Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Ann Med Surg (Lond) ; 86(3): 1376-1385, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463106

ABSTRACT

Background: Some studies have found that the application of traditional Chinese medicine in the treatment of lung cancer has achieved satisfying results. Polyphyllin Ⅲ (PP Ⅲ) is a natural steroid saponin from P. polyphylla var. yunnanensis, and its analogs have played a wide role in anticancer research. This study aimed to investigate the effect of PP Ⅲ on the development of lung cancer and its molecular mechanism. Methods: A549 and NCI-H1299 cell lines were treated with PP Ⅲ in gradient concentration to detect the IC50 of the cells, and the optimal concentration was selected for subsequent experiments. The effects of PP III treatment on lung cancer were investigated in vitro and in vivo. Results: In vitro experiments, it was found that the proliferation, invasion, migration, and colony formation ability of cancer cells were significantly reduced after PP III treatment, while accompanied by a large number of cell apoptosis. Further detection showed that N-cadherin was significantly decreased, E-cadherin was increased, and Snail and Twist were decreased in A549 cells and NCI-H1299 cells, respectively. In addition, GSK-3ß expression was increased, while ß-catenin expression was reduced with PP III treatment. In the mouse model, it was demonstrated that the volume of transplanted tumors was significantly reduced after PP Ⅲ treatment. Conclusions: PP Ⅲ has the capacity to inhibit the progression of lung cancer and regulate epithelial-mesenchymal transition through the GSK-3ß/ß-catenin pathway to suppress the malignant behavior of cancer cells. The application of PP Ⅲ is expected to be an effective method for the treatment of lung cancer.

2.
J Alzheimers Dis Rep ; 8(1): 461-477, 2024.
Article in English | MEDLINE | ID: mdl-38549642

ABSTRACT

Background: Neuronal loss occurs early and is recognized as a hallmark of Alzheimer's disease (AD). Promoting neurogenesis is an effective treatment strategy for neurodegenerative diseases. Traditional Chinese herbal medicines serve as a rich pharmaceutical source for modulating hippocampal neurogenesis. Objective: Gallic acid (GA), a phenolic acid extracted from herbs, possesses anti-inflammatory and antioxidant properties. Therefore, we aimed to explore whether GA can promote neurogenesis and alleviate AD symptoms. Methods: Memory in mice was assessed using the Morris water maze, and protein levels were examined via western blotting and immunohistochemistry. GA's binding site in the promoter region of transcription regulator nuclear factor erythroid 2-related factor 2 (Nrf2) was calculated using AutoDock Vina and confirmed by a dual luciferase reporter assay. Results: We found that GA improved spatial memory by promoting neurogenesis in the hippocampal dentate gyrus zone. It also improved synaptic plasticity, reduced tau phosphorylation and amyloid-ß concentration, and increased levels of synaptic proteins in APP/PS1 mice. Furthermore, GA inhibited the activity of glycogen synthase kinase-3ß (GSK-3ß). Bioinformatics tools revealed that GA interacts with several amino acid sites on GSK-3ß. Overexpression of GSK-3ß was observed to block the protective effects of GA against AD-like symptoms, while GA promoted neurogenesis via the GSK-3ß-Nrf2 signaling pathway in APP/PS1 mice. Conclusions: Based on our collective findings, we hypothesize that GA is a potential pharmaceutical agent for alleviating the pathological symptoms of AD.

3.
Phytochemistry ; 220: 114019, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38346546

ABSTRACT

Seven undescribed sesquiterpenes, including three dimeric guaianolide sesquiterpenes artemongolides G-I (1-3) and four sesquiterpene lactones artemanomalide D-G (16-19), along with seventeen known compounds isoabsinthin (4), absinthin (5), 11-eptabsinthin (6), 11, 11'-bis-epiabsinthin (7), 10', 11'- epiabsinthin (8), anabsinthin (9), isoanabsinthin (10), absinthin D (11), anabsin (12), caruifolin D (13), gnapholide (14), caruifolin C (15), 1ß(R),10ß(S)-dihydroxy-3-oxo-11ß (S)H-4,11(13)-guaien-6α(S),12-olide (20), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,10(14),11(13)-trien-12-oic acid (21), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,9,11(13)-trien-12-oic acid (22), argyinolide J (23), artabsinolide A (24) were isolated from the plant Artemisia mongolica. The structures were determined by interpreting NMR, HRESIMS and ECD data. The X-ray crystal structure of 4, 7 and 8 were reported for the first time. In the anti-vitiligo activity test, compounds 2, 7, 12, 23 and 24 demonstrated activity in promoting melanogenesis at a concentration of 50 µM in B16 cells, with 8-methoxypsoralan (8-MOP) as a positive control. Further research on the mechanism revealed that artemongolides H (2) enhance the expression of MITF and TRPs by upregulating p-Akt and p-GSK-3ß, leading to an increase in ß-catenin content in the cell cytoplasm. Subsequently, ß-catenin translocates into the nucleus, resulting in melanogenesis. The results supported the regulation of melanogenesis by artemongolide H (2) through the Akt/GSK3ß/ß-catenin signaling pathway. The anti-inflammatory results demonstrated that compounds 4, 5, 6, 9 and 14 can inhibit the upregulation of IL-6 mRNA and CCL2 mRNA expression. Compound 12 specifically inhibited the upregulation of IL-6 mRNA expression. These compounds exhibited significant anti-inflammatory activities. The activity results revealed that these sesquiterpene compounds have the potential to become lead compounds for the treatment of vitiligo and inflammatory diseases.


Subject(s)
Artemisia , Asteraceae , Sesquiterpenes , Artemisia/chemistry , beta Catenin , Glycogen Synthase Kinase 3 beta , Interleukin-6 , Proto-Oncogene Proteins c-akt , Trientine , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes, Guaiane/pharmacology , Sesquiterpenes, Guaiane/chemistry , Anti-Inflammatory Agents , RNA, Messenger , Lactones/pharmacology , Lactones/chemistry , Asteraceae/chemistry , Molecular Structure
4.
Inflammopharmacology ; 32(2): 1091-1112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38294617

ABSTRACT

Erigeron bonariensis is widely distributed throughout the world's tropics and subtropics. In folk medicine, E. bonariensis has historically been used to treat head and brain diseases. Alzheimer's disease (AD) is the most widespread form of dementia initiated via disturbances in brain function. Herein, the neuroprotective effect of the chemically characterized E. bonariensis ethanolic extract is reported for the first time in an AD animal model. Chemical profiling was conducted using UPLC-ESI-MS analysis. Female rats underwent ovariectomy (OVX) followed by 42 days of D-galactose (D-Gal) administration (150 mg/kg/day, i.p) to induce AD. The OVX/D-Gal-subjected rats received either donepezil (5 mg/kg/day) or E. bonariensis at 50, 100, and 200 mg/kg/day, given 1 h prior to D-Gal. UPLC-ESI-MS analysis identified 42 chemicals, including flavonoids, phenolic acids, terpenes, and nitrogenous constituents. Several metabolites, such as isoschaftoside, casticin, velutin, pantothenic acid, xanthurenic acid, C18-sphingosine, linoleamide, and erucamide, were reported herein for the first time in Erigeron genus. Treatment with E. bonariensis extract mitigated the cognitive decline in the Morris Water Maze test and the histopathological alterations in cortical and hippocampal tissues of OVX/D-Gal-subjected rats. Moreover, E. bonariensis extract mitigated OVX/D-Gal-induced Aß aggregation, Tau hyperphosphorylation, AChE activity, neuroinflammation (NF-κBp65, TNF-α, IL-1ß), and apoptosis (Cytc, BAX). Additionally, E. bonariensis extract ameliorated AD by increasing α7-nAChRs expression, down-regulating GSK-3ß and FOXO3a expression, and modulating Jak2/STAT3/NF-ĸB p65 and PI3K/AKT signaling cascades. These findings demonstrate the neuroprotective and memory-enhancing effects of E. bonariensis extract in the OVX/D-Gal rat model, highlighting its potential as a promising candidate for AD management.


Subject(s)
Alzheimer Disease , Erigeron , Neuroprotective Agents , Rats , Female , Animals , Rats, Wistar , Galactose/adverse effects , Chromatography, High Pressure Liquid , Phosphatidylinositol 3-Kinases , Glycogen Synthase Kinase 3 beta , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
5.
Adv Sci (Weinh) ; 11(13): e2307850, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240457

ABSTRACT

Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3ß (p-GSK-3ß), thereby promoting ß-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic ß-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.


Subject(s)
Diterpenes , Kidney Diseases , cdc42 GTP-Binding Protein , Animals , Mice , beta Catenin/drug effects , beta Catenin/metabolism , Fibrosis/drug therapy , Glycogen Synthase Kinase 3 beta/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Kidney/metabolism , Kidney Diseases/drug therapy , Wikstroemia/chemistry , Diterpenes/pharmacology , cdc42 GTP-Binding Protein/drug effects
6.
J Ethnopharmacol ; 324: 117747, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38218500

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill., also known as "African mango" or "bush mango", belonging to family Irvingiaceae, has been mostly used as food and traditional medicine for weight loss and to enhance the health. AIM OF THE STUDY: The overconsumption of high-fat and high-carbohydrate (HFHC) food induces oxidative stress, leading to neurological and cognitive dysfunction. Consequently, there is an immediate need for effective treatment. Hence, this study explored the efficacy of orlistat, metformin, and I. gabonensis seeds' total aqueous extract (IG SAE) in addressing HFHC-induced cognitive impairment by mitigating oxidative stress and their underlying mechanistic pathways. MATERIALS AND METHODS: Initially, the secondary metabolite profile of IG SAE is determined using high-performance liquid chromatography coupled with a mass detector (UHPLC/MS). The in vivo study involves two phases: an established model phase with control (10 rats on a standard diet) and HFHC diet group (50 rats) for 3 months. In the study phase, HFHC is divided into 5 groups. The first subgroup receives HFHC diet only, while the remaining groups each receive HFHC diet with either Orlistat, metformin, or IG SAE at doses of 100 mg/kg and 200 mg/kg, respectively, for 28 days. RESULTS: More than 150 phytoconstituents were characterized for the first holistic approach onto IG metabolome. Characterization of IG SAE revealed that tannins dominate metabolites in the plant. Total phenolics and flavonoids were estimated to standardize our extract (77.12 ± 7.09 µg Gallic acid equivalent/mg extract and 8.039 ± 0.53 µg Rutin equivalent/mg extract, respectively). Orlistat, metformin, and IG SAE successfully reduced the body weight, blood glucose level, lipid profile, oxidative stress and neurotransmitters levels leading to improved behavioral functions as well as histological alternation. Also, IG SAE halted inflammation, apoptosis, and endoplasmic reticulum stress, together with promoting autophagy, via modulation of PI3K/AKT/GSK-3ß/CREB, PERK/CHOP/Bcl-2 and AMPK/SIRT-1/m-TOR pathways. CONCLUSION: Metformin, orlistat, and IG SAE offer a promising multi-target therapy to mitigate HFHC diet-induced oxidative stress, addressing cognitive function. This involves diverse molecular mechanisms, particularly the modulation of inflammation, ER stress, and both PI3K/AKT/GSK-3ß/CREB and AMPK/SIRT-1/m-TOR pathways. Furthermore, the higher dose of IG SAE demonstrated effects comparable to orlistat and metformin across most studied parameters.


Subject(s)
Cognitive Dysfunction , Mangifera , Metformin , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , AMP-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Orlistat , TOR Serine-Threonine Kinases/metabolism , Seeds/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Inflammation , Metabolome , Diet
7.
J Ethnopharmacol ; 324: 117731, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38218505

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Oxalis corniculata (O. corniculata) is a member of Oxalidaceae family, widely distributed in Asia, Europe, America, and Africa, used extensively as food and its traditional folkloric uses include management of epilepsy, gastric disorders, and neurodegenerative diseases, together with its use in enhancing health. Numerous pharmacological benefits of O. corniculata are linked to its anti-inflammatory and antioxidant abilities. One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD) in which neuroinflammation and oxidative stress are its main pathogenic processes. AIM OF THE STUDY: Our research aimed to study the neuroprotective effect of the methanolic extract of Oxalis corniculata Linn. (O. corniculata ME), compared to selenium (Se) against AlCl3-induced AD. MATERIALS AND METHODS: Forty male albino rats were allocated into four groups (Gps). Gp I a control group, the rest of the animals received AlCl3 (Gp II-Gp IV). Rats in Gp III and IV were treated with Se and O. corniculata ME, respectively. RESULTS: The chemical profile of O. corniculata ME was studied using ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry, allowing the tentative identification of sixty-six compounds, including organic acids, phenolics and others, cinnamic acid and its derivatives, fatty acids, and flavonoids. AlCl3 showed deterioration in short-term memory and brain histological pictures. Our findings showed that O. corniculata ME and selenium helped to combat oxidative stress produced by accumulation of AlCl3 in the brain and in prophylaxis against AD. Thus, Selenium (Se) and O. corniculata ME restored antioxidant defense, via enhancing Nrf2/HO-1 hub, hampered neuroinflammation, via TLR4/NF-κß/NLRP3, along with dampening apoptosis, Aß generation, tau hyperphosphorylation, BACE1, ApoE4 and LRP1 levels. Treatments also promoted autophagy and modulated Wnt 3/ß-catenin/GSK3ß cue. CONCLUSIONS: It was noted that O. corniculata ME showed a notable ameliorative effect compared to Se on Nrf2/HO-1, TLR4/NF-κß/NLRP3, APOE4/LRP1, Wnt 3/ß-catenin/GSK-3ß and PERK axes.


Subject(s)
Alzheimer Disease , Oxalidaceae , Selenium , Rats , Male , Animals , Glycogen Synthase Kinase 3 beta , Antioxidants/pharmacology , Antioxidants/therapeutic use , Oxalidaceae/chemistry , Cues , Apolipoprotein E4 , Amyloid Precursor Protein Secretases , Toll-Like Receptor 4 , Selenium/therapeutic use , beta Catenin , Neuroinflammatory Diseases , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Aspartic Acid Endopeptidases/therapeutic use , Alzheimer Disease/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
8.
Psychopharmacology (Berl) ; 241(5): 1027-1036, 2024 May.
Article in English | MEDLINE | ID: mdl-38289512

ABSTRACT

BACKGROUND: Jitai tablet, a traditional Chinese medicine, has a neuroprotective effect on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. As one of the main active ingredients in the Jitai tablet, corydaline (Cory) has analgesic and anti-allergic effects, but it has not been studied in PD. Here, we investigated the role and mechanism of Cory in PD. METHODS: The PD model was induced by MPTP. Cell viability was measured by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide assay. The Pole test and traction test were performed to detect the behaviors of mice. The expression of tyrosine hydroxylase (Th) was detected by immunohistochemistry and Western blot. Immunofluorescence staining, monodansylcadaverine staining, and Western blot were conducted to assess autophagy. A lactic dehydrogenase release assay was used to detect cytotoxicity. Network pharmacology was used to screen the targets. RESULTS: There existed cytotoxicity when the concentration of Cory reached 40 µg/mL. Cory (not exceeding 20 µg/mL) could alleviate MPTP-induced cell damage. In vivo experiments indicated that Cory could improve the motor coordination of mice with PD. Besides, Cory could increase LC3-II/LC3-I levels both in vivo and in vitro. In addition, the Th levels reduced in the striatum and middle brain tissues of Parkinson's mice were recovered by Cory injection. We also found that Cory decreased the phosphorylation of glucogen synthase kinase-3 beta (GSK-3ß) at Tyr216 and increased the phosphorylation of GSK-3ß at Ser9 not only in primary neurons and SH-SY5Y cells but also in the striatum and middle brain tissues. Furthermore, Cory increased LC3-II/LC3-I levels and decreased p62 levels by regulating GSK-3ß. CONCLUSION: Cory enhanced autophagy, attenuated MPTP-induced cytotoxicity, and alleviated PD partly through the regulation of GSK-3ß phosphorylation.


Subject(s)
Berberine Alkaloids , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Humans , Mice , Animals , Parkinson Disease/drug therapy , Glycogen Synthase Kinase 3 beta/metabolism , Phosphorylation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Tyrosine 3-Monooxygenase/metabolism , Autophagy , Tablets/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Dopaminergic Neurons
9.
Nano Lett ; 24(1): 347-355, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38149649

ABSTRACT

Highly soluble salts and gas mediated therapies are emerging antitumor strategies. However, the therapeutic efficacy remains restricted by difficulty in delivering them to the tumor site and poorly controlled release in deep tissues. Here, an intelligent wireless photoactivated targeted nanosystem is designed for delivering LiCl and H2 to tumors for therapy. LiCl causes cell death by inhibiting the activity of GSK-3ß. H2 selectively interacts with reactive oxygen species in the tumor, leading to redox stress, which induces apoptosis. The significant heat generated by the nanosystem not only kills tumor cells but also accelerates the dissolution of LiCl and the release of H2. The rapid dissolution of LiCl leads to a surge in intracellular osmotic pressure, which further intensifies the redox stress response and enhances the efficiency of therapy. The nanosystem shows efficient tumor therapeutic capability via synergistic effects of hyperthermia/redox stress amplification/GSK-3ß activity inhibition.


Subject(s)
Apoptosis , Hyperthermia, Induced , Glycogen Synthase Kinase 3 beta/pharmacology , Cell Death , Reactive Oxygen Species/metabolism
10.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139125

ABSTRACT

Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3ß (GSK-3ß) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3ß. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3ß. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Animal Diseases , Gastrodia , MicroRNAs , Neurodegenerative Diseases , Neuroprotective Agents , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Gastrodia/genetics , Glycogen Synthase Kinase 3 beta/drug effects , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , MicroRNAs/metabolism , MicroRNAs/pharmacology , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphorylation , tau Proteins/metabolism
11.
Biomed Pharmacother ; 168: 115614, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37862971

ABSTRACT

Glycogen synthase kinase 3ß (GSK3ß) has been associated with sensing many different stimuli to trigger the NLRP3 inflammasome, which plays a crucial role in promoting the inflammatory response in diseases, including chronic obstructive pulmonary disease (COPD). Bufei Yishen formula (BYF), a traditional Chinese herbal medicine, has beneficial effects on COPD. Effective-component compatibility of BYF (ECC-BYF), optimized from BYF, is equally effective as BYF in inhibiting COPD inflammation. However, the exact mechanism by which ECC-BYF regulates the activation of NLRP3 inflammasome to inhibit COPD inflammation remains unclear. Hence, we investigated the mechanisms underlying the alleviation of COPD inflammation by ECC-BYF through the inhibition of GSK3ß-mediated NLRP3 inflammasome activation by experimental rat model of COPD and lipopolysaccharide/adenosine triphosphate (LPS/ATP) induced macrophages. The data showed that ECC-BYF significantly improved the lung function, attenuated histopathological damage, and alleviated inflammatory cell infiltration and alveolar destruction. Further, it significantly inhibited inflammatory cytokine production and downregulated the phosphorylation of GSK3ß by inhibiting the activation of NLRP3 inflammasome in the rat model of COPD. Moreover, ECC-BYF suppressed the activation of the NLRP3 inflammasome by increasing the phosphorylation at serine 9 and decreasing the phosphorylation at tyrosine 216 of GSK3ß, followed by the inhibition of IL-1ß secretion in macrophages. Together, ECC-BYF effectively ameliorates COPD by suppressing inflammation, which is dependent on the regulation of GSK3ß-mediated NLRP3 inflammasome activation.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Disease, Chronic Obstructive , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Glycogen Synthase Kinase 3 beta , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Inflammation/drug therapy , Lipopolysaccharides/pharmacology
12.
Cardiovasc Toxicol ; 23(9-10): 295-304, 2023 10.
Article in English | MEDLINE | ID: mdl-37676618

ABSTRACT

Thiazolidinediones are useful antidiabetic medications. However, their use is associated with adverse side effects like edema, heart failure and bone fractures. In this study, we investigated the anti-ferroptosis effects of suberosin (SBR; a prenylated coumarin) in diabetic Sprague Dawley rats. Further, we assessed the effects of co-administration of SBR (30 and 90 mg/kg/day) with thiazolidinedione (TZ at 15 mg/kg) to mitigate TZ-induced cardiomyopathy in diabetic rats. Our results showed that cardiac output, stroke volume, left ventricle systolic and diastolic pressures were aggravated in diabetic rats treated with TZ alone after 4 weeks. TZ treatments induced ferroptosis as well as marked histoarchitecture disarrangements in rat cardiomyocytes. The study found that optimizing volume overload alleviated cardiac hypertrophy and mitigated left ventricular dysfunction in diabetic rats co-treated with SBR. SBR co-administration with TZ reduced MDA levels in heart tissue and serum iron concentration (biomarkers of ferroptosis), downregulated mRNA expressions of LOX, ACSL4, LPCAT3, and promoted GPX4 activity as well as upregulated mRNA levels of AKT/PI3K/GSK3ß as compared to the group administered with TZ at 15 mg/kg. SBR co-administration also helped to retain the normal histoarchitecture of cardiomyocytes in diabetic rats. Hence, our results suggested that SBR is an effective supplement and could be prescribed to diabetic patients along with TZ but this requires further clinical trials.


Subject(s)
Cardiomyopathies , Diabetes Mellitus, Experimental , Thiazolidinediones , Humans , Rats , Animals , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Rats, Sprague-Dawley , Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , Cardiomyopathies/prevention & control , Coumarins , Signal Transduction , 1-Acylglycerophosphocholine O-Acyltransferase
13.
J Agric Food Chem ; 71(37): 13783-13794, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37676640

ABSTRACT

Alzheimer's disease (AD) is a primary neurodegenerative disease. It can be caused by aging and brain trauma and severely affects the abilities of cognition and memory of patients. Therefore, it seriously threatens the mental and physical health of humans worldwide. As a traditional Chinese medicine, ginsenosides have been proven to have a variety of pharmacological activities. Ginsenoside Rh4 (Rh4) is one of the rare ginsenosides with higher pharmacological activity than ordinary ginsenosides, but its effect on alleviating AD and its molecular mechanism have not been studied. Here, we investigated the anti-AD effects of Rh4 and its potential mechanisms using an AD mouse model induced by a combination of AlCl3·6H2O and d-galactose. The results showed that Rh4 could significantly improve the ability of cognizance and reduce neuronal damage in mice. Concurrently, Rh4 attenuates amyloid ß accumulation, increases the density of dendritic spines, and logically inhibits synaptic structural damage as a result of neuronal excessive apoptosis and autophagy. Rh4 can not only inhibit the inflammatory response caused by the overactivation of microglia and astrocytes, reduce the levels of pro-inflammatory factors, increase the level of antioxidant enzymes in serum, and significantly improve the activity of antioxidant enzyme SOD1 in the hippocampus but also inhibit the hyperphosphorylation of tau protein in the hippocampus of mice by regulating the Wnt2b/GSK-3ß/SMAD4 signaling pathway. Together, this study provides a theoretical basis for Rh4 in the treatment of AD and reveals that Rh4 is a potential drug for the treatment of AD.


Subject(s)
Alzheimer Disease , Ginsenosides , Neurodegenerative Diseases , Humans , Animals , Mice , Amyloid beta-Peptides/genetics , tau Proteins/genetics , Ginsenosides/pharmacology , Glycogen Synthase Kinase 3 beta/genetics , Neuroinflammatory Diseases , Antioxidants , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Signal Transduction
14.
Fitoterapia ; 171: 105684, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751799

ABSTRACT

Houttuynia cordata (Thunb.), an important medicinal plant of Northeast India, Korea, and China, is used to treat various ailments and for anticancer research. Knowing its traditional practices, we are interested in the mode-of-action of HCT on HepG2 to co-relate the traditional practice with modern drug therapeutics. UPLC-Q-ToF-Ms analysis of HCT reveals identification of 14 metabolites. Network pharmacology analysis of the 14 compounds showed interaction with 232 different targets with their potential involvement in hepatocellular carcinoma. Whole extracts impart cytotoxicity on variety of cell lines including HepG2. There was a significant morphological alteration in treated HepG2 cells due to impairment of cytoskeletal components like ß and γ- tubulin. Arrest at G1-S checkpoint was clearly indicated downregulation of Cyclin D1. The root extracts actuated apoptosis in HepG2 as evident from altered mitochondrial membrane potential, Annexin V- FITC, BrdU-PI, AO/EtBr assays, and modulations of apoptotic protein expression but without ROS generation. Whole extracts caused abrogation of epithelial to mesenchymal transition with repression of Snail, N-Cadherin, Vimentin, MMP-9, and upregulation of Pan-Cadherin. Pathway analysis found GSK-3ß in Wnt/ß-Catenin signaling cascade to be involved through Hepatocellular carcinoma (hsa05225) pathway. The GSK-3ß/ß-Catenin/PDL-1 signaling was found to be inhibited with the downregulation of pathway components. This was further confirmed by application of EGF, an inducer of the GSK-3ß/ß-Catenin pathway that neutralized the effect of Houttuynia cordata (Thunb.) root extract on the said pathway. Network pharmacology analysis also confirms the synergy network with botanical-bioactive-target-disease which showed Kaempferol to have the highest degree of association with the said pathway.


Subject(s)
Carcinoma, Hepatocellular , Houttuynia , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Houttuynia/metabolism , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/pharmacology , Tandem Mass Spectrometry , Epithelial-Mesenchymal Transition , Cell Proliferation , Molecular Structure , Wnt Signaling Pathway , Liver Neoplasms/drug therapy , Apoptosis
15.
Phytomedicine ; 121: 155078, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37734252

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with limited therapeutic strategies. Therefore, there is an urgent need to search for safe and effective drugs to treat this condition. Ophiopogonin D (OP-D), a steroidal saponin compound extracted from ophiopogon, possesses various pharmacological properties, including anti-inflammatory, antioxidant, and antitumor effects. However, the potential pharmacological effect of OP-D on pulmonary fibrosis remains unknown. PURPOSE: The aim of this study was to investigate whether OP-D can improve pulmonary fibrosis and to explore its mechanism of action. METHODS: The effect of OP-D on pulmonary fibrosis was investigated in vitro and in vivo using a mouse model of IPF induced by bleomycin and an in vitro model of human embryonic lung fibroblasts induced by transforming growth factor-ß1 (TGF-ß1). The mechanism of action of OP-D was determined using multi-omics techniques and bioinformatics. RESULTS: OP-D attenuated epithelial-mesenchymal transition and excessive deposition of extracellular matrix in the lungs, promoted the apoptosis of lung fibroblasts, and blocked the differentiation of lung fibroblasts into myofibroblasts. The multi-omics techniques and bioinformatics analysis revealed that OP-D blocked the AKT/GSK3ß pathway, and the combination of a PI3K/AKT inhibitor and OP-D was effective in alleviating pulmonary fibrosis. CONCLUSION: This study demonstrated for the first time that OP-D can reduce lung inflammation and fibrosis. OP-D is thus a potential new drug for the prevention and treatment of pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Saponins , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Multiomics , Phosphatidylinositol 3-Kinases/metabolism , Lung/pathology , Saponins/pharmacology , Saponins/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Fibroblasts , Bleomycin , Mice, Inbred C57BL
16.
Chin Med ; 18(1): 104, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608369

ABSTRACT

PURPOSE: The combination of Xiaozheng decoction with postoperative intravesical instillation has been shown to improve the prognosis of bladder cancer patients and prevent recurrence. However, the mechanisms underlying the efficacy of this herbal formula remain largely unclear. This research aims to identify the important components of Xiaozheng decoction and explore their anti-bladder cancer effect and mechanism using network pharmacology-based experiments. METHODS: The chemical ingredients of each herb in the Xiaozheng decoction were collected from the Traditional Chinese Medicine (TCM) database. Network pharmacology was employed to predict the target proteins and pathways of action. Disease databases were utilized to identify target genes associated with bladder cancer. A Protein-Protein Interaction (PPI) network was constructed to illustrate the interaction with intersected target proteins. Key targets were identified using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. A compound-target-pathway network was established after molecular docking predictions. In vitro experiments with bladder cancer cell lines were conducted using core chemical components confirmed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-qTOF-MS) to verify the conclusions of network pharmacology. RESULTS: 45 active compounds were extracted, and their relationships with Traditional Chinese Medicines (TCMs) and protein targets were presented, comprising 7 herbs, 45 active compounds, and 557 protein targets. The intersection between potential TCM target genes and bladder cancer-related genes yielded 322 genes. GO and KEGG analyses indicated that these targets may be involved in numerous cancer-related pathways. Molecular docking results showed that candidate compounds except mandenol could form stable conformations with the receptor. In vitro experiments on three bladder cancer cell lines demonstrated that quercetin and two other impressive new compounds, bisdemethoxycurcumin (BDMC) and kumatakenin, significantly promoted cancer cell apoptosis through the B-cell lymphoma 2/Bcl-2-associated X (Bcl-2/BAX) pathway and inhibited proliferation and migration through the glycogen synthase kinase 3 beta (GSK3ß)/ß-catenin pathway. CONCLUSION: By employing network pharmacology and conducting in vitro experiments, the mechanism of Xiaozheng decoction's effect against bladder cancer was tentatively elucidated, and its main active ingredients and targets were identified, providing a scientific basis for future research.

17.
Int J Psychiatry Med ; 58(6): 559-575, 2023 11.
Article in English | MEDLINE | ID: mdl-37545122

ABSTRACT

BACKGROUND: Growing evidence has shown that hypovitaminosis D is a risk factor for developing schizophrenia and comorbid conditions. Therefore, this study aimed to examine the effect of vitamin D supplementation on serum levels of vitamin D, metabolic factors related to insulin resistance (IR) and the severity of the disorder in patients with schizophrenia. METHODS: Forty-eight chronic male patients with schizophrenia with vitamin D deficiency (≤20 ng/mL= (≤50 nmol/l) were selected and randomly assigned to vitamin D treatment and placebo groups. Subjects were supplemented for 8 weeks with vitamin D (2000 IU/day) or placebo. RESULTS: Within-group comparison revealed that the vitamin D group had a significant reduction in waist circumference, Positive and Negative Syndrome Scale - total score (PANSS-TS), and glycogen synthase kinase 3 beta (GSK-3ß) levels (P = .022, P = <.001 and P = .013, respectively). On the other hand, the placebo group showed a significant increase in the level of fasting serum insulin and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (P = .003 and P = .003). The between-group comparison showed a significant difference in terms of PANSS-TS, GSK-3ß, fasting serum insulin (FSI), and HOMA-IR (P = .022, P = .048, P = .013 and P = .014 respectively). CONCLUSIONS: Among vitamin D deficient patients with schizophrenia, vitamin D supplementation may affect GSK-3 ß, an important biomarker in schizophrenia and insulin resistance. In addition, vitamin D supplementation in such patients may reduce the disorder's symptom severity.


Subject(s)
Insulin Resistance , Schizophrenia , Vitamin D Deficiency , Humans , Male , Blood Glucose , Dietary Supplements , Glycogen Synthase Kinase 3 beta/blood , Insulin/blood , Iran , Schizophrenia/drug therapy , Vitamin D/therapeutic use , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamins
18.
Phytother Res ; 37(10): 4838-4850, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37458182

ABSTRACT

Diabetic encephalopathy is a common consequence of diabetes mellitus that causes cognitive dysfunction and neuropsychiatric disorders. Praeruptorin C (Pra-C) from the traditional Chinese medicinal herb Peucedanum praeruptorum Dunn. is a potential antioxidant and neuroprotective agent. This study was conducted to investigate the molecular mechanisms underlying the effect of Pra-C on diabetic cognitive impairment. A novel object recognition test and the Morris water maze test were performed to assess the behavioral performance of mice. Electrophysiological recordings were made to monitor synaptic plasticity in the hippocampus. A protein-protein interaction network of putative Pra-C targets was constructed, and molecular docking simulations were performed to predict the potential mechanisms of the action of Pra-C. Protein expression levels were detected by western blotting. Pra-C administration significantly lowered body weight and fasting blood glucose levels and alleviated learning and memory deficits in type 2 diabetic mice. Network pharmacology and molecular docking results suggested that Pra-C affects the PI3K/AKT/GSK3ß signaling pathway. Western blot analysis confirmed significant increases in phosphorylated PI3K, AKT, and GSK3ß levels in vivo and in vitro upon Pra-C administration. Pra-C alleviated cognitive impairment in type 2 diabetic mice by activating PI3K/AKT/GSK3ß pathway.

19.
Zhongguo Zhen Jiu ; 43(7): 793-9, 2023 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-37429659

ABSTRACT

OBJECTIVE: To observe the effects of Yizhi Tiaoshen (benefiting mental health and regulating the spirit) acupuncture on learning and memory function, and the expression of phosphorylated tubulin-associated unit (tau) protein in the hippocampus of Alzheimer's disease (AD) model rats, and explore the effect mechanism of this therapy on AD. METHODS: A blank group and a sham-operation group were randomly selected from 60 male SD rats, 10 rats in each one. AD models were established in the rest 40 rats by the intraperitoneal injection of D-galactose and okadaic acid in the CA1 region of the bilateral hippocampus. Thirty successfully-replicated model rats were randomly divided into a model group, a western medication group and an acupuncture group, 10 rats in each one. In the acupuncture group, acupuncture was applied to "Baihui" (GV 20), "Sishencong" (EX-HN 1), "Neiguan" (PC 6), "Shenmen" (HT 7), "Xuanzhong" (GB 39) and "Sanyinjiao" (SP 6); and the needles were retained for 10 min. Acupuncture was given once daily. One course of treatment was composed of 6 days, with the interval of 1 day; the completion of treatment included 4 courses. In the western medication group, donepezil hydrochloride solution (0.45 mg/kg) was administrated intragastrically, once daily; it took 7 days to accomplish one course of treatment and a completion of intervention was composed of 4 courses. Morris water maze (MWM) and novel object recognition test (NORT) were used to assess the learning and memory function of the rats. Using HE staining and Nissl staining, the morphological structure of the hippocampus was observed. With Western blot adopted, the protein expression of the tau, phosphorylated tau protein at Ser198 (p-tau Ser198), protein phosphatase 2A (PP2A) and glycogen synthase kinase-3ß (GSK-3ß) in the hippocampus was detected. RESULTS: There were no statistical differences in all of the indexes between the sham-operation group and the blank group. Compared with the sham-operation group, in the model group, the MWM escape latency was prolonged (P<0.05), the crossing frequency and the quadrant stay time in original platform were shortened (P<0.05), and the NORT discrimination index (DI) was reduced (P<0.05); the hippocampal cell numbers were declined and the cells arranged irregularly, the hippocampal neuronal structure was abnormal and the numbers of Nissl bodies decreased; the protein expression of p-tau Ser198 and GSK-3ßwas increased (P<0.05) and that of PP2A decreased (P<0.05). When compared with the model group, in the western medication group and the acupuncture group, the MWM escape latency was shortened (P<0.05), the crossing frequency and the quadrant stay time in original platform were increased (P<0.05), and DI got higher (P<0.05); the hippocampal cell numbers were elevated and the cells arranged regularly, the damage of hippocampal neuronal structure was attenuated and the numbers of Nissl bodies were increased; the protein expression of p-tau Ser198 and GSK-3ß was reduced (P<0.05) and that of PP2A was increased (P<0.05). There were no statistically significant differences in the above indexes between the acupuncture group and the western medication group (P>0.05). CONCLUSION: Acupuncture therapy of "benefiting mental health and regulating the spirit" could improve the learning and memory function and alleviate neuronal injure of AD model rats. The effect mechanism of this therapy may be related to the down-regulation of GSK-3ß and the up-regulation of PP2A in the hippocampus, and then to inducing the inhibition of tau protein phosphorylation.


Subject(s)
Acupuncture Therapy , Alzheimer Disease , Male , Animals , Rats , Rats, Sprague-Dawley , Glycogen Synthase Kinase 3 beta , Tubulin , Alzheimer Disease/genetics , Alzheimer Disease/therapy , tau Proteins/genetics , Hippocampus
20.
Front Pharmacol ; 14: 1181319, 2023.
Article in English | MEDLINE | ID: mdl-37456759

ABSTRACT

Sepsis is a serious life-threatening health disorder with high morbidity and mortality rates that burden the world, but there is still a lack of more effective and reliable drug treatment. Liang-Ge-San (LGS) has been shown to have anti-inflammatory effects and is a promising candidate for the treatment of sepsis. However, the anti-sepsis mechanism of LGS has still not been elucidated. In this study, a set of genes related to inflammatory chemotaxis pathways was downloaded from Encyclopedia of Genes and Genomes (KEGG) and integrated with sepsis patient information from the Gene Expression Omnibus (GEO) database to perform differential gene expression analysis. Glycogen synthase kinase-3ß (GSK-3ß) was found to be the feature gene after these important genes were examined using the three algorithms Random Forest, support vector machine recursive feature elimination (SVM-REF), and least absolute shrinkage and selection operator (LASSO), and then intersected with possible treatment targets of LGS found through the search. Upon evaluation, the receiver operating characteristic (ROC) curve of GSK-3ß indicated an important role in the pathogenesis of sepsis. Immune cell infiltration analysis suggested that GSK-3ß expression was associated with a variety of immune cells, including neutrophils and monocytes. Next, lipopolysaccharide (LPS)-induced zebrafish inflammation model and macrophage inflammation model was used to validate the mechanism of LGS. We found that LGS could protect zebrafish against a lethal challenge with LPS by down-regulating GSK-3ß mRNA expression in a dose-dependent manner, as indicated by a decreased neutrophils infiltration and reduction of inflammatory damage. The upregulated mRNA expression of GSK-3ß in LPS-induced stimulated RAW 264.7 cells also showed the same tendency of depression by LGS. Critically, LGS could induce M1 macrophage polarization to M2 through promoting GSK-3ß inactivation of phosphorylation. Taken together, we initially showed that anti-septic effects of LGS is related to the inhibition on GSK-3ß, both in vitro and in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL