Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Phytomedicine ; 128: 155347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493717

ABSTRACT

BACKGROUND: Bile acid (BA) enterohepatic circulation disorders are a main feature of chronic cholestatic diseases. Promoting BA metabolism is thus a potential method of improving enterohepatic circulation disorders, and treat enterohepatic inflammation, oxidative stress and fibrosis due to cholestasis. PURPOSE: To investigate the effect of JiaGaSongTang (JGST) and its blood-absorbed ingredient 6-gingerol on α-naphthylisothiocyanate (ANIT)-induced chronic cholestasis, as well as elucidate the underlying regulatory mechanism. METHODS: Chronic cholestasis was induced in mice via subcutaneous injection of ANIT (50 mg/kg) every other day for 14 d. Treatment groups were administered JGST orally daily. Damage to the liver and intestine was observed using histopathological techniques. Biochemical techniques were employed to assess total BA (TBA) levels in the serum, liver, and ileum samples. Liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze fecal BA components. Bioinformatic methods were adopted to screen the core targets and pathways. The blood-absorbed ingredients of JGST were scrutinized via LC-MS/MS. The effects of the major JGST ingredients on farnesoid X receptor (FXR) transactivation were validated using dual luciferase reporter genes. Lastly, the effects of the FXR inhibitor, DY268, on JGST and 6-gingerol pharmacodynamics were observed at the cellular and animal levels. RESULTS: JGST ameliorated pathological impairments in the liver and intestine, diminishing TBA levels in the serum, liver and gut. Fecal BA profiling revealed that JGST enhanced the excretion of toxic BA constituents, including deoxycholic acid. Bioinformatic analyses indicated that JGST engaged in anti-inflammatory mechanisms, attenuating collagen accumulation, and orchestrating BA metabolism via interactions with FXR and other pertinent targets. LC-MS/MS analysis identified six ingredients absorbed to the bloodstream, including 6-gingerol. Surface plasmon resonance (SPR) and dual luciferase reporter gene assays confirmed the abilities of 6-gingerol to bind to FXR and activate its transactivation. Ultimately, in both cellular and animal models, the therapeutic efficacy of JGST and 6-gingerol in chronic cholestasis was attenuated in the presence of FXR inhibitors. CONCLUSION: The findings, for the first time, demonstrated that 6-gingerol, a blood-absorbed ingredient of JGST, can activate FXR to affect BA metabolism, and thereby attenuate ANIT-induced liver and intestinal injury in chronic cholestasis mice model via inhibition of inflammation, oxidative stress, and liver fibrosis, in part in a FXR-dependent mechanism.


Subject(s)
1-Naphthylisothiocyanate , Bile Acids and Salts , Catechols , Cholestasis , Fatty Alcohols , Liver , Receptors, Cytoplasmic and Nuclear , Animals , Bile Acids and Salts/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Cholestasis/drug therapy , Cholestasis/metabolism , Male , Mice , Catechols/pharmacology , Liver/drug effects , Liver/metabolism , Fatty Alcohols/pharmacology , Drugs, Chinese Herbal/pharmacology , Mice, Inbred C57BL , Humans , Chronic Disease , Disease Models, Animal
2.
Eur J Pharmacol ; 967: 176399, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38331338

ABSTRACT

Ginger has been used for thousands of years for the treatment of many illnesses, from nausea to migraines. Recently, an interest has grown in ginger compounds in the context of autoimmune and inflammatory diseases due to their significant anti-inflammatory effects. Nevertheless, the effects and mechanism of action of these phytochemicals in human immune cells, particularly in dendritic cells (DCs) are unclear. In the present study, we investigated the effects of 6-gingerol and 6-shogaol, the major compounds found in ginger rhizome, on the functionality of primary human monocyte-derived DCs (moDCs). Here we report for the first time that 6-gingerol and 6-shogaol dampen the immunogenicity of human DCs by inhibiting their activation, cytokine production and T cell stimulatory ability. In particular, the bioactive compounds of ginger dose-dependently inhibited the upregulation of activation markers, and the production of different cytokines in response to synthetic Toll-like receptor (TLR) ligands. Moreover, both compounds could significantly reduce the Escherichia coli-triggered cytokine production and T cell stimulatory capacity of moDCs. We also provide evidence that the ginger-derived compounds attenuate DC functionality via inhibiting the nuclear factor-κB (NF-kB), mitogen activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) signaling cascades. Further, 6-shogaol but not 6-gingerol activates the AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways that might contribute to its anti-inflammatory action. Altogether, our results indicate that ginger-derived phytochemicals exert their anti-inflammatory activities via multiple mechanisms and suggest that 6-shogaol is more potent in its ability to suppress DC functionality than 6-gingerol.


Subject(s)
Fatty Alcohols , Zingiber officinale , Humans , Catechols/pharmacology , Plant Extracts/pharmacology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Toll-Like Receptors , Dendritic Cells/metabolism
3.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305837

ABSTRACT

Ginger is a highly valued herb, renowned globally for its rich content of phenolic compounds. It has been traditionally used to treat various health conditions such as cardiovascular diseases, digestive issues, migraines, Alzheimer's disease, tumor reduction and chronic inflammation. Despite its potential medicinal applications, the therapeutic effectiveness of ginger is hindered by its limited availability and low plasma concentration levels. In this study, we explored the interaction of ginger's primary phenolic compounds, specifically 6-gingerol (6 G), 8-gingerol (8 G) and 10-gingerol (10 G), with plasma proteins which are human serum albumin (HSA) and α-1-acid glycoprotein (AGP). These two plasma proteins significantly influence drug distribution and disposition as they are key binding sites for most drugs. Fluorescence emission spectra indicated strong binding of 6, 8 and 10 G with HSA, with binding constants of 2.03 ± 0.01 × 104 M-1, 4.20 ± 0.01 × 104 M-1 and 6.03 ± 0.01 × 106 M-1, respectively. However, the binding of gingerols with AGP was found to be negligible. Molecular displacement by site-specific probes and molecular docking analyses revealed that gingerols bind at the IIA domain, with stability provided by hydrogen bonds, van der Waals forces, conventional hydrogen bonds, carbon-hydrogen bonds, alkyl and Pi-alkyl interactions. Further, the partial unfolding of the protein was observed upon binding the gingerol compound with HSA. In addition, molecular dynamic simulations demonstrated that gingerols remained stable in the subdomain IIA over 100 ns. This stability, coupled with Molecular Mechanics Generalized Born Surface Area indicating free energies of -43.765, -57.504 and -66.69 kcal/mol for 6, 8 and 10 G, respectively, reinforces the robust binding potential of these compounds. Circular dichroism studies suggested that the interaction of gingerols leads to the minimal transformation of HSA secondary structure, with the pattern being 10 G > 8 G > 6 G, a finding further substantiated by root mean square deviation and root mean square fluctuation fluctuations. These results propose that HSA has a stronger affinity to gingerols than AGP, which could have significant implications on the therapeutic circulating levels of gingerols.Communicated by Ramaswamy H. Sarma.

4.
Prep Biochem Biotechnol ; 54(7): 872-881, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38174655

ABSTRACT

Ginger (Zingiber officinale Roscoe, Zingeberaceae) is a medicinal plant widely used as food, spice, or flavoring agent worldwide. 6-Shogaol is a compound of prime interest in exhibiting anti-inflammatory, antioxidant and chemopreventive effects. The objective of the study is to investigate the effect of microwave-assisted drying (MAD) followed by microwave-assisted extraction (MAE) so as to produce 6-Shogaol enriched Ginger with improved therapeutic benefits. Various drying techniques viz. shade drying, tray drying, microwave-assisted drying and osmotic dehydration as a pretreatment were used for drying Ginger rhizomes. The dried rhizomes were extracted by conventional solvent extraction and microwave-assisted extraction techniques and tested for content of 6-Shogaol using the newly developed HPLC method whereas total flavonoid and polyphenol content were determined using the UV spectrophotometric method. Subjecting the microwave dried Ginger to microwave-assisted extraction for 45 min at constant power level of 284 W resulted in a significant rise in the extractability of 6-Shogaol (1.660 ± 0.018), total polyphenols (855.46 ± 5.33) and flavonoids (617.97 ± 6.40) compared to the conventional method of extraction. The proposed Ginger processing method of microwave drying followed by microwave extraction outperforms traditional methods in terms of speed, convenience, and performance thus can be scaled up to industrial levels.


Subject(s)
Catechols , Desiccation , Microwaves , Plant Extracts , Zingiber officinale , Zingiber officinale/chemistry , Catechols/isolation & purification , Catechols/chemistry , Desiccation/methods , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Flavonoids/isolation & purification , Flavonoids/analysis , Flavonoids/chemistry , Rhizome/chemistry , Polyphenols/isolation & purification , Polyphenols/analysis
5.
Clin Immunol ; 258: 109848, 2024 01.
Article in English | MEDLINE | ID: mdl-38036277

ABSTRACT

Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombotic events and/or pregnancy complications in the presence of persistently positive antiphospholipid antibodies (aPL). Although long-term anticoagulation with vitamin K antagonists is considered standard of care, there is an unmet need for safe therapeutics as primary thromboprophylaxis or adjuncts to standard of care in APS. APS is driven by oxidative stress, procoagulant, proinflammatory and angiogenic pathways. For these reasons there has been an increased interest into the investigation of antithrombotic, anti-inflammatory and anti-oxidant properties of natural supplements in APS. The objective of this review is to summarize the mechanistic, epidemiologic and clinical evidence behind the use of natural supplements in APS, with a specific focus on vitamin D, omega-3 fatty acids, coenzyme Q10, gingerol, and isoquercetin. This review should serve as a compelling argument for the future study of natural supplements in APS.


Subject(s)
Antiphospholipid Syndrome , Pregnancy Complications , Venous Thromboembolism , Female , Pregnancy , Humans , Anticoagulants/therapeutic use , Venous Thromboembolism/complications , Venous Thromboembolism/drug therapy , Antibodies, Antiphospholipid , Pregnancy Complications/drug therapy
6.
Curr Comput Aided Drug Des ; 20(4): 367-373, 2024.
Article in English | MEDLINE | ID: mdl-37076965

ABSTRACT

INTRODUCTION: Skin cancer is the most common type of cancer caused by the uncontrolled growth of abnormal cells in the epidermis and the outermost skin layer. AIM: This study aimed to study the anti-skin cancer potential of [6]-Gingerol and 21 related structural analogs using in vitro and in silico studies. METHODS: The ethanolic crude extract of the selected plant was subjected to phytochemical and GC-MS analysis to confirm the presence of the [6]-gingerol. The anticancer activity of the extract was evaluated by MTT (3-[4, 5-dimethylthiazol-2-y]-2, 5-diphenyl tetrazolium bromide) assay using the A431 human skin adenocarcinoma cell line. RESULTS: The GC-MS analysis confirmed the presence of [6]-Gingerol compound, and its promising cytotoxicity IC50 was found at 81.46 ug/ml in the MTT assay. Furthermore, the in silico studies used [6]-Gingerol and 21 structural analogs collected from the PubChem database to investigate the anticancer potential and drug-likeliness properties. Skin cancer protein, DDX3X, was selected as a target that regulates all stages of RNA metabolism. It was docked with 22 compounds, including [6]-Gingerol and 21 structural analogs. The potent lead molecule was selected based on the lowest binding energy value. CONCLUSION: Thus, the [6]-Gingerol and its structure analogs could be used as lead molecules against skin cancer and future drug development process.


Subject(s)
Skin Neoplasms , Zingiber officinale , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zingiber officinale/chemistry , Cell Line , Skin Neoplasms/drug therapy
7.
Brain Res ; 1826: 148741, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38157955

ABSTRACT

This study investigated the effects of 6-gingerol-rich fraction of Zingiber officinale (6-GIRIFZO) on mercury chloride (HgCl2)-induced neurotoxicity in Wistar rats. Thirty -five male Wistar rats weighing between (150-200 g) were divided randomly into five groups (n = 7): group 1: control, received 0.5 mL of normal saline, group 2: received HgCl2 (5 mg/kg), group 3: received N-acetylcysteine (NAC) (50 mg/kg) as well as HgCl2 (5 mg/kg), group 4: received 6-GIRIFZO (100 mg/kg) and HgCl2 (5 mg/kg), group 5: had 6-GIRIFZO (200 mg/kg) and HgCl2 (5 mg/kg), consecutively for 14 days. On the day14, the rats were subjected to behavioural tests using a Morris water maze and novel object recognition tests. The rats were then euthanized to obtain brain samples for the determination of biochemical parameters (acetylcholinesterase (AchE), nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), tumor necrosis factor- alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6)) using standard methods. The result revealed a significant increase in escape latency and a significant decrease in recognition ratio in the rats that were exposed to HgCl2 only. However, 6-GIRIFZO produced a significant reduction in the escape latency and (p < 0.05) increase in the recognition ratio. Similarly, HgCl2 exposure caused a significant (p < 0.05) decrease in the brain SOD, GPx, CAT, GSH with increased brain levels of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Similarly to the standard drug, NAC, 6-GIRIFZO (100 and 200 mg/kg) significantly (p < 0.05) increased brain SOD, GPx, CAT, and GSH levels with decreased concentrations of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Also, pre-treatment with 6-GIRIFZO prevented the HgCl2-induced morphological aberrations in the rats. This study concludes that 6-GIRIFZO prevents HgCl2-induced cognitive deficit via reduction of brain inflammation as well as oxidative stress in rats.


Subject(s)
Catechols , Cognitive Dysfunction , Fatty Alcohols , Mercury , Zingiber officinale , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Rats, Wistar , Chlorides , Neuroinflammatory Diseases , Mercuric Chloride/toxicity , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Interleukin-6 , Acetylcholinesterase , Oxidative Stress , Glutathione/metabolism , Acetylcysteine/pharmacology , Superoxide Dismutase/metabolism , Mercury/pharmacology
8.
Plant Foods Hum Nutr ; 78(4): 755-761, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796416

ABSTRACT

Ginger extracts (GEs) are antioxidant, antimicrobial, and anti-inflammatory. Their bioactivity can benefit foods and active packaging by extending shelf life, enhancing safety, and providing health benefits. Highly bioactive GEs are crucial to formulating potent active products and avoiding negative effects on their properties. Sesquiterpenes and phenolics are the main bioactives in ginger, but drying and extraction affect their composition. GEs are usually obtained from dry rhizomes; however, these operations have been studied independently. Therefore, a combined study of innovative drying and extraction technologies to evaluate their influence on extracts' composition will bring knowledge on how to increase the bioactivity of GEs. The effects of an emergent drying (vacuum microwave, VMD) followed by an emergent extraction (ultrasound, UAE, 20 or 80 °C) were investigated in this work. Microwave extraction (MAE) of fresh ginger was also studied. Convective oven drying and Soxhlet extraction were the references. Drying kinetics, powder color, extract composition, and antioxidant activity were studied. While MAE preserved the original composition profile, VMD combined with UAE (20 °C) produced extracts richer in phenolics (387.6 mg.GAE/g) and antioxidant activity (2100.7 mmol.Trolox/mL), with low impact in the sesquiterpenes. VMD generated shogaols by its high temperatures and facilitated extracting bioactives by destroying cellular structures and forming pores. UAE extracted these compounds selectively, released them from cell structures, and avoided losses caused by volatilization and thermal degradation. These findings have significant implications, as they provide an opportunity to obtain GE with tailored compositions that can enhance the formulation of food, active packaging, and pharmacological products.


Subject(s)
Sesquiterpenes , Zingiber officinale , Antioxidants/pharmacology , Antioxidants/chemistry , Zingiber officinale/chemistry , Catechols , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phenols
9.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37776009

ABSTRACT

Cervical cancer (CC) is the most frequent cancer in the female population worldwide. Although there are treatments available, they are ineffective and cause adverse effects. 6-gingerol is an active component in ginger with anticancer activity. This research aims to discover the mechanism by which 6-gingerol act as an anticancer agent on CC through a pharmacological network using bioinformatics databases. From MalaCard, Swiss Target Prediction, Comparative Toxicogenomics Database, and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, we obtained the target genes for 6-gingerol and CC and matched them. We got 26 genes and analyzed them in ShinyGO-0.76.3 and DAVID-Bioinformatics Resources. Then, we generated a protein-protein interaction network in Cytoscape and obtained 12 hub genes. Hub genes were analyzed in Gene Expression Profiling Interactive Analysis and TISIDB. In addition, molecular docking studies were performed between target proteins with 6-gingerol using SwissDock database. Finally, molecular dynamics studies for three proteins with the lowest interaction energy were implemented using Gromacs software. According to gene ontology results, 6-gingerol is involved in processes of apoptosis, cell cycle, and protein kinase complexes, affecting mitochondria and pathways related to HPV infection. CTNNB1 gene was negatively correlated with CD8+ infiltration but was not associated with a higher survival rate. Furthermore, the molecular docking study showed that 6-gingerol has a high binding to proteins, and the molecular dynamics showed a stable interaction of 6-gingerol to AKT1, CCNB1, and CTNNB1 proteins. Conclusion, our work helps to understand the anticancer activity of 6-gingerol in CC that should be studied experimentally.Communicated by Ramaswamy H. Sarma.

10.
Poult Sci ; 102(10): 102897, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562125

ABSTRACT

Ginger contains bioactive compounds that possess anti-inflammatory and antimicrobial properties. In this study, 432-day-old Ross 708 broiler male chicks were randomly allocated to 6 dietary treatments to investigate the effect of ginger root extract (GRE) on immunocompetence and growth performance to 6 wk of age. Treatment 1 (CON) consisted of chicks fed a corn-soybean meal (SBM), a base diet without GRE. Treatment 2 (MX) chicks were given basal diets containing bacitracin methylene disalicylate (BMD) at 0.055 g/kg. Treatments 3 (GRE-0.375%), 4 (GRE-0.75%), 5 (GRE-1.5%), and 6 (GRE-3%) were fed similar diet to control with GRE supplemented at 0.375%, 0.75%, 1.5%, and 3%, respectively. Moreover, HPLC analysis of GRE was carried out to determine the concentration of bioactive compounds found in GRE. Each treatment consisted of 6 replicate pens with 12 chicks/pen. Bodyweight (BW) and feed conversion ratio (FCR) were recorded. Results show that the concentration of bioactive compounds increased with increasing GRE supplementation. Likewise, dietary GRE supplementation did not have any detrimental effect on growth performance parameters up to 1.5%, as values for BWG was not different from CON and MX; however, 3% GRE had the poorest FCR and a lower BWG as compared to other treatments. On d 27 and d 41, fecal and cecal concentrations of total bacteria count (TBC), Escherichia coli, Lactobacillus spp., and Bifidobacterium spp enumerated using selective plating media showed that GRE supplementation significantly reduced (P < 0.05) the amount of TBC and E. coli but increased the number of beneficial microorganisms such as Lactobacillus spp. and Bifidobacterium spp. On d 20, no significant differences were observed (P > 0.05) among all treatments for antibody titer against Newcastle disease virus and total IgY antibodies; however, on d 27, GRE-0.75% had the highest value for both immune indicators and was not different from MX. Dietary supplementation of GRE up to 1.5% enhanced the immune system and suppressed E. coli while promoting the growth of healthy bacteria, without any detrimental effect on growth performance.


Subject(s)
Chickens , Zingiber officinale , Animals , Male , Escherichia coli , Diet/veterinary , Dietary Supplements/analysis , Plant Extracts/pharmacology , Immunocompetence , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
11.
Iran J Otorhinolaryngol ; 35(129): 207-215, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37497158

ABSTRACT

Introduction: This study was conducted to evaluate the effect of Doluperine® capsule (curcumin, piperine, and gingerol) on hearing recovery in diabetic patients with Sudden Sensorineural Hearing Loss (SSNHL). Materials and Methods: Fifty-one diabetic patients with SSNHL were randomized to receive two placebo capsules (group 1), a Doluperine® plus one placebo capsule (group 2), or two Doluperine® capsules (group 3). Moreover, all patients had an injection of dexamethasone in the middle ear. Results: The proportion of significant positive changes in PTA, SDS, and SRT was 45.4%, 45.4%, and 36.37% in group1, 84.6%, 84.6%, and 76.92% in group 2, and 70%, 50.0%, and 80.0% in group 3, respectively. Many patients in group 3 did not respond to treatment in the first month, while they recovered at the end of the second month. The chance of recovery reduced with increased time between the onset of symptoms and treatment (delayed visitation) in group 1; however, this finding was not seen in groups 2 and 3. Conclusion: Doluperine® is recommended as a complementary medicine along with steroid therapy for hearing loss improvement in diabetic patients; moreover, this herbal medicine seems to play an important role in recovery in patients with delayed visitation.

12.
Fitoterapia ; 169: 105607, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37442485

ABSTRACT

The clinical treatment of ulcerative colitis (UC) faces great challenges due to lifetime medication. In this study, Gingerol oil was extracted and purified by the process easily scale-up and cost effective, with productivity 2.72 ± 0.38% (w/w, versus crude drugs). The quality control of gingerol oil was fully established by HPLC fingerprint with 4 common peaks identified as 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol. The similarities of 6 batches of gingerol oil are within 0.931-0.999. The protective effects of gingerol oil are equivalent to or even stronger than that of 6-gingerol on inflammation and oxidative stress of HT-29 cells induced by lipopolysaccharide and H2O2, as well as on UC in mice caused by dextran sulfate sodium salt (DSS). Our research conclusions coincide well with the holistic view of Traditional Chinese Medicine and network pharmacology. The absorption kinetics of gingerol oil were conducted using the in situ intestinal perfusion in rats and comparable absorption were achieved in the jejunum, ileum and colon segments within 2 h. Thus, gingerol oil colon targeting pellets were prepared by extrusion-spherization technique. The cumulative dissolution behaviors and mechanisms were observed and analyzed by fitting to dissolution model. Our studies provided reliable theoretical and experimental support for the gingerol oil as reliable therapeutic choice of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Rats , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Hydrogen Peroxide/adverse effects , Molecular Structure , Colon , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL
13.
Exp Ther Med ; 26(1): 336, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37383373

ABSTRACT

The prevalence of obesity has increased rapidly worldwide. Obesity is characterized by excessive adipose tissue in the body, which is related to hyperplasia and hypertrophy in adipocytes. Ginger (Zingiber officinale Roscoe) is a medicinal plant that possesses an anti-obesogenic effect mostly attributed to gingerols, the most abundant bioactive compounds in ginger. The anti-adipogenic and lipolytic effects of these phenols have been shown when investigated individually. Therefore, the present study aimed to evaluate the lipolytic and anti-adipogenic activity of a mix of the main ginger phenols 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol and 10-shogaol on the 3T3-L1 cell line. A total of four study groups were designed: Negative control (3T3-L1 preadipocytes); positive control (mature 3T3-L1 adipocytes); phenols-pre (3T3-L1 cells stimulated with the phenols mix during adipogenic differentiation); and phenols-post (mature 3T3-L1 adipocytes stimulated with the phenols mix). MTT viability cell assay and Oil Red O staining were performed. Glycerol concentration supernatants were determined using the VITROS 350 Chemistry System. Expression of mRNA was measured using qPCR. The treatment with a 2 µg/ml ginger phenol dose reduced the lipid content by 45.52±7.8 and 35.95±0.76% in the phenols-pre and -post group, respectively, compared with that in the positive control group. The phenols-post group presented a higher glycerol concentration in the supernatant compared with that in the positive control and the phenols-pre groups. The mRNA expression levels of CCAAT/enhancer-binding protein alpha, peroxisome proliferator activated receptor-γ, fatty acid-binding protein 4 and fatty acid synthase were higher in the phenols-pre and lower in the phenols-post groups, compared with those in the positive control group. To the best of our knowledge, the current study demonstrated for the first time the anti-adipogenic and lipolytic effects of a mix of the main bioactive compounds found in ginger, and it also established the basis to use this mix of phenols in in vivo studies and clinical trials.

14.
Int J Biol Macromol ; 245: 125282, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37331544

ABSTRACT

A nanolipidcarrier (NLC) loaded homogalacturonan enriched pectin (citrus modified pectin, MCP4) hydrogel was designed as a novel colon inflammation site-specific oral delivery system for 6-gingerol (6G) (6G-NLC/MCP4 hydrogel) administration, and its colitis alleviation effect were investigated. 6G-NLC/MCP4 exhibited typical "cage-like" ultrastructure with 6G-NLC embedded in the hydrogel matrix as observed by cryoscanning electron microscope. And due to the homogalacturonan (HG) domain in MCP4 specifically combined with Galectin-3, which is overexpressed in the inflammatory region, the 6G-NLC/MCP4 hydrogel targeted to severe inflammatory region. Meanwhile, the prolonged-release characteristics of 6G-NLC provided sustained release of 6G in severe inflammatory regions. The matrix of hydrogel MCP4 and 6G achieved synergistic alleviation effects for colitis through NF-κB/NLRP3 axis. Specifically, 6G mainly regulated the NF-κB inflammatory pathway and inhibited the activity of NLRP3 protein, while MCP4 regulated the expression of Galectin-3 and peripheral clock gene Rev-Erbα/ß to prevent the activation of inflammasome NLRP3.


Subject(s)
Colitis , NF-kappa B , Humans , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hydrogels , Galectin 3 , Colitis/metabolism , Inflammasomes/metabolism , Pectins/pharmacology
15.
Phytomedicine ; 115: 154835, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121058

ABSTRACT

BACKGROUND: The 6-Gingerol has significant anti-inflammatory, anti-oxidative and hypolipidemic activities and is widely used for treating cardiac-cerebral vascular diseases. However, the multi-target mechanism of 6-Gingerol in the treatment of atherosclerosis remains to be elucidated. METHODS: Firstly, the therapeutic actions of 6-Gingerol anti-atherosclerosis were researched based on an atherosclerotic ApoE-deficient mice model induced by high-fat feed. Then, network pharmacology and molecular docking were employed to reveal the anti-atherogenic mechanism of 6-Gingerol. Finally, the target for these predictions was validated by target protein expression assay in vitro and in vivo experiments and further correlation analysis. RESULTS: Firstly, 6-Gingerol possessed obvious anti-atherogenic activity, which was manifested by a significant reduction in the plaque area, decrease in the atherosclerosis index and vulnerability index. Secondly, based on network pharmacology, 14 predicted intersection target genes between the targets of 6-Gingerol and atherogenic-related targets were identified. The key core targets of 6-Gingerol anti-atherosclerosis were found to be TP53, RELA, BAX, BCL2, and CASP3. Lipid and atherosclerosis pathways might play a critical role in 6-Gingerol anti-atherosclerosis. Molecular docking results also further revealed that the 6-Gingerol bound well and stable to key core targets from network pharmacological predictions. Then, the experimental results in vivo and in vitro verified that the up-regulation of TP53, RELA, BAX, CASP3, and down-regulation of BCL2 from atherosclerotic ApoE-deficient mice model can be improved by 6-Gingerol intervention. Meanwhile, the correlation analysis further confirmed that 6-Gingerol anti-atherosclerosis was closely related to these targets. CONCLUSION: The 6-Gingerol can markedly improve atherosclerosis by modulating key multi-targets TP53, RELA, BAX, CASP3, and BCL2 in lipid and atherosclerosis pathways. These novel findings shed light on the anti-atherosclerosis mechanism of 6-Gingerol from the perspective of multiple targets and pathways.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Animals , Mice , Molecular Docking Simulation , Caspase 3 , Network Pharmacology , bcl-2-Associated X Protein , Atherosclerosis/drug therapy , Fatty Alcohols/pharmacology , Apolipoproteins E , Disease Models, Animal
16.
Antioxidants (Basel) ; 12(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36978992

ABSTRACT

Ginger (Zingiber officinale) is widely used as a spice and a traditional medicine. Many bioactivities have been reported for its extracts and the isolated compounds, including cardiovascular protective effects. Different pathways were suggested to contribute to these effects, like the inhibition of platelet aggregation. In this study, we synthesised fourteen 6-gingerol derivatives, including eight new compounds, and studied their antiplatelet, COX-1 inhibitor, and antioxidant activities. In silico docking of selected compounds to h-COX-1 enzyme revealed favourable interactions. The investigated 6-gingerol derivatives were also characterised by in silico and experimental physicochemical and blood-brain barrier-related parameters for lead and preclinical candidate selection. 6-Shogaol (2) was identified as the best overall antiplatelet lead, along with compounds 3 and 11 and the new compound 17, which require formulation to optimize their water solubility. Compound 5 was identified as the most potent antioxidant that is also promising for use in the central nervous system (CNS).

17.
J Integr Med ; 21(3): 226-235, 2023 05.
Article in English | MEDLINE | ID: mdl-36932029

ABSTRACT

Diabetes mellitus is a chronic disease, typified by hyperglycemia resulting from failures in complex multifactorial metabolic functions, that requires life-long medication. Prolonged uncontrolled hyperglycemia leads to micro- and macro-vascular complications. Although antidiabetic drugs are prescribed as the first-line treatment, many of them lose efficacy over time or have severe side effects. There is a lack of in-depth study on the patents filed concerning the use of natural compounds to manage diabetes. Thus, this patent analysis provides a comprehensive report on the antidiabetic therapeutic activity of 6 phytocompounds when taken alone or in combinations. Four patent databases were searched, and 17,649 patents filed between 2001 and 2021 were retrieved. Of these, 139 patents for antidiabetic therapeutic aids that included berberine, curcumin, gingerol, gymnemic acid, gymnemagenin and mangiferin were analyzed. The results showed that these compounds alone or in combinations, targeting acetyl-coenzyme A carboxylase 2, serine/threonine protein kinase, α-amylase, α-glucosidase, lipooxygenase, phosphorylase, peroxisome proliferator-activated receptor-γ (PPARγ), protein tyrosine phosphatase 1B, PPARγ co-activator-1α, phosphoinositide 3-kinase and protein phosphatase 1 regulatory subunit 3C, could regulate glucose metabolism which are validated by pharmacological rationale. Synergism, or combination therapy, including different phytocompounds and plant extracts, has been studied extensively and found effective, whereas the efficacy of commercial drugs in combination with phytocompounds has not been studied in detail. Curcumin, gymnemic acid and mangiferin were found to be effective against diabetes-related complications. Please cite this article as: DasNandy A, Virge R, Hegde HV, Chattopadhyay D. A review of patent literature on the regulation of glucose metabolism by six phytocompounds in the management of diabetes mellitus and its complications. J Integr Med. 2023; 21(3): 226-235.


Subject(s)
Curcumin , Diabetes Mellitus , Hyperglycemia , Humans , PPAR gamma/metabolism , Curcumin/therapeutic use , Phosphatidylinositol 3-Kinases , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Glucose
18.
Food Chem ; 413: 135629, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36753787

ABSTRACT

Currently, ginger is one the most consumed plants when dealing with the treatments of various illnesses. So far, it is known that various biologically active molecules, such as gingerols, shogaols and zingerone, among others, are the main responsible for specific biological activities, opening a new window for its utilization as a nutraceutical in foods. In pioneering extraction processes, solvent extraction has been initially used for these applications; however, the drawbacks of this typical extraction method compared with other emergent separation techniques make it possible for the exploration of new extraction pathways, including microwave, ultrasound, supercritical, subcritical and pressurized-assisted extraction, along with three phase partitioning, high-speed counter current chromatography and magnetic solid phase extraction. To the best of our knowledge, there is no report documenting the recent studies and cases of study in this field. Therefore, we comprehensively review the progress and the latest findings (over the last five years) on research developments, including patents and emerging extraction methods, aiming at the purification of biologically active molecules (gingerols, shogaols and zingerone) contained in ginger. Over the course of this review, particular emphasis is devoted to breakthrough strategies and meaningful outcomes in ginger components extraction. Finally, dosage and safety concerns related to ginger extracts are also documented.


Subject(s)
Zingiber officinale , Zingiber officinale/chemistry , Plant Extracts/chemistry , Catechols/chemistry , Dietary Supplements/analysis , Fatty Alcohols/analysis
19.
Heliyon ; 9(1): e12778, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36647352

ABSTRACT

Ethnopharmacological relevance: Ginger (Zingiber officinale Roscoe) has been used for food and applied in Ayurvedic medicine in India for thousands of years. With a reputation for strong anti-inflammatory properties, it has been used for to treat colds, migraines, nausea, arthritis, and high blood pressure in China and Southeast Asia. The physiological activity of ginger is attributed to its functional components, including gingerol and shogaol, and their derivatives. Aim of the study: We aimed to investigate the effects of 8- and 10-shogaol and their bioactive signaling mechanisms in a dextran sodium sulfate (DSS)-induced colitis mouse model. The anti-colitis efficacy of 6-, 8-, and 10-derivatives of gingerol and shogaol was comparatively analyzed. Materials and methods: Colitis was induced by providing mice with drinking water containing 5% DSS (w/v) for 8 days. The 6-, 8-, and 10-derivatives of gingerol and shogaol were orally administered for two weeks at a dose of 30 mg/kg. Changes in body weight and disease activity index were measured. The levels of pro-inflammatory cytokines, iNOS and COX-2, as well as the phosphorylation of NF-κB were analyzed using ELISA, PCR, or western blotting. Mucin expression and mRNA levels were measured using alcian blue staining and PCR, respectively. The tight-junction-associated proteins occludin and ZO-1 were assessed using immunohistological staining. Results: The 6-, 8-, and 10-derivatives of gingerol and shogaol exhibited anti-inflammatory effects by regulating NF-κB signaling. Among the compounds administered, 10-shogaol was the most effective against DSS-induced inflammation. Comparative analysis of the chemical structure showed that shogaol, a dehydrated analog of gingerol, was more effective. 6- and 10-shogaol showed similar effects on DSS-induced morphological changes in the colonic mucus layer, mucin expression, and tight junction proteins. Conclusions: 6-, 8-, and 10-Gingerol and 6-, 8-, and 10-shogaol significantly improved the clinical symptoms and intestinal epithelial barrier damage in DSS-induced colitis in mice. The derivatives effectively inhibited DSS-induced inflammation through the regulation of NF-κB signaling. Moreover, 10-shogaol showed the most potent anti-inflammatory effect among the six compounds used in this study. The results indicate that 8- and 10-shogaol, both main ingredients in ginger, may serve as therapeutic candidates for the treatment of colitis.

20.
J Asian Nat Prod Res ; 25(1): 1-10, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35023415

ABSTRACT

Five new compounds, named gingerol A (1a and 1b), gingerol B (2), diphenylheptane glycoside A (3) and diphenylheptane glycoside B (4), were isolated from the acetone extract of Zingiberis Rhizoma Recens. The structures of new compounds were elucidated on the basis of spectroscopic methods including UV, IR, 1D NMR, 2D NMR and HR-ESI-MS. Compounds 2-4 could significantly decrease the apoptosis rate and increase the survival rate of human normal lung epithelial cells (BEAS-2B) at the concentration of 10 µM.


Subject(s)
Catechols , Plant Extracts , Humans , Glycosides
SELECTION OF CITATIONS
SEARCH DETAIL