Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 433
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Chromatogr A ; 1722: 464852, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581974

ABSTRACT

Xiangdan Injection are commonly used traditional Chinese medicine formulations for the clinical treatment of cardiovascular diseases. However, the trace components of Dalbergia odorifera in Xiangdan Injection pose a challenge for evaluating its quality due to the difficulty of detection. This study proposes a technology combining dispersive liquid-liquid microextraction and back-extraction (DLLME-BE) along with Bar-Form-Diagram (BFD) to address this issue. The proposed combination method involves vortex-mixing tetradecane, which has a lower density than water, with the sample solution to facilitate the transfer of the target components. Subsequently, a new vortex-assisted liquid-liquid extraction step is performed to enrich the components of Dalbergia odorifera in acetonitrile. The sample analysis was performed on HPLC-DAD, and a clear overview of the chemical composition was obtained by integrating spectral and chromatographic information using BFD. The combination of BFD and CRITIC-TOPSIS strategies was used to optimize the process parameters of DLLME-BE. The determined optimal sample pre-treatment process parameters were as follows: 200 µL extraction solvent, 60 s extraction time, 50 µL back-extraction solvent, and 90 s back-extraction time. Based on the above strategy, a total of 29 trace components, including trans-nerolidol, were detected in the Xiangdan Injection. This combination technology provides valuable guidance for the enrichment analysis of trace components in traditional Chinese medicines.


Subject(s)
Dalbergia , Drugs, Chinese Herbal , Liquid Phase Microextraction , Liquid Phase Microextraction/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Dalbergia/chemistry , Limit of Detection , Acetonitriles/chemistry , Reproducibility of Results
2.
Molecules ; 29(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611864

ABSTRACT

The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A ß-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.


Subject(s)
Passiflora , Systematic Reviews as Topic , Meta-Analysis as Topic , Carotenoids , Fruit
3.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474561

ABSTRACT

Berberis species have a long history of use in traditional Chinese medicine, Ayurvedic medicine, and Western herbal medicine. The aim of this study was the quantification of the main isoquinoline alkaloids in extracts obtained from various Berberis species by HPLC, in vitro and in silico determination of anti-cholinesterase activity, and in vitro and in vivo investigations of the cytotoxic activity of the investigated plant extracts and alkaloid standards. In particular, Berberis species whose activity had not been previously investigated were selected for the study. In the most investigated Berberis extracts, a high content of berberine and palmatine was determined. Alkaloid standards and most of the investigated plant extracts exhibit significant anti-cholinesterase activity. Molecular docking results confirmed that both alkaloids are more favourable for forming complexes with acetylcholinesterase compared to butyrylcholinesterase. The kinetic results obtained by HPLC-DAD indicated that berberine noncompetitively inhibited acetylcholinesterase, while butyrylcholinesterase was inhibited in a mixed mode. In turn, palmatine exhibited a mixed inhibition of acetylcholinesterase. The cytotoxic activity of berberine and palmatine standards and plant extracts were investigated against the human melanoma cell line (A375). The highest cytotoxicity was determined for extract obtained from Berberis pruinosa cortex. The cytotoxic properties of the extract were also determined in the in vivo investigations using the Danio rerio larvae xenograft model. The obtained results confirmed a significant effect of the Berberis pruinosa cortex extract on the number of cancer cells in a living organism. Our results showed that extracts obtained from Berberis species, especially the Berberis pruinosa cortex extract, can be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of neurodegenerative diseases and human melanoma.


Subject(s)
Alkaloids , Antineoplastic Agents , Berberine , Berberis , Melanoma , Humans , Berberine/pharmacology , Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Alkaloids/pharmacology , Plant Extracts/pharmacology
4.
Plants (Basel) ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475458

ABSTRACT

The aim of the present investigation was to obtain 12 aqueous extracts and 1 oil from Pistacia atlantica Desf. subsp. atlantica specimens. The samples differed for processed plant organs (i.e., roots, buds, and fruits), gender and geographical station of the collected trees. Total phenols, flavonoids, and condensed tannins were determined, revealing that bud extracts exhibited the highest phenolic content (386.785 ± 16.227 mg GAE/g DM), followed by fruit and root preparations. Similar results were detected for flavonoids and tannins, whose quantitation ranged from 0.014 ± 0.005 to 74.780 ± 9.724 mg CE/g DM and from 0.037 ± 0.003 to 14.793 ± 0.821 mg CE/g DM, respectively. The biochemical profile of the extracts was further characterized by HPLC-DAD, in terms of specific phenolics. This analysis identified gallic acid as a typical metabolite for ripe fruit, while hydroxytyrosol for female roots and male buds. In parallel, P. atlantica fruit oil was profiled by GC-MS analysis, which detected 37 lipophilic components, including palmitic acid (the major component, ~55%), anacardol, tetradecanol, arachidic acid, squalene, and some terpenes. The samples revealed interesting antioxidant activity, with EC50 values ranging from 0.073 ± 0.001 to 193.594 ± 28.942 mg/mL and from 0.029 ± 0.001 to 103.086 ± 20.540 mg/mL, in that order, for DPPH and reducing power assays. Concerning the total antioxidant capacity, the results ranged from 0.053 ± 0.008 to 51.648 ± 1.659 mg AAE/g DM. Finally, the antimicrobial potential of the plant extracts was estimated against 7 bacterial species and 2 fungal strains, known to be human pathogens, demonstrating a good antibiotic effect for the bud extracts. All these findings strongly suggest that P. atlantica would represent a natural reservoir for novel additives to be used in therapeutic, food, and cosmetic products.

5.
Molecules ; 29(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338357

ABSTRACT

With a growing focus on green chemistry, the extraction of natural products with natural deep eutectic solvents (NADES), which are eutectic mixtures of hydrogen bond donors and acceptors, has become an ever-expanding field of research. However, the use of NADES for the extraction of spilanthol from Acmella oleracea (L.) R.K.Jansen has not yet been investigated. Therefore, in this study, 20 choline chloride-based NADES, and for comparison, ethanol, were used as green extraction agents for spilanthol from Acmella oleracea flower heads. The effects of time, water addition, and temperature on NADES extractions were investigated and analysed by HPLC-DAD quantification. Additionally, UHPLC-DAD-ESI-MSn results for dichloromethane extracts, as well as the isolation of spilanthol and other main constituents as reference compounds, are reported. The best green extraction results were achieved by choline chloride (ChCl) with 1,2-propanediol (P, 1:2 molar ratio, +20% water) at 244.58 µg/mL, comparable to yields with ethanol (245.93 µg/mL). Methylurea (MeU, 1:2, +20% water) also showed promising results as a hydrogen bond donor in combination with choline chloride (208.12 µg/mL). In further experiments with NADES ChCl/P (1:2) and ChCl/MeU (1:2), extraction time had the least effect on spilanthol extraction with NADES, while yield decreased with water addition over 20% and increased with extraction temperature up to 80 °C. NADES are promising extraction agents for the extraction of spilanthol, and these findings could lead to applicable extracts for medicinal purposes, due to their non-toxic constituents.


Subject(s)
Asteraceae , Deep Eutectic Solvents , Polyunsaturated Alkamides , Solvents/chemistry , Plant Extracts/chemistry , Water/chemistry , Ethanol , Choline/chemistry
6.
Molecules ; 29(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398569

ABSTRACT

In this study, Asparagus stipularis was characterized concerning its phytochemical composition, antioxidant potential, cytotoxicity, and pancreatic lipase inhibitory activities. Twenty-seven compounds were identified and quantified by HPLC-DAD-MS in the leaf, stem, pericarp, and rhizome of ethanolic extracts. Seven steroidal saponins were detected, and the highest content was quantified in rhizome and pericap. A. stipularis also contained significant amounts of flavonoids in the aerial part. Isorhamnetin tetra-glycoside, quercetin-3-glucosyl-rutinoside, and rutin were the main flavonoid derivatives in leaf, stem, and pericarp extracts, respectively. In addition, eleven phenolic acids were also detected; among them, caffeic acid, protocatechuic acid, p-hydroxybenzoic acid, and ferulic acid were the predominant phenolics, with these having the highest amounts quantified in the rhizome extracts. All the tested extracts possessed antioxidant capacities, with pericarp and rhizome extracts exhibiting the highest activity in DPPH, ABTS, and FRAP assays. The extracts from pericarp and rhizome were revealed to also be the strongest inhibitors of pancreatic lipase. The rhizome extracts exhibited potent cytotoxic activity against HCT-116 and HepG2 with IC50 values of 30 and 54 µg/mL after 48 h of treatment. The present study demonstrated that A. stipularis can be used as a new source of natural antioxidants and potential anticancer and antiobesity compounds.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/chemistry , Rutin , Phytochemicals/pharmacology , Lipase
7.
Nat Prod Res ; 38(1): 140-145, 2024.
Article in English | MEDLINE | ID: mdl-35895051

ABSTRACT

Clinopodium candidissimum (Munby) Kuntze (Lamiaceae) is used in traditional medicine and as a food condiment in Algeria, where it is known as Zaater cheleuh and Nabta elbida. Here, we report the comprehensive characterisation of non-volatile polar constituents extracted from C. candidissimum aerial parts (a mixture of inflorescences, stems and leaves), and their aroma profile. Qualitative 1H-NMR and quali-quantitative HPLC-MSn analyses of fractions obtained with solvents at different polarity revealed the presence of aglyconic and glycosylated flavonoids (3.1%), phenylpropanoids (3.6%), gallic acid derivatives (0.76%), and triterpenoids (0.62%), among the others. On the other hand, HS-SPME-GC-MS allowed to identify 38 volatile constituents, among which the oxygenated monoterpenes pulegone (44.8%), piperitenone (6.6%), isopulegone (5.8%) and neo-menthol (3.8%), and the sesquiterpene hydrocarbons germacrene D (16.2%) and bicyclogermacrene (3.0%) were the most abundant. Overall, results indicate that C. candidissimum represents an endemic natural source of antioxidants and bioactive compounds, and they will be useful for further studies on this species.


Subject(s)
Lamiaceae , Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction/methods , Chromatography, High Pressure Liquid , Algeria , Phytochemicals/analysis , Lamiaceae/chemistry
8.
Molecules ; 28(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38067527

ABSTRACT

Fenugreek (Trigonella foenum-graecum) has a great beneficial health effect; it has been used in traditional medicine by many cultures. Likewise, the α-amylase inhibitors are potential compounds in the development of drugs for the treatment of diabetes. The beneficial health effects of fenugreek lead us to explore the chemical composition of the seeds and their antioxidant and α-amylase inhibition activities. The flavonoid extraction from fenugreek seeds was achieved with methanol through a Soxhlet apparatus. Then, the flavonoid glycosides were characterized using HPLC-DAD-ESI-MS analysis. The antioxidant capacity of fenugreek seed was measured using DPPH, FRAP, ABTS, and CUPRAC assays. Finally, the α-amylase inhibition activity was carried out using in vitro and in silico methods. The methanolic extract was found to contain high amounts of total phenolics (154.68 ± 1.50 µg GAE/mg E), flavonoids (37.69 ± 0.73 µg QE/mg E). The highest radical-scavenging ability was recorded for the methanolic extract against DPPH (IC50 = 556.6 ± 9.87 µg/mL), ABTS (IC50 = 593.62 ± 9.35 µg/mL). The ME had the best reducing power according to the CUPRAC (A 0.5 = 451.90 ± 9.07 µg/mL). The results indicate that the methanolic extracts of fenugreek seed best α-amylase inhibition activities IC50 = 653.52 ± 3.24 µg/mL. Twenty-seven flavonoids were detected, and all studied flavonoids selected have good affinity and stabilize very well in the pocket of α-amylase. The interactions between the studied flavonoids with α-amylase were investigated. The flavonoids from fenugreek seed present a good inhibitory effect against α-amylase, which is beneficial for the prevention of diabetes and its complications.


Subject(s)
Diabetes Mellitus , Trigonella , Humans , Antioxidants/chemistry , Trigonella/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Molecular Docking Simulation , alpha-Amylases , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Methanol/chemistry , Seeds/chemistry
9.
Molecules ; 28(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005398

ABSTRACT

In this study, we compared the polyphenolic composition of the roasted grapevine wood chips of four Vitis vinifera cultivars-namely, Sorbara, Grasparossa, Malbo Gentile, and Spergola. These waste byproducts have the potential as infusion chips for the aging of alcoholic beverages and vinegars, contributing to an enriched sensory profile. Roasting amplifies aromatic nuances and triggers the depletion of crucial bioactive compounds, including polyphenols. We investigated the extent of polyphenolic loss in the ethanolic extract of roasted grapevine chips to repurpose this waste byproduct and assess its potential. We assessed the levels of trans-resveratrol, trans-ε-viniferin, trans-piceatannol, and the main resveratrol trimer. Our findings indicated a significant decrease in polyphenol content as the roasting temperature increased, from 16.85-21.12 mg GAE/g for grapevine chips roasted at 120 °C to 3.10-7.77 mg GAE/g for those roasted at 240 °C. This study also highlights notable genotypic differences in polyphenolic content. Among the red grape cultivars analyzed, Sorbara exhibited the highest levels (7.77-21.12 mg/GAEg), whereas the white grape cultivar Spergola showed the lowest polyphenolic content (3.10-16.85 mg/GAEg). These findings not only contribute to the scientific understanding of polyphenol stability but also hold practical implications for the enhancement of aged beverages, as well as advancing sustainable practices in the viticulture industries.


Subject(s)
Stilbenes , Vitis , Chromatography, High Pressure Liquid , Polyphenols/analysis , Resveratrol , Stilbenes/analysis , Temperature , Plant Extracts
10.
Life (Basel) ; 13(11)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-38004275

ABSTRACT

Juncus acutus, acknowledged through its indigenous nomenclature "samar", is part of the Juncaceae taxonomic lineage, bearing considerable import as a botanical reservoir harboring conceivable therapeutic attributes. Its historical precedence in traditional curative methodologies for the alleviation of infections and inflammatory conditions is notable. In the purview of Eastern traditional medicine, Juncus species seeds find application for their remedial efficacy in addressing diarrhea, while the botanical fruits are subjected to infusion processes targeting the attenuation of symptoms associated with cold manifestations. The primary objective of this study was to unravel the phytochemical composition of distinct constituents within J. acutus, specifically leaves (JALE) and roots (JARE), originating from the indigenous expanse of the Nador region in northeastern Morocco. The extraction of plant constituents was executed utilizing an ethanol-based extraction protocol. The subsequent elucidation of chemical constituents embedded within the extracts was accomplished employing analytical techniques based on high-performance liquid chromatography (HPLC). For the purpose of in vitro antioxidant evaluation, a dual approach was adopted, encompassing the radical scavenging technique employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the total antioxidant capacity (TAC) assay. The acquired empirical data showcase substantial radical scavenging efficacy and pronounced relative antioxidant activity. Specifically, the DPPH and TAC methods yielded values of 483.45 ± 4.07 µg/mL and 54.59 ± 2.44 µg of ascorbic acid (AA)/mL, respectively, for the leaf extracts. Correspondingly, the root extracts demonstrated values of 297.03 ± 43.3 µg/mL and 65.615 ± 0.54 µg of AA/mL for the DPPH and TAC methods. In the realm of antimicrobial evaluation, the assessment of effects was undertaken through the agar well diffusion technique. The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration were determined for each extract. The inhibitory influence of the ethanol extracts was observed across bacterial strains including Staphylococcus aureus, Micrococcus luteus, and Pseudomonas aeruginosa, with the notable exception of Escherichia coli. However, fungal strains such as Candida glabrata and Rhodotorula glutinis exhibited comparatively lower resistance, whereas Aspergillus niger and Penicillium digitatum exhibited heightened resistance, evincing negligible antifungal activity. An anticipatory computational assessment of pharmacokinetic parameters was conducted, complemented by the application of the Pro-tox II web tool to delineate the potential toxicity profile of compounds intrinsic to the studied extracts. The culmination of these endeavors underpins the conceivable prospects of the investigated extracts as promising candidates for oral medicinal applications.

11.
Inflammopharmacology ; 31(6): 3167-3182, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37962695

ABSTRACT

The current study aimed to find out the anti-arthritic activity and safety study of Coronopus didymus aqueous extract (CDAE) as well as its chemical characterization by HPLC-DAD. Safety study including acute and subacute toxicity studies of the plant aqueous extract was also performed. In complete Freund's adjuvant-induced arthritic model (CFA), 0.15 ml CFA was injected in the left hind paw at day 1 in all rats except normal rats. Treatment with CDAE at 200, 400, and 800 mg/kg and methotrexate (1 mg/kg) was administered at day 8 and continued till 28th day using oral gavage. The CDAE considerably (p < 0.05) reduced the paw swelling and arthritic score, and reinstated the body weight and blood parameters. The CDAE considerably modulated superoxide dismutase, catalase, reduced glutathione, and malondialdehyde level in liver homogenate in contrast to disease control. The CDAE at 400 mg/kg considerably reduced IL-6, IL -1ß, COX-2, and NF-ĸß, whereas elevated IL-10, IL-4, and I-kappa ß as equated to disease and standard groups. The LD50 of CDAE > 2000 mg/kg. In subacute toxicity study, CDAE at 200-800 mg/kg did not exhibit clinical signs of toxicity, mortality, hematological, biochemical, and histological alteration in the liver heart, kidney, and lungs in contrast to the normal group. It was concluded that the presence of delphinidine-3-glucoside, diosmetin, 3-feruloyl-4,5-dicaffeoyl quinic acid, and gallic acid in CDAE might be accountable for its anti-arthritic activity and safe use for a long period.


Subject(s)
Arthritis, Experimental , Rats , Animals , Rats, Wistar , Arthritis, Experimental/chemically induced , Plant Extracts , Methotrexate/pharmacology , Methotrexate/therapeutic use , Antioxidants/pharmacology , Water
12.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958868

ABSTRACT

Oxidative stress has been associated with different diseases, and different medicinal plants have been used to treat or prevent this condition. The leaf ethanolic extract (EE) and aqueous extract (AE) from Coccoloba alnifolia have previously been characterized to have antioxidant potential in vitro and in vivo. In this study, we worked with EE and AE and two partition phases, AF (ethyl acetate) and BF (butanol), from AE extract. These extracts and partition phases did not display cytotoxicity. The EE and AE reduced NO production and ROS in all three concentrations tested. Furthermore, it was observed that EE and AE at 500 µg/mL concentration were able to reduce phagocytic activity by 30 and 50%, respectively. A scratch assay using a fibroblast cell line (NHI/3T3) showed that extracts and fractions induced cell migration with 60% wound recovery within 24 h, especially for BF. It was also observed that AF and BF had antioxidant potential in all the assays evaluated. In addition, copper chelation was observed. This activity was previously not detected in AE. The HPLC-DAD analysis showed the presence of phenolic compounds such as p-cumaric acid and vitexin for extracts, while the GNPS annotated the presence of isoorientin, vitexin, kanakugiol, and tryptamine in the BF partition phase. The data presented here demonstrated that the EE, AE, AF, and BF of C. alnifolia have potential immunomodulatory effects, antioxidant effects, as well as in vitro wound healing characteristics, which are important for dynamic inflammation process control.


Subject(s)
Antioxidants , Wound Healing , Antioxidants/pharmacology , Oxidative Stress , Phenols/pharmacology , Cell Line , Plant Extracts/pharmacology , Plant Extracts/analysis , Ethanol/pharmacology , Plant Leaves
13.
Molecules ; 28(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959870

ABSTRACT

Astragalus membranaceus is a traditional Chinese medicine derived from the roots of Astragalus membranaceus (Fisch.) Bge., which has the same medicinal and edible uses in China. It is also widely used in daily food, and its pharmacological effects mainly include antioxidant effects, vascular softening effects, etc. Currently, it is increasingly widely used in the prevention of hypertension, cerebral ischemia, and stroke in China. Formononetin and its glucopyranoside (ononin) are both important components of Astragalus membranaceuss and may play important roles in the treatment of cardiovascular diseases (CVDs). This study conducted metabolic studies using formononectin and its glucopyranoside (ononin), including a combination of the in vitro metabolism of Formonetin using rat liver S9 and the in vivo metabolism of ononin administered orally to rats. Five metabolites (Sm2, 7, 9, 10, and 12) were obtained from the solution incubated with formononetin and rat hepatic S9 fraction using chromatographic methods. The structures of the five metabolites were elucidated as (Sm2)6,7,4'-trihydroxy-isoflavonoid; (Sm7)7,4'-dihydroxy-isoflavonoid; (Sm9)7,8,4'-trihydroxy-isoflavonoid; (Sm10)7,8,-dihydroxy-4'-methoxy-isoflavonoid; and (Sm12)6,7-dihydroxy-4'-methoxy- isoflavonoid on the basis of UV, NMR, and MS data. Totally, 14 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis, from which the formononetin was incubated with rat hepatic S9 fraction, and the main metabolic pathways were hydroxylation, demethylation, and glycosylation. Then, 21 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis from the urine samples from SD rats to which ononin was orally administered, and the main metabolic pathways were glucuronidation, hydroxylation, demethylation, and sulfonation. The main difference between the in vitro metabolism of formononetin and the in vivo metabolism of ononin is that ononin undergoes deglycemic transformation into Formonetin in the rat intestine, while Formonetin is absorbed into the bloodstream for metabolism, and the metabolic products also produce combined metabolites during in vivo metabolism. The six metabolites obtained from the aforementioned separation indicate the primary forms of formononetin metabolism, and due to their higher contents of similar isoflavone metabolites, they are considered the main active compounds that are responsible for pharmacological effects. To investigate the metabolites of the active ingredients of formononetin in the rat liver S9 system, network pharmacology was used to evaluate the cardiovascular disease (CVD) activities of the six primary metabolites that were structurally identified. Additionally, the macromolecular docking results of six main components and two core targets (HSP90AA1 and SRC) related to CVD showed that formononetin and its main metabolites, Sm10 and Sm12, may have roles in CVD treatment due to their strong binding activities with the HSP90AA1 receptor, while the Sm7 metabolite may have a role in CVD treatment due to its strong binding activity with the SRC receptor.


Subject(s)
Cardiovascular Diseases , Drugs, Chinese Herbal , Isoflavones , Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Isoflavones/chemistry , Chromatography, High Pressure Liquid/methods , Liver/metabolism
14.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687046

ABSTRACT

St. John's wort (Hypericum perforatum, Hypericaceae) has long been used in traditional medicine as a potent remedy, while many other species of this genus have not been thoroughly investigated. The study aimed to detect the biological activity, including antioxidant, antihyperglycemic, anticholinergic, antimicrobial and monoaminoxidase inhibitory potential, of water-alcoholic extracts of three species autochthonous for Serbia and Greece from plant genus Hypericum (section Hypericum-H. tetrapterum, H. maculatum ssp. immaculatum and H. triquetrifolium), followed by phytochemical profiling. The highest amount of phenolics was recorded in H. maculatum subsp. immaculatum extract, while the highest abundance of flavonoids was characteristic of H. tetrapterum extract. Hypericin and hyperforin, quercetin, and its flavonoid, rutin, were present in all of the evaluated species. The evaluated species were good scavengers of DPPH, OH and NO radicals, as well as potent reducers of ferric ions in FRAP assay. Furthermore, the evaluated species were shown as potent inhibitors of monoaminoxidase A and α-glucosidase and modest inhibitors of acetylcholinesterase, monoaminoxidase B and α-amylase. No anti-Candida activity was recorded, but the extracts were effective against MRSA Staphylococcus aureus and Enterococcus sp., as well as against Proteus mirabilis. The obtained results strongly highlight the need for further in vivo studies in order to better define the potential of the medicinal application of the studied species.


Subject(s)
Bryopsida , Clusiaceae , Hypericum , Acetylcholinesterase , Flavonoids/pharmacology , Plant Extracts/pharmacology
15.
Molecules ; 28(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687079

ABSTRACT

Rutabaga, also known as swede and scientifically classified as Brassica napus napobrassica, is a biennial edible root vegetable that belongs to the Brassica genus and is widely cultivated in North Europe and North America. The present study highlights both the phytochemical profile and the in vitro biological properties of rutabaga seed extracts obtained through maceration using solvents of increasing polarity, namely, cyclohexane (CYHA), dichloromethane (DCM), ethyl acetate (EtOAc), methanol (MeOH), and water (H2O). HPLC-DAD was used to identify and quantify phenolic compounds, while volatile compounds were detected using GC-MS. The in vitro antioxidant capacity of the rutabaga seed extracts was evaluated through DPPH free radical scavenging activity. The in vitro anti-inflammatory activity (15-lipoxygenase (15-LOX) enzyme) was determined spectrophotometrically at the same concentration. Additionally, the cytotoxicity of the seed extracts was evaluated against human colon adenocarcinoma cells (Caco-2) and human embryonic kidney cells (HEK-293) using the MTT assay. The rutabaga seed extracts obtained from EtOAc, MeOH, and H2O were particularly rich in reducing sugars, ranging from 189.87 to 473.75 mg/g DW. The MeOH extract displayed the highest concentration of both sugars and polyphenols. Phytochemically, the HPLC-DAD analysis revealed the presence of four phenolic compounds in the tested extracts, including (±) synephrine, gallic acid, p-coumaric acid, and trans-ferulic acid, newly discovered in rutabaga organs. Moreover, a total of ten volatile compounds were identified through GC-MS analysis, both before and after derivatization. At a concentration of 50 µg/mL, the methanol extract exhibited high antioxidant activity with 52.95% inhibition, while CYHA, DCM, and EtOAc exhibited moderate anti-15-LOX activity with less than 30% inhibition. Except for DCM and aqueous extracts, rutabaga seeds did not exhibit any anti-proliferative potential against Caco-2 cell lines. Interestingly, no cytotoxicity was registered for any of the seed extracts against the normal cell line HEK-293. Overall, the obtained data highlight the potential utilization of rutabaga seeds as a source of bioactive compounds in various fields, including pharmaceuticals, nutraceuticals, and functional foods.


Subject(s)
Adenocarcinoma , Brassica napus , Brassica , Colonic Neoplasms , Humans , Caco-2 Cells , HEK293 Cells , Methanol , Antioxidants/pharmacology , Plant Extracts/pharmacology
16.
Molecules ; 28(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687171

ABSTRACT

Peppers are among the spices possessing a wide plethora of biological properties due to their excellent supply of health-related metabolites. Capsicum annuum L. (Solanaceae) is cultivated throughout Tunisia, and there is a shortage of information on the identification of the secondary metabolites in the seeds of this species as well as on their biological activities. In the present work, we intended to undertake a chemical characterization of the bioactive compounds from the hydro-methanolic seed extract of C. annuum as well as an evaluation of its broad spectrum of antimicrobial and antioxidant activities. The chemical profile was evaluated by RP-HPLC-DAD-QTOF-MS/MS, whereas the total phenol and flavonoid content, antioxidant, and antimicrobial activities were determined in in vitro assays. In this work, 45 compounds belonging to various phytochemical classes, such as organic acids (2), phenolic compounds (4 phenolic acids and 5 flavonoids), capsaicinoids (3), capsianosides (5), fatty acids (13), amino acids (1), sphingolipids (10), and steroids (2) were identified in the hydro-methanolic seed extract of C. annuum. The phenolic and flavonoid content (193.7 mg GAE/g DW and 25.1 mg QE/g DW, respectively) of the C. annuum extract correlated with the high antiradical activity (IC50 = 45.0 µg/mL), reducing power (EC50 = 61.3 µg/mL) and chelating power (IC50 = 79.0 µg/mL) activities. The hydro-methanolic seed extract showed an important antimicrobial activity against seven bacterial and four fungal strains. In fact, the inhibition zones (IZs) for bacteria ranged from 9.00 ± 1.00 mm to 12.00 ± 0.00 mm; for fungi, the IZs ranged from 12.66 ± 0.57 mm to 13.66 ± 0.57 mm. The minimal inhibition concentration and minimal bactericidal concentration values showed that the extract was more effective against fungi than bacteria.


Subject(s)
Capsicum , Antioxidants/pharmacology , Tandem Mass Spectrometry , Phenols/pharmacology , Flavonoids/pharmacology , Methanol , Plant Extracts/pharmacology
17.
Biosensors (Basel) ; 13(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37754074

ABSTRACT

As one of the most popular beverages in the world, coffee is a rich source of non-enzymatic bioactive compounds with antioxidant capacity. In this study, twelve commercial coffee beverages found in local Portuguese markets were assessed to determine their total phenolic and flavonoid contents, as well as their antioxidant capacity, by conventional optical procedures, namely, ferric reducing antioxidant power and DPPH-radical scavenging assay, and non-conventional procedures such as a homemade DNA-based biosensor against two reactive radicals: HO• and H2O2. The innovative DNA-based biosensor comprised an adenine-rich oligonucleotide adsorbed onto a carbon paste electrode. This method detects the different peak intensities generated by square-wave voltammetry based on the partial damage to the adenine layer adsorbed on the electrode surface by the free radicals in the presence/absence of antioxidants. The DNA-based biosensor against H2O2 presented a higher DNA layer protection compared with HO• in the presence of the reference gallic acid. Additionally, the phenolic profiles of the twelve coffee samples were assessed by HPLC-DAD, and the main contributors to the exhibited antioxidant capacity properties were caffeine, and chlorogenic, protocatechuic, neochlorogenic and gallic acids. The DNA-based sensor used provides reliable and fast measurements of antioxidant capacity, and is also cheap and easy to construct.


Subject(s)
Antioxidants , Coffee , Hydrogen Peroxide , DNA , Gallic Acid , Adenine
18.
Heliyon ; 9(9): e19292, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662785

ABSTRACT

Diabetes mellitus (DM) is the most prevalent endocrine disorder. Numerous individual herbs possess anti-diabetic activity. The seeds of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum are traditionally used to manage DM. The ambition of this work was to formulate the poly-herbal granules (PHGs) comprising of these three functional foods and evaluate their in-vitro antioxidant and antidiabetic potential. The dried seed extracts of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum were used in a ratio of 2.5:1:1 to formulate PHGs by wet granulation method. The ratio of extracts was selected on the basis of traditional phytotherapies popularly used by local Hakeems of Pakistan to achieve glycemic control in diabetic patients resistant to traditional allopathic regime of medicine. The flow properties of developed PHGs were evaluated. The UV-Visible spectroscopic, Fourier Transform Infrared (FTIR) and HPLC-DAD of all seed extracts and PHGs were performed. The in-vitro antioxidant DPPH, FRAP, total antioxidant capacity (TAC) and Nitric Oxide (NO) scavenging assays were carried out on PHGs. The in-vitro antidiabetic activity of PHGs was investigated by alpha-amylase and alpha-glucosidase enzyme inhibition activity. The developed PHGs exhibited excellent flow properties. The UV-Vis spectra of all seed extracts and PHGs demonstrated peak at 278 nm showing the presence of flavonoids and phenols. The FTIR spectra confirmed the existence of flavonoids, and phenols along with amines in seed extracts as well as PHGs. The HPLC-DAD test revealed the existence of gallic acid, ascorbic acid, Quercetin-3-(caffeoyldiglucoside)-7-glucoside, Rosmarinic acid, delphinidin-3,5-diglucosides, Kaempferol-3-feruloylsophoroside-7-glucoside and Phloroglucinol in PHGs. The PHGs exhibited IC50 of 51.23, 58.57, 55.41 and 53.13 µg/mL in DPPH assay, FRAP assay, TAC, Nitric oxide scavenging assays respectively. The PHGs also demonstrated IC50 of 49.97 and 36.16 µg/mL in alpha-amylase and in alpha-glucosidase inhibition assays respectively in dose dependent manner. The developed PHGs exhibited an excellent flow property. These exhibit significant in-vitro antioxidant and antidiabetic profile by virtue of flavonoid and phenolic acid derivatives.

19.
Molecules ; 28(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630299

ABSTRACT

Potato (Solanum tuberosum) chips are the most consumed snacks worldwide today. Colored potato chips prepared from potato cultivars with red and purple flesh are a novel alternative to traditional potato chips because of their higher phenolic compound content, such as anthocyanins and hydroxycinnamic acid derivatives (HCADs), which might make these chips healthier compared with traditional chips. There is little information on the stability of these compounds. In this study, the nutritional value of these chips was evaluated by determining phenolic profiles, antioxidant activity and color parameters with liquid chromatography diode array and mass spectrometry detection (HPLC-DAD-ESI-MS/MS) and spectrophotometric methods during storage for four months. Five anthocyanins and three HCADs were detected, with the latter compounds being the most abundant, with concentrations on average between the first (97.82 mg kg-1) and the last (31.44 mg kg-1) week of storage. Similar trends were observed in antioxidant activity and stability, with the CUPRAC method showing the highest response among all the methods employed. The color indices were stable throughout the storage time. Based on these results, colored-flesh potato chips are an optimal alternative for consumption because of their high retention of phenolic compounds and antioxidant activity during storage, providing potential benefits to human health.


Subject(s)
Antioxidants , Solanum tuberosum , Humans , Anthocyanins , Coumaric Acids , Phenols , Snacks , Tandem Mass Spectrometry
20.
J Pharm Biomed Anal ; 235: 115673, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37634359

ABSTRACT

Hertia cheirifolia L. is a medicinal plant that has been used for a long time in folk Mediterranean medicine. The aim of the present study was to analyze and compare the phenolic profile and the antioxidant potential of organic fractions from H. cheirifolia extracts. Crude methanolic extracts were firstly prepared from the different parts of the plant. Then four different organic fractions were obtained by fractioning each extract, using different solvents with increasing polarity (hexane, chloroform, and ethyl acetate). The Phenolic content was analyzed using a UV-Vis colorimetric methods followed by a qualitative and quantitative analysis by high performance liquid chromatography-diode array detector (HPLC-DAD) system. After that, the antioxidant potential of the different organic fractions was evaluated using DPPH and ABTS free radical scavenging assays, reducing power of iron (FRAP) and inhibition of ß-carotene oxidation tests. Our results revealed that ethyl acetate fractions (EA) contained the highest content of total phenolics (100-250 mg GAE/g). Indeed, the ethyl acetate fraction from the flower extract (EA-F) displayed the lowest IC50 values for the scavenging of DPPH and ABTS free radicals (38.83 ± 0.34 µg/ml and 23.76 ± 0.11 µg/ml, respectively). Also, the strongest iron reducing power (2628.87 ± 16.47 µmol Fe2+Eq/ml) and the best rate of inhibition of the ß-carotene oxidation (58.91 ± 5.79 %) were recorded. In sum, the present study suggests that, the organic fractions from H. cherifolia are potential natural antioxidants and this is probably related to their phenolics content and structure.


Subject(s)
Antioxidants , Asteraceae , Antioxidants/pharmacology , beta Carotene , Iron , Phenols , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL