentilla fulgens acts by modulating GLUT4, AKT2 and AMPK expression in the skeletal muscle and liver tissues. METHODOLOGY: Alloxan-induced diabetic mice treated with Potentilla fulgens was assessed for their blood glucose and insulin level, mRNA and protein expression using distinguished methods. Additionally, GLUT4, AKT2 and AMPK were docked with catechin, epicatechin, kaempferol, metformin, quercetin and ursolic acid reportedly present in Potentilla fulgens. RESULTS: Potentilla fulgens ameliorates hyperglycaemia and insulin sensitivity via activation of AKT2 and AMPK, increases the expression of GLUT4, AKT2, AMPKα1 and AMPKα2 whose levels are reduced under diabetic condition. Molecular docking revealed interacting residues and their binding affinities (-4.56 to -8.95 Kcal/mol). CONCLUSIONS: These findings provide more clarity vis-avis the mechanism of action of the phytoceuticals present in Potentilla fulgens extract which function through their action on GLUT4, PKB and AMPK.


Subject(s)
Catechin , Diabetes Mellitus, Experimental , Potentilla , Mice , Animals , Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Potentilla/chemistry , Potentilla/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Alloxan/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Docking Simulation , Catechin/pharmacology , Glucose Transporter Type 4/genetics , Muscle, Skeletal/metabolism
13.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36355518

ABSTRACT

Glucose transporter 4 (GLUT4) is a membrane protein that regulates blood glucose balance and is closely related to type 2 diabetes. Andrographolide (AND) is a diterpene lactone extracted from herbal medicine Andrographis paniculata, which has a variety of biological activities. In this study, the antidiabetic effect of AND in L6 cells and its mechanism were investigated. The uptake of glucose of L6 cells was detected by a glucose assay kit. The expression of GLUT4 and phosphorylation of protein kinase B (PKB/Akt), AMP-dependent protein kinase (AMPK), and protein kinase C (PKC) were detected by Western blot. At the same time, the intracellular Ca2+ levels and GLUT4 translocation in myc-GLUT4-mOrange-L6 cells were detected by confocal laser scanning microscopy. The results showed that AND enhanced the uptake of glucose, GLUT4 expression and fusion with plasma membrane in L6 cells. Meanwhile, AND also significantly activated the phosphorylation of AMPK and PKC and increased the concentration of intracellular Ca2+. AND-induced GLUT4 expression was significantly inhibited by a PKC inhibitor (Gö6983). In addition, in the case of 0 mM extracellular Ca2+ and 0 mM extracellular Ca2+ + 10 µM BAPTA-AM (intracellular Ca2+ chelator), AND induced the translocation of GLUT4, and the uptake of glucose was significantly inhibited. Therefore, we concluded that AND promoted the expression of GLUT4 and its fusion with plasma membrane in L6 cells through PKC pathways in a Ca2+-dependent manner, thereby increasing the uptake of glucose.

14.
Biochem Biophys Res Commun ; 634: 189-195, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36252499

ABSTRACT

Insulin resistance is a risk factor for type 2 diabetes and is often associated with obesity. Vaccarin, a flavonoid found in vaccaria seeds, is commonly used in traditional Chinese medicine for activating blood circulation. Here, we showed that vaccarin ameliorates high-fat diet-induced obesity and insulin resistance in mice by reducing fat accumulation and improving insulin sensitivity in white adipose tissue. Further hyperinsulinemic-euglycemic clamp test revealed enhanced glucose uptake in vaccarin-treated WAT and skeletal muscle, consistent with activated insulin signaling pathway in these tissues. Mechanistically, vaccarin activates adipose tissue GPR120 and subsequently activating the PI3K/AKT/GLUT4 signaling pathway in 3T3-L1 cells. Together, these results reveal an undiscovered function of vaccarin in preventing obesity-related insulin resistance and advocates that vaccarin holds promise for further development as an innovative agent for the prevention of metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Signal Transduction , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Insulin , Insulin Resistance/physiology , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
15.
Front Pharmacol ; 13: 950535, 2022.
Article in English | MEDLINE | ID: mdl-36160420

ABSTRACT

Jiangtang Sanhao formula (JTSHF), one of the prescriptions for treating the patients with diabetes mellitus (DM) in traditional Chinese medicine clinic, has been demonstrated to effectively ameliorate the clinical symptoms of diabetic patients with overweight or hyperlipidemia. The preliminary studies demonstrated that JTSHF may enhance insulin sensitivity and improve glycolipid metabolism in obese mice. However, the action mechanism of JTSHF on skeletal muscles in diabetic mice remains unclear. To this end, high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic mice were subjected to JTSHF intervention. The results revealed that JTSHF granules could reduce food and water intake, decrease body fat mass, and improve glucose tolerance, lipid metabolism, and insulin sensitivity in the skeletal muscles of diabetic mice. These effects may be linked to the stimulation of GLUT4 expression and translocation via regulating AMPKα/SIRT1/PGC-1α signaling pathway. The results may offer a novel explanation of JTSHF to prevent against diabetes and IR-related metabolic diseases.

16.
Bioorg Chem ; 129: 106160, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36179442

ABSTRACT

Hyperhimatins A-P (1-16), sixteen new bicyclic polyprenylated acylphloroglucinols (BPAPs), were isolated and identified from Hypericum himalaicum. The planner structures of hyperhimatins A-P were confirmed via extensive NMR and careful HRESIMS data analysis. The absolute configurations of the new compounds were mainly determined by electronic circular dichroism (ECD) calculation, NMR calculation, and the circular dichroism data of the in situ formed [Rh2(OCOCF3)4] complexes. All compounds were assessed for the glucose transporter 4 (GLUT-4) translocation and expression enhancing effects in L6 myotubes. Compounds 1-16 could promote the GLUT-4 expression by the range of 1.95-6.04 folds, and accelerate the GLUT-4 fusion with the plasma membrane ranged from 53.56% to 76.97% at a consistence of 30 µg/mL, among compound 10 displayed the strongest GLUT-4 translocation effect.


Subject(s)
Hypericum , Hypericum/chemistry , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Magnetic Resonance Spectroscopy , Circular Dichroism , Glucose Transport Proteins, Facilitative , Molecular Structure
17.
J Ethnopharmacol ; 297: 115542, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35842177

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psidium guajava L. leaves are used to treat diabetes in South African folkloric medicine and in other parts of the world. Psidium x durbanensis Baijnath & Ramcharun ined. (PD) is a natural sterile hybrid and congener of Psidium guajava that is expected to share the medicinal properties of the genus Psidium and is widely distributed in South Africa. AIM OF THE STUDY: This study investigates the antioxidant, antidiabetic effects, and mechanisms of action of hydro-methanolic leaf extracts of PD on streptozotocin-induced diabetes in rats. MATERIAL AND METHODS: Phytochemical constituents of hydro-methanolic extract of PD were analyzed by gas chromatography-mass spectrometry (GC-MS). Male Wistar rats 250-300 g body weight (BW) were rendered diabetic after a single intraperitoneal injection with streptozotocin, 45 mg/kg BW. The diabetic rats were treated with hydro-methanolic (20:80 v/v) leaf extracts of PD (400 mg/kg/BW) or subcutaneous injections of regular insulin (2.0U/kg/BW, bid) for 56 days. The body weights of the animals were recorded daily. Fasting blood glucose, glucose tolerance tests, and insulin resistance index were measured. The effects of the extracts on total superoxide dismutase, catalase, and reduced glutathione activities, histopathology, and gene expression of insulin receptor substrate 1 and glucose transporter 4 were determined in the liver, pancreas, and gastrocnemius muscles of the rats. RESULTS: In the acute toxicity studies, there were no signs of toxicity observed for PD up to 2000 mg/kg BW doses. Diabetic animals showed significant weight loss, elevated and reduced fasting blood glucose and insulin, respectively, impaired glucose tolerance and diminished antioxidant enzymes' activities compared to controls. Treatment with PD hydro-methanolic leaf extracts improved body weight, glucose tolerance, insulin resistance, and antioxidant enzymes but not plasma insulin in diabetic animals compared to controls, respectively. GC-MS analysis identified organic acids, alcohols, vitamins, terpenoids, and esters in the extracts. Treatment with PD improved glucose uptake by stimulating mRNA expression of GLUT 4 in gastrocnemius muscles of diabetic animals compared to the untreated control and also restored histological aberrations in the pancreas and liver of diabetic rats compared with the untreated control rats. CONCLUSION: Collectively, the present study suggests that treatment with PD leaf extracts significantly ameliorated diabetes symptoms and oxidative stress in rats, and these effects may be linked to the bioactive phytoconstituents present in the plant. This study further suggests that PD improves insulin resistance by increasing glucose uptake in gastrocnemius muscles in an insulin-independent manner.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Myrtaceae , Psidium , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Blood Glucose , Body Weight , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Psidium/chemistry , Rats , Rats, Wistar , Streptozocin
18.
J Med Food ; 25(6): 588-596, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35708636

ABSTRACT

Insulin secretion and GLUT4 expression are two critical events in glucose regulation. The receptors G-protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor-gamma (PPARγ) modulate these processes, and they represent potential therapeutic targets for new antidiabetic agent's design. Cucurbita ficifolia fruit is used in traditional medicine for diabetes control. Previous studies demonstrated several effects: a hypoglycemic effect mediated by an insulin secretagogue action, antihyperglycemic effect, and promoting liver glycogen storage. Anti-inflammatory and antioxidant effects were also reported. Moreover, some of its phytochemicals have been described, including d-chiro-inositol. However, to understand these effects integrally, other active principles should be investigated. The aim was to perform a chemical fractionation guided by bioassay to isolate and identify other compounds from C. ficifolia fruit that explain its hypoglycemic action as insulin secretagogue, its antihyperglycemic effect by PPARγ activation, and on liver glycogen storage. Three different preparations of C. ficifolia were tested in vivo. Ethyl acetate fraction derived from aqueous extract showed antihyperglycemic effect in an oral glucose tolerance test and was further fractioned. The insulin secretagogue action was tested in RINm5F cells. For the PPARγ activation, C2C12 myocytes were treated with the fractions, and GLUT4 mRNA expression was measured. Chemical fractionation resulted in the isolation and identification of ß-sitosterol and 4-hydroxybenzoic acid (4-HBA), which increased insulin secretion, GLUT4, PPARγ, and adiponectin mRNA expression, in addition to an increase in glycogen storage. 4-HBA exhibited an antihyperglycemic effect, while ß-sitosterol showed hypoglycemic effect, confirming the wide antidiabetic related results we found in our in vitro models. An in silico study revealed that 4-HBA and ß-sitosterol have potential as dual agonists on PPARγ and GPR40 receptors. Both compounds should be considered in the development of new antidiabetic drug development.


Subject(s)
Cucurbita , Diabetes Mellitus, Experimental , Animals , Cucurbita/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Liver Glycogen , PPAR gamma/agonists , PPAR gamma/genetics , Parabens , Plant Extracts/chemistry , RNA, Messenger , Secretagogues/therapeutic use , Sitosterols
19.
Front Pharmacol ; 13: 904643, 2022.
Article in English | MEDLINE | ID: mdl-35656300

ABSTRACT

Momordica charantia L. (Cucurbitaceae), commonly known as bitter gourd or bitter melon, is widely cultivated in many tropical and subtropical regions of the world, where its unripe fruits are eaten as a vegetable. Apart from its culinary use, M. charantia has a long history in traditional medicine, serving as stomachic, laxative or anthelmintic, and, most notably, for the treatment of diabetes and its complications. Its antidiabetic properties and its beneficial effects on blood glucose and lipid concentrations have been reported in numerous in vitro and in vivo studies, but the compounds responsible for the observed effects have not yet been adequately described. Early reports were made for charantin, a mixture of two sterol glucosides, and the polypeptide p-insulin, but their low concentrations in the fruits or their limited bioavailability cannot explain the observed therapeutic effects. Still, for many decades the search for more reasonable active principles was omitted. However, in the last years, research more and more focused on the particular cucurbitane-type triterpenoids abundant in the fruits and other parts of the plant. This mini review deals with compounds isolated from the bitter gourd and discusses their bioactivities in conjunction with eventual antidiabetic or adverse effects. Furthermore, methods for the quality control of bitter gourd fruits and preparations will be evaluated for their meaningfulness and their potential use in the standardization of commercial preparations.

20.
Phytomedicine ; 103: 154204, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35671635

ABSTRACT

BACKGROUND: Therapeutic failure and drug resistance are common sequelae to insulin resistance associated with type 2 diabetes mellitus (T2DM). Consequently, there is an unmet need of alternative strategies to overcome insulin resistance associated complications. PURPOSE: To demonstrate whether Kutkin (KT), iridoid glycoside enriched fraction of Picrorhiza kurroa extract (PKE) has potential to increase the insulin sensitivity vis à vis glucose uptake in differentiated adipocytes. METHODS: Molecular interaction of KT phytoconstituents, picroside-I (P-I) & picroside- II (P-II) with peroxisome proliferator-activated receptor gamma (PPARγ), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) were analyzed in silico. Cellular viability and adipogenesis were determined by following 3-(4, 5-Dimethylthiazol-2-Yl)-2, 5-Diphenyltetrazolium bromide (MTT) assay and Oil Red-O staining. Further, ELISA kit based triglycerides and diacylglycerol-O-Acyltransferase-1 (DGAT1) were assessed in differentiated adipocytes. ELISA based determination were performed to check the levels of adiponectin and tumor necrosis factor alpha (TNF-α). However, Flow cytometry and immunofluorescence based assays were employed to measure the glucose uptake and glucose transporter 4 (glut4) expression in differentiated adipocytes, respectively. Further to explore the targeted signaling axis, mRNA expression levels of PPARγ, CCAAT/enhancer binding protein α (CEBPα), and glut4 were determined using qRT-PCR and insulin receptor substrate-1 (IRS-1), Insulin receptor substrate-2 (IRS-2), PI3K/Akt, AS160, glut4 followed by protein validation using immunoblotting in differentiated adipocytes. RESULTS: In silico analysis revealed the binding affinities of major constituents of KT (P-I& P-II) with PPARγ/PI3K/Akt. The enhanced intracellular accumulation of triglycerides with concomitant activation of PPARγ and C/EBPα in KT treated differentiated adipocytes indicates augmentation of adipogenesis in a concentration-dependent manner. Additionally, at cellular level, KT upregulated the expression of DAGT1, and decreases fatty acid synthase (FAS), and lipoprotein lipase (LPL), further affirmed improvement in lipid milieu. It was also observed that KT upregulated the levels of adiponectin and reduced TNFα expression, thus improving the secretory functions of adipocytes along with enhanced insulin sensitivity. Furthermore, KT significantly promoted insulin mediated glucose uptake by increasing glut4 translocation to the membrane via PI3/Akt signaling cascade. The results were further validated using PI3K specific inhibitor, wortmannin and findings revealed that KT treatment significantly enhanced the expression and activation of p-PI3K/PI3K and p-Akt/Akt even in case of treatment with PI3K inhibitor wortmannin alone and co-treatment with KT in differentiated adipocytes and affirmed that KT as activator of PI3K/Akt axis in the presence of inhibitor as well. CONCLUSION: Collectively, KT fraction of PKE showed anti-diabetic effects by enhancing glucose uptake in differentiated adipocytes via activation of PI3K/Akt signaling cascade. Therefore, KT may be used as a promising novel natural therapeutic agent for managing T2DMand to the best of our knowledge, this is the first report, showing the efficacy and potential molecular mechanism of KT in enhancing insulin sensitivity and glucose uptake in differentiated adipocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Picrorhiza , 3T3-L1 Cells , Adipocytes , Adiponectin/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cinnamates , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Glycosides , Iridoid Glycosides/pharmacology , Mice , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Triglycerides/metabolism , Vanillic Acid , Wortmannin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL