Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Sci Total Environ ; 853: 158665, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36096218

ABSTRACT

Exposure to lead (Pb), a known toxin causing developmental neurotoxicity, can impair neurogenesis and oxidative phosphorylation (OXPHOS), but the mechanism is not clarified. In the current study, we aim to explore the effects of Pb on the differentiation of SH-SY5Y cells and investigate the role of heme and heme-binding protein BACH1 during differentiation. We found that Pb exposure caused a shift from OXPHOS to glycolysis, resulting in neurogenesis impairment by decreasing neurite growth and downregulation of PSD95 and Synapsin-1 in differentiated SH-SY5Y cells. Heme reduction mediated this mitochondria metabolism repression caused by Pb depending on BACH1 activation. Hemin supplement alleviated Pb-induced OXPHOS damage and adenosine triphosphate (ATP) reduction in differentiated SH-SY5Y cells, and further protected for Pb-induced damage of synapse. Heme binding factor BACH1 was negatively regulated by heme content and BACH1 knockout rescued the Pb-induced transcription and expression decline of genes related to OXPHOS and abrogated Pb-induced growth inhibition of axon promotion and synapse formation. Collectively, the present study demonstrates that heme deficiency mediates OXPHOS damage caused by Pb through BACH1 activation, resulting in neurogenesis impairment.


Subject(s)
Hemin , Neuroblastoma , Humans , Hemin/metabolism , Hemin/pharmacology , Lead/toxicity , Lead/metabolism , Heme-Binding Proteins , Synapsins/metabolism , Synapsins/pharmacology , Neuroblastoma/metabolism , Mitochondria , Heme/metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL