Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cell ; 187(2): 312-330.e22, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157854

ABSTRACT

The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphotransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Phase Separation , GPI-Linked Proteins/metabolism
2.
Children (Basel) ; 10(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36980111

ABSTRACT

BACKGROUND: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). PATIENTS AND METHODS: We conducted a systematic review of published pediatric cases with a confirmed molecular genetic diagnosis of vitamin B6-dependent epilepsy according to PRISMA guidelines. Data on demographic features, seizure semiology, EEG patterns, neuroimaging, treatment, and developmental outcomes were collected. RESULTS: 497 published patients fulfilled the inclusion criteria. Seizure onset manifested at 59.8 ± 291.6 days (67.8% of cases in the first month of life). Clonic, tonic-clonic, and myoclonic seizures accounted for two-thirds of the cases, while epileptic spasms were observed in 7.6%. Burst-suppression/suppression-burst represented the most frequently reported specific EEG pattern (14.4%), mainly in PLPB, ALDH7A1, and PNPO deficiency. Pyridoxine was administered to 312 patients (18.5% intravenously, 76.9% orally, 4.6% not specified), and 180 also received antiseizure medications. Pyridoxine dosage ranged between 1 and 55 mg/kg/die. Complete seizure freedom was achieved in 160 patients, while a significant seizure reduction occurred in 38. PLP, lysine-restricted diet, and arginine supplementation were used in a small proportion of patients with variable efficacy. Global developmental delay was established in 30.5% of a few patients in whom neurocognitive tests were performed. CONCLUSIONS: Despite the wide variability, the most frequent hallmarks of the epilepsy phenotype in patients with vitamin B6-dependent seizures include generalized or focal motor seizure semiology and a burst suppression/suppression burst pattern in EEG.

3.
Phytomedicine ; 114: 154770, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36963367

ABSTRACT

BACKGROUND: Benign and malignant liver tumors are prevalent worldwide. However, there is no effective and comprehensive treatment option for many patients with malignant tumors. Thus, it is critical to prevent benign tumors from worsening, increasing the number of treatment options and effective medications against malignant liver tumors. Oleuropein is a natural and non-toxic product and inhibits tumor growth in various ways. METHODS: We employed bioinformatics analysis and molecular docking to identify potential targets of oleuropein. Surface plasmon resonance (SPR) was used to determine the direct binding strength of the target and compounds. Essential functionalities of the targets were analyzed using gene interference approaches. Transcriptomic studies were performed to observe the global genomic alterations occurring inside cells. Changes in glycolytic metabolites and gene and protein expressions were also detected. The anti-tumor benefits of oleuropein in vivo were determined using a tumor-bearing mouse model. RESULTS: Glucose-6-phosphate isomerase (GPI) was found to be a direct target of oleuropein. GPI discontinuation in liver tumor cells altered the expression of many genes, causing glycogenolysis. GPI interference was associated with PYGM and PFKFB4 inhibitors to inhibit glycolysis in liver tumors. Oleuropein inhibited glycolysis and showed good anti-tumor activity in vivo without adverse side effects. CONCLUSIONS: GPI is a crucial enzyme in glycolysis and the immediate target of oleuropein. GPI expression inside tumor cells affects different physiological functions and signal transduction. Oleuropein has depicted anti-tumor action in vivo without harmful side effects. Moreover, it can control tumor glycolysis through GPI.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Molecular Docking Simulation , Iridoid Glucosides , Glycolysis , Iridoids/pharmacology
4.
Heliyon ; 9(1): e12874, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36691528

ABSTRACT

Tourette syndrome is the most prevalent hyperkinetic movement disorder in children and can be highly disabling. While the pathomechanism of Tourette syndrome remains largely obscure, recent studies have greatly improved our knowledge about this disease, providing a new perspective in our understanding of this condition. Advances in electrophysiology and neuroimaging have elucidated that there is a reduction in frontal cortical volume and reduction of long rage connectivity to the frontal lobe from other parts of the brain. Several genes have also been identified to be associated with Tourette syndrome. Treatment of Tourette syndrome requires a multidisciplinary approach which includes behavioral and pharmacological therapy. In severe cases surgical therapy with deep brain stimulation may be warranted, though the optimal location for stimulation is still being investigated. Studies on alternative therapies including traditional Chinese medicine and neuromodulation, such as transcranial magnetic stimulation have shown promising results, but still are being used in an experimental basis. Several new therapies have also recently been tested in clinical trials. This review provides an overview of the latest findings with regards to genetics and neuroimaging for Tourette syndrome as well as an update on advanced therapeutics.

5.
JIMD Rep ; 64(1): 42-52, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36636587

ABSTRACT

Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of molecules attached to the external leaflet of the plasma membrane by the GPI anchor where they play important roles in numerous cellular processes including neurogenesis, cell adhesion, immune response and signalling. Within the group of GPI anchor defects, six present with the clinical phenotype of Hyperphosphatasia with Mental Retardation Syndrome (HPMRS, Mabry Syndrome) characterized by moderate to severe intellectual disability, dysmorphic features, hypotonia, seizures and persistent hyperphosphatasia. We report the case of a 5-year-old female with global developmental delay associated with precocious puberty and persistently raised plasma alkaline phosphatase. Targeted next generation sequencing analysis of the HPMRS genes identified novel compound heterozygous variants in the PGAP2 gene (c.103del p.(Leu35Serfs*90)and c.134A > Gp.(His45Arg)) consistent with the diagnosis of HPMRS type 3. Cerebrospinal fluid (CSF) neurotransmitter analysis showed low levels of pyridoxal phosphate and 5-methyltetrahydrofolate and raised homovanillic acid. Supplementation with pyridoxine and folinic acid led to normalization of biochemical abnormalities. The patient continues to make developmental progress with significant improvement in speech and fine motor skills. Our reported case expands the clinical spectrum of HPMRS3 in which multisystem involvement is being increasingly recognized. Furthermore, it shows that miss-targeting GPI-APs and the effect on normal cellular function could provide a physiopathologic explanation for the CSF biochemical abnormalities with management implications for a group of disorders that currently has no treatment that can lead possibly to improved clinical outcomes.

6.
Curr Opin Plant Biol ; 69: 102279, 2022 10.
Article in English | MEDLINE | ID: mdl-36029655

ABSTRACT

Explosive advances have been made in the molecular understanding of pollen-pistil interactions that underlie reproductive success in flowering plants in the past three decades. Among the most notable is the discovery of pollen tube attractants [1∗,2∗]. The roles these molecules play in facilitating conspecific precedence thus promoting interspecific genetic isolation are also emerging [3-5]. Male-female interactions during the prezygotic phase and contributions from the male and female gametophytes have been comprehensively reviewed recently. Here, we focus on key advances in understanding the mechanistic underpinnings of how these interactions overcome barriers at various pollen-pistil interfaces along the pollen tube growth pathway to facilitate fertilization by desirable mates.


Subject(s)
Flowers , Pollen , Ovule/genetics , Pollen/genetics , Pollen Tube/genetics , Pollination
7.
Trends Mol Med ; 28(6): 463-481, 2022 06.
Article in English | MEDLINE | ID: mdl-35562242

ABSTRACT

Congenital disorders of glycosylation (CDG) are a group of more than 160 inborn errors of metabolism affecting multiple pathways of protein and lipid glycosylation. Patients present with a wide range of symptoms and therapies are only available for very few subtypes. Specific nutritional treatment options for certain CDG types include oral supplementation of monosaccharide sugars, manganese, uridine, or pyridoxine. Additional management includes specific diets (i.e., complex carbohydrate or ketogenic diet), iron supplementation, and albumin infusions. We review the dietary management in CDG with a focus on two subgroups: N-linked glycosylation defects and GPI-anchor disorders.


Subject(s)
Congenital Disorders of Glycosylation , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/therapy , Glycosylation , Humans , Lipid Metabolism
8.
Curr Biol ; 32(9): 1909-1923.e5, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35316654

ABSTRACT

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are tethered to the outer leaflet of the plasma membrane where they function as key regulators of a plethora of biological processes in eukaryotes. Self-incompatibility (SI) plays a pivotal role regulating fertilization in higher plants through recognition and rejection of "self" pollen. Here, we used Arabidopsis thaliana lines that were engineered to be self-incompatible by expression of Papaver rhoeas SI determinants for an SI suppressor screen. We identify HLD1/AtPGAP1, an ortholog of the human GPI-inositol deacylase PGAP1, as a critical component required for the SI response. Besides a delay in flowering time, no developmental defects were observed in HLD1/AtPGAP1 knockout plants, but SI was completely abolished. We demonstrate that HLD1/AtPGAP1 functions as a GPI-inositol deacylase and that this GPI-remodeling activity is essential for SI. Using GFP-SKU5 as a representative GPI-AP, we show that the HLD1/AtPGAP1 mutation does not affect GPI-AP production and targeting but affects their cleavage and release from membranes in vivo. Our data not only implicate GPI-APs in SI, providing new directions to investigate SI mechanisms, but also identify a key functional role for GPI-AP remodeling by inositol deacylation in planta.


Subject(s)
Arabidopsis , Papaver , Arabidopsis/metabolism , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Humans , Inositol/metabolism , Papaver/genetics , Papaver/metabolism , Pollen/metabolism
9.
J Neurosci ; 42(13): 2631-2646, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35135854

ABSTRACT

Mutations in the Aminoadipate-Semialdehyde Synthase (AASS) gene encoding α-aminoadipic semialdehyde synthase lead to hyperlysinemia-I, a benign metabolic variant without clinical significance, and hyperlysinemia-II with developmental delay and intellectual disability. Although both forms of hyperlysinemia display biochemical phenotypes of questionable clinical significance, an association between neurologic disorder and a pronounced biochemical abnormality remains a challenging clinical question. Here, we report that Aass mutant male and female mice carrying the R65Q mutation in α-ketoglutarate reductase (LKR) domain have an elevated cerebral lysine level and a normal brain development, whereas the Aass mutant mice carrying the G489E mutation in saccharopine dehydrogenase (SDH) domain exhibit elevations of both cerebral lysine and saccharopine levels and a smaller brain with defective neuronal development. Mechanistically, the accumulated saccharopine, but not lysine, leads to impaired neuronal development by inhibiting the neurotrophic effect of glucose-6-phosphate isomerase (GPI). While extracellular supplementation of GPI restores defective neuronal development caused by G498E mutation in SDH of Aass. Altogether, our findings not only unravel the requirement for saccharopine degradation in neuronal development, but also provide the mechanistic insights for understanding the neurometabolic disorder of hyperlysinemia-II.SIGNIFICANCE STATEMENT The association between neurologic disorder and a pronounced biochemical abnormality in hyperlysinemia remains a challenging clinical question. Here, we report that mice carrying the R65Q mutation in lysine α-ketoglutarate reductase (LKR) domain of aminoadipate-semialdehyde synthase (AASS) have an elevated cerebral lysine levels and a normal brain development, whereas those carrying the G489E mutation in saccharopine dehydrogenase (SDH) domain of AASS exhibit an elevation of both cerebral lysine and saccharopine and a small brain with defective neuronal development. Furthermore, saccharopine impairs neuronal development by inhibiting the neurotrophic effect of glucose-6-phosphate isomerase (GPI). These findings demonstrate saccharopine degradation is essential for neuronal development.


Subject(s)
Hyperlysinemias , Lysine , Animals , Female , Glucose-6-Phosphate Isomerase , Hyperlysinemias/genetics , Hyperlysinemias/metabolism , Lysine/analogs & derivatives , Male , Mice , Saccharopine Dehydrogenases/genetics , Saccharopine Dehydrogenases/metabolism
10.
Curr Opin Cell Biol ; 71: 120-129, 2021 08.
Article in English | MEDLINE | ID: mdl-33862329

ABSTRACT

Endocytosis mediates the uptake of extracellular proteins, micronutrients and transmembrane cell surface proteins. Importantly, many viruses, toxins and bacteria hijack endocytosis to infect cells. The canonical pathway is clathrin-mediated endocytosis (CME) and is active in all eukaryotic cells to support critical house-keeping functions. Unconventional mechanisms of endocytosis exit in parallel of CME, to internalize specific cargoes and support various cellular functions. These clathrin-independent endocytic (CIE) routes use three distinct mechanisms: acute signaling-induced membrane remodeling drives macropinocytosis, activity-dependent bulk endocytosis (ADBE), massive endocytosis (MEND) and EGFR non-clathrin endocytosis (EGFR-NCE). Cargo capture and local membrane deformation by cytosolic proteins is used by fast endophilin-mediated endocytosis (FEME), IL-2Rß endocytosis and ultrafast endocytosis at synapses. Finally, the formation of endocytic pits by clustering of extracellular lipids or cargoes according to the Glycolipid-Lectin (GL-Lect) hypothesis mediates the uptake of SV40 virus, Shiga and cholera toxins, and galectin-clustered receptors by the CLIC/GEEC and the endophilin-A3-mediated CIE.


Subject(s)
Clathrin , Endocytosis , Biological Transport , Clathrin/metabolism , Membrane Proteins/metabolism , Signal Transduction
11.
Brain Stimul ; 14(3): 662-675, 2021.
Article in English | MEDLINE | ID: mdl-33857664

ABSTRACT

BACKGROUND: There are still no sufficient data regarding the use of deep brain stimulation (DBS) in Gilles de la Tourette syndrome (GTS) and no agreement on optimal target. OBJECTIVE: To compare efficacy and safety of bilateral DBS of thalamus (centromedian-ventro-oral internus, CM-Voi) versus posteroventral lateral globus pallidus internus (pvl GPi)) versus sham stimulation, and baseline in severe medically refractory GTS. METHODS: In this randomized double-blind sham stimulation-controlled trial (RCT), 10 patients (3 women, mean age = 29.4 ± 10.2 SD, range 18-47) underwent three blinded periods each lasting three months including (i) sham, (ii) pvl GPi (on-GPi), and (iii) thalamic stimulation (on-thal) followed by an open uncontrolled long-term follow-up (up to 9 years) with individually determined target and stimulation settings. RESULTS: Nine patients completed the RCT. At group level, on-GPi - but not on-thal - resulted in a significant tic reduction compared to baseline, but had no effect on premonitory urges and psychiatric comorbidities. Direct comparisons of targets resulted in inconsistent or negative (compared to sham) findings. During follow-up, we found no improvement of tics, comorbidities, and quality of life at group level, however, single patients benefitted continuously from thalamic DBS. At last follow-up 89.9 months (mean) after surgery, 50% of patients had discontinued DBS. Hardware infections occurred in 3/10 patients. CONCLUSION: Our data suggest that the initial effect of pvl GPi DBS is superior to thalamic (CM-Voi) DBS. While half of the patients discontinued treatment, single patients benefitted from thalamic DBS even after years. It is likely that outcome is influenced by various factors beyond the mere change in tic severity.


Subject(s)
Deep Brain Stimulation , Tourette Syndrome , Child, Preschool , Female , Globus Pallidus , Humans , Infant , Quality of Life , Thalamus , Tourette Syndrome/therapy , Treatment Outcome
12.
Antioxid Redox Signal ; 33(17): 1257-1275, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32524825

ABSTRACT

Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.


Subject(s)
Endoplasmic Reticulum/physiology , Genes, Essential , Homeostasis , Oxidoreductases/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Animals , Disease Susceptibility , Endoplasmic Reticulum Stress , Humans , Mice , Nutrients/metabolism , Oxidative Stress , Selenium/metabolism , Signal Transduction
13.
Free Radic Biol Med ; 152: 504-515, 2020 05 20.
Article in English | MEDLINE | ID: mdl-31784059

ABSTRACT

The high expression of fatty acid synthase (FAS) in tumor cells is consistent with their elevated requirement for fatty acids for cell membrane synthesis and energy supply to support their almost unlimited proliferation. The expression levels of FAS in tumor cells are related to their proliferation, invasion, and metastasis. This study investigated the possible bioactive ingredients (fraxin, esculetin, scopolin et al.) of Cortex Fraxini and their effects on the interaction between specific proteins. We used microscale thermophoresis (MST) to show that our target protein, FAS (screened by combining transcriptome and network pharmacology), bound to the active compounds in Cortex Fraxini. It was found that FAS bound strongly to Glucose-6-phosphate isomerase (GPI), and that scopolin could affect this interaction by proteomics and MST. The results of this study demonstrate that the active compounds in Cortex Fraxini could play an anti-tumor role by binding to FAS and inhibiting the interactions between FAS and GPI to affect glucose and lipid metabolism, and that the protein pathway is a potential novel target for tumor treatment.


Subject(s)
Drugs, Chinese Herbal , Fatty Acid Synthases , Aesculus , Fatty Acid Synthases/genetics , Fatty Acids , Glucose-6-Phosphate Isomerase
14.
Environ Mol Mutagen ; 60(6): 494-504, 2019 07.
Article in English | MEDLINE | ID: mdl-30848527

ABSTRACT

Fifty Veterans of the first Gulf War in 1991 exposed to depleted uranium (DU) were studied for glycosylphosphatidylinositol-anchor (GPIa) deficient T-cell mutants on three occasions during the years 2009, 2011, and 2013. GPIa deficiency was determined in two ways: cloning assays employing aerolysin selection and cytometry using the FLAER reagent for positive staining of GPIa cell surface proteins. Subsequent molecular analyses of deficient isolates recovered from cloning assays (Nicklas JA et al. [2019]: Environ Mol Mutagen) revealed apparent incomplete selection in some cloning assays, necessitating correction of original data to afford a more realistic estimate of GPIa deficient mutant frequency (MF) values. GPIa deficient variant frequencies (VFs) determined by cytometry were determined in the years 2011 and 2013. A positive but nonsignificant association was observed between MF and VF values determined on the same blood samples during 2013. Exposure to DU had no effect on either GPIa deficient MF or VFs. Environ. Mol. Mutagen. 60:494-504, 2019. © 2019 Wiley Periodicals, Inc.


Subject(s)
Glycosylphosphatidylinositols/deficiency , Mutagens/adverse effects , Mutation/drug effects , Occupational Exposure/adverse effects , Seizures/metabolism , T-Lymphocytes/drug effects , Uranium/adverse effects , Cohort Studies , Glycosylphosphatidylinositols/metabolism , Gulf War , Humans , Longitudinal Studies , Military Personnel , Veterans
15.
J Neurosurg ; 132(2): 574-582, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30797189

ABSTRACT

OBJECTIVE: Neuronal loss within the cholinergic nucleus basalis of Meynert (nbM) correlates with cognitive decline in dementing disorders such as Alzheimer's disease and Parkinson's disease (PD). In nonhuman primates, the nbM firing pattern (5-40 Hz) has also been correlated with working memory and sustained attention. In this study, authors performed microelectrode recordings of the globus pallidus pars interna (GPi) and the nbM immediately prior to the implantation of bilateral deep brain stimulation (DBS) electrodes in PD patients to treat motor symptoms and cognitive impairment, respectively. Here, the authors evaluate the electrophysiological properties of the nbM in patients with PD. METHODS: Five patients (4 male, mean age 66 ± 4 years) with PD and mild cognitive impairment underwent bilateral GPi and nbM DBS lead implantation. Microelectrode recordings were performed through the GPi and nbM along a single trajectory. Firing rates and burst indices were characterized for each neuronal population with the patient at rest and performing a sustained-attention auditory oddball task. Action potential (AP) depolarization and repolarization widths were measured for each neuronal population at rest. RESULTS: In PD patients off medication, the authors identified neuronal discharge rates that were specific to each area populated by GPi cells (92.6 ± 46.1 Hz), border cells (34 ± 21 Hz), and nbM cells (13 ± 10 Hz). During the oddball task, firing rates of nbM cells decreased (2.9 ± 0.9 to 2.0 ± 1.1 Hz, p < 0.05). During baseline recordings, the burst index for nbM cells (1.7 ± 0.6) was significantly greater than those for GPi cells (1.2 ± 0.2, p < 0.05) and border cells (1.1 ± 0.1, p < 0.05). There was no significant difference in the nbM burst index during the oddball task relative to baseline (3.4 ± 1.7, p = 0.20). With the patient at rest, the width of the depolarization phase of APs did not differ among the GPi cells, border cells, and nbM cells (p = 0.60); however, during the repolarization phase, the nbM spikes were significantly longer than those for GPi high-frequency discharge cells (p < 0.05) but not the border cells (p = 0.20). CONCLUSIONS: Neurons along the trajectory through the GPi and nbM have distinct firing patterns. The profile of nbM activity is similar to that observed in nonhuman primates and is altered during a cognitive task associated with cholinergic activation. These findings will serve to identify these targets intraoperatively and form the basis for further research to characterize the role of the nbM in cognition.


Subject(s)
Basal Nucleus of Meynert/physiopathology , Parkinson Disease/physiopathology , Acoustic Stimulation , Action Potentials , Aged , Antiparkinson Agents/therapeutic use , Cholinergic Neurons/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Deep Brain Stimulation , Female , Globus Pallidus/physiology , Humans , Male , Microelectrodes , Middle Aged , Movement Disorders/etiology , Movement Disorders/therapy , Parkinson Disease/complications , Parkinson Disease/drug therapy , Parkinson Disease/therapy
16.
J Biol Chem ; 294(11): 3837-3852, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30659098

ABSTRACT

Cantharidin (CTD) is a potent anticancer small molecule produced by several species of blister beetle. It has been a traditional medicine for the management of warts and tumors for many decades. CTD suppresses tumor growth by inducing apoptosis, cell cycle arrest, and DNA damage and inhibits protein phosphatase 2 phosphatase activator (PP2A) and protein phosphatase 1 (PP1). CTD also alters lipid homeostasis, cell wall integrity, endocytosis, adhesion, and invasion in yeast cells. In this study, we identified additional molecular targets of CTD using a Saccharomyces cerevisiae strain that expresses a cantharidin resistance gene (CRG1), encoding a SAM-dependent methyltransferase that methylates and inactivates CTD. We found that CTD specifically affects phosphatidylethanolamine (PE)-associated functions that can be rescued by supplementing the growth media with ethanolamine (ETA). CTD also perturbed endoplasmic reticulum (ER) homeostasis and cell wall integrity by altering the sorting of glycosylphosphatidylinositol (GPI)-anchored proteins. A CTD-dependent genetic interaction profile of CRG1 revealed that the activity of the lipid phosphatase cell division control protein 1 (Cdc1) in GPI-anchor remodeling is the key target of CTD, independently of PP2A and PP1 activities. Moreover, experiments with human cells further suggested that CTD functions through a conserved mechanism in higher eukaryotes. Altogether, we conclude that CTD induces cytotoxicity by targeting Cdc1 activity in GPI-anchor remodeling in the ER.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cantharidin/pharmacology , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Glycosylphosphatidylinositols/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Death/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , HeLa Cells , Hep G2 Cells , Humans , Models, Biological , Protein Transport/drug effects , Saccharomyces cerevisiae Proteins/genetics
17.
Article in English | MEDLINE | ID: mdl-30455238

ABSTRACT

Coccidioidomycosis is a systemic fungal infection caused by the inhalation of the arthroconidia of either of two closely related dimorphic fungi, Coccidioides immitis and C. posadasii, that are endemic in the southwestern United States and other areas in the Western Hemisphere. Chronic cavitary pulmonary infections and extrapulmonary sites of infection are very difficult to treat and often require lifelong azole therapy. APX001A is the first in a new class of broad-spectrum antifungal agents that inhibit Gwt1, an enzyme which is required for cell wall localization of glycosylphosphatidylinositol (GPI)-anchored mannoproteins in fungi. APX001A and several analogs were highly active against clinical isolates of Coccidioides, inhibiting hyphal growth at low nanogram/ml concentrations. APX001 is the N-phosphonooxymethyl prodrug of APX001A, currently in clinical trials for the treatment of invasive fungal infections. Mice were treated orally once daily with 26 mg/kg/day of APX001 and the prodrug analog APX2097, 2 h after administration of the pan-cytochrome P450 inhibitor 1-aminobenzotriazole, which was used to enhance drug half-life and exposures to more closely mimic human pharmacokinetics of APX001A. Five days of treatment reduced lung colony counts by nearly 3 logs and prevented dissemination, similar to the efficacy of fluconazole dosed orally at 25 mg/kg twice daily. In a survival experiment, both APX001- and APX2097-treated mice survived significantly longer than control and fluconazole-treated mice. APX001 and other members of this new class of antifungal agents may offer great promise as effective therapies for coccidioidomycosis.


Subject(s)
Aminopyridines/therapeutic use , Antifungal Agents/therapeutic use , Coccidioides/pathogenicity , Isoxazoles/therapeutic use , Pneumonia/drug therapy , Amphotericin B/therapeutic use , Animals , Coccidioides/drug effects , Disease Models, Animal , Female , Fluconazole/therapeutic use , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Prodrugs/therapeutic use , Triazoles/therapeutic use
18.
J Neurosurg ; 130(3): 716-732, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29726781

ABSTRACT

OBJECTIVE: Despite the extensive use of the subthalamic nucleus (STN) as a deep brain stimulation (DBS) target, unveiling the extensive functional connectivity of the nucleus, relating its structural connectivity to the stimulation-induced adverse effects, and thus optimizing the STN targeting still remain challenging. Mastering the 3D anatomy of the STN region should be the fundamental goal to achieve ideal surgical results, due to the deep-seated and obscure position of the nucleus, variable shape and relatively small size, oblique orientation, and extensive structural connectivity. In the present study, the authors aimed to delineate the 3D anatomy of the STN and unveil the complex relationship between the anatomical structures within the STN region using fiber dissection technique, 3D reconstructions of high-resolution MRI, and fiber tracking using diffusion tractography utilizing a generalized q-sampling imaging (GQI) model. METHODS: Fiber dissection was performed in 20 hemispheres and 3 cadaveric heads using the Klingler method. Fiber dissections of the brain were performed from all orientations in a stepwise manner to reveal the 3D anatomy of the STN. In addition, 3 brains were cut into 5-mm coronal, axial, and sagittal slices to show the sectional anatomy. GQI data were also used to elucidate the connections among hubs within the STN region. RESULTS: The study correlated the results of STN fiber dissection with those of 3D MRI reconstruction and tractography using neuronavigation. A 3D terrain model of the subthalamic area encircling the STN was built to clarify its anatomical relations with the putamen, globus pallidus internus, globus pallidus externus, internal capsule, caudate nucleus laterally, substantia nigra inferiorly, zona incerta superiorly, and red nucleus medially. The authors also describe the relationship of the medial lemniscus, oculomotor nerve fibers, and the medial forebrain bundle with the STN using tractography with a 3D STN model. CONCLUSIONS: This study examines the complex 3D anatomy of the STN and peri-subthalamic area. In comparison with previous clinical data on STN targeting, the results of this study promise further understanding of the structural connections of the STN, the exact location of the fiber compositions within the region, and clinical applications such as stimulation-induced adverse effects during DBS targeting.


Subject(s)
Microsurgery/methods , Nerve Fibers , Neuronavigation/methods , Neurosurgical Procedures/methods , Subthalamic Nucleus/anatomy & histology , Subthalamic Nucleus/surgery , Brain/anatomy & histology , Brain/surgery , Cadaver , Deep Brain Stimulation , Diffusion Tensor Imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Subthalamic Nucleus/diagnostic imaging , Thalamus/anatomy & histology , Thalamus/surgery
19.
J Neurosurg ; 128(2): 596-604, 2018 02.
Article in English | MEDLINE | ID: mdl-28387621

ABSTRACT

OBJECTIVE Tourette syndrome (TS) is a complex neuropsychiatric disorder characterized by multiple motor and phonic tics. While pharmacological and behavioral therapy can be effective in most patients, a subset of patients remains refractory to treatment. Increasing clinical evidence from multiple centers suggests that deep brain stimulation (DBS) of the medial thalamus can be effective in many cases of refractory TS. METHODS The authors retrospectively reviewed outcomes in 13 patients with refractory TS who underwent medial thalamic DBS performed by their team over a 7-year period. Patients were evaluated by a multidisciplinary team, and preoperative objective assessments were performed using the Yale Global Tic Severity Scale (YGTSS) and Yale-Brown Obsessive Compulsive Scale. YGTSS scores were calculated at visits immediately postoperatively and at the most recent follow-up in patients with a minimum of 6 months of postoperative follow-up. Coordinates of the active DBS contacts were calculated and projected onto each patient's pre- and postoperative images. RESULTS Patients showed an average decrease of 37% (p = 0.0063) in the total tic severity at their first postoperative visit. At their latest visit, their scores achieved significance, decreasing from preoperative scores by an average of 50% (p = 0.0014). The average position of the active contact was noted to be at the junction of the posterior ventralis oralis internus/centromedian-parafascicular nuclei. Device-related complications occurred in 2 patients, necessitating additional surgeries. All patients continued to use the system at last follow-up. CONCLUSIONS The authors' data are consistent with the small but growing body of literature supporting DBS of the ventralis oralis internus/centromedian-parafascicular thalamus as an effective and relatively safe treatment for severe, refractory TS.


Subject(s)
Deep Brain Stimulation/methods , Tourette Syndrome/therapy , Adolescent , Adult , Deep Brain Stimulation/adverse effects , Drug Resistance , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Postoperative Care , Psychiatric Status Rating Scales , Retrospective Studies , Thalamus , Tourette Syndrome/diagnostic imaging , Treatment Outcome , Young Adult
20.
J Neurosurg ; 128(2): 575-582, 2018 02.
Article in English | MEDLINE | ID: mdl-28304188

ABSTRACT

Spasmodic dysphonia (SD) is a neurological disorder of the voice where a patient's ability to speak is compromised due to involuntary contractions of the intrinsic laryngeal muscles. Since the 1980s, SD has been treated with botulinum toxin A (BTX) injections into the throat. This therapy is limited by the delayed-onset of benefits, wearing-off effects, and repeated injections required every 3 months. In a patient with essential tremor (ET) and coincident SD, the authors set out to quantify the effects of thalamic deep brain stimulation (DBS) on vocal function while investigating the underlying motor thalamic circuitry. A 79-year-old right-handed woman with ET and coincident adductor SD was referred to our neurosurgical team. While primarily treating her limb tremor, the authors studied the effects of unilateral, thalamic DBS on vocal function using the Unified Spasmodic Dysphonia Rating Scale (USDRS) and voice-related quality of life (VRQOL). Since dystonia is increasingly being considered a multinodal network disorder, an anterior trajectory into the left thalamus was deliberately chosen such that the proximal contacts of the electrode were in the ventral oralis anterior (Voa) nucleus (pallidal outflow) and the distal contacts were in the ventral intermediate (Vim) nucleus (cerebellar outflow). In addition to assessing on/off unilateral thalamic Vim stimulation on voice, the authors experimentally assessed low-voltage unilateral Vim, Voa, or multitarget stimulation in a prospective, randomized, doubled-blinded manner. The evaluators were experienced at rating SD and were familiar with the vocal tremor of ET. A Wilcoxon signed-rank test was used to study the pre- and posttreatment effect of DBS on voice. Unilateral left thalamic Vim stimulation (DBS on) significantly improved SD vocal dysfunction compared with no stimulation (DBS off), as measured by the USDRS (p < 0.01) and VRQOL (p < 0.01). In the experimental interrogation, both low-voltage Vim (p < 0.01) and multitarget Vim + Voa (p < 0.01) stimulation were significantly superior to low-voltage Voa stimulation. For the first time, the effects of high-frequency stimulation of different neural circuits in SD have been quantified. Unexpectedly, focused Voa (pallidal outflow) stimulation was inferior to Vim (cerebellar outflow) stimulation despite the classification of SD as a dystonia. While only a single case, scattered reports exist on the positive effects of thalamic DBS on dysphonia. A Phase 1 pilot trial (DEBUSSY; clinical trial no. NCT02558634, clinicaltrials.gov) is underway at the authors' center to evaluate the safety and preliminary efficacy of DBS in SD. The authors hope that this current report stimulates neurosurgeons to investigate this new indication for DBS.


Subject(s)
Cerebellum , Deep Brain Stimulation/methods , Dysphonia/surgery , Globus Pallidus , Thalamus , Voice Disorders/surgery , Aged , Double-Blind Method , Electrodes, Implanted , Female , Humans , Prospective Studies , Quality of Life , Treatment Outcome , Voice
SELECTION OF CITATIONS
SEARCH DETAIL