Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
BMC Ecol Evol ; 24(1): 37, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500049

ABSTRACT

BACKGROUND: The mass occurrence of scyphozoan jellyfish severely affects marine ecosystems and coastal economies, and the study of blooming jellyfish population dynamics has emerged in response. However, traditional ecological survey methods required for such research have difficulties in detecting cryptic life stages and surveying population dynamics owing to high spatiotemporal variations in their occurrence. The environmental DNA (eDNA) technique is an effective tool for overcoming these limitations. RESULTS: In this study, we investigated the biodiversity and spatial distribution characteristics of blooming jellyfish in the Bohai Sea of China using an eDNA metabarcoding approach, which covered the surface, middle, and bottom seawater layers, and sediments. Six jellyfish taxa were identified, of which Aurelia coerulea, Nemopilema nomurai, and Cyanea nozakii were the most dominant. These three blooming jellyfish presented a marked vertical distribution pattern in the offshore regions. A. coerulea was mainly distributed in the surface layer, whereas C. nozakii and N. nomurai showed a upper-middle and middle-bottom aggregation, respectively. Horizontally, A. coerulea and C. nozakii were more abundant in the inshore regions, whereas N. nomurai was mainly distributed offshore. Spearman's correlation analysis revealed a strong correlation between the eDNA of the three dominant blooming jellyfish species and temperature, salinity, and nutrients. CONCLUSIONS: Our study confirms the applicability of the eDNA approach to both biodiverstiy evaluation of blooming jellyfish and investigating their spatial distribution, and it can be used as a supplementary tool to traditional survey methods.


Subject(s)
Cnidaria , Cnidarian Venoms , DNA, Environmental , Scyphozoa , Animals , Ecosystem , DNA, Environmental/genetics , Scyphozoa/genetics , Biodiversity
2.
Mol Ecol ; 33(4): e17249, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38133544

ABSTRACT

Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.


Subject(s)
Diapause , Scyphozoa , Animals , Scyphozoa/genetics , Temperature , Diapause/genetics
3.
Mar Pollut Bull ; 193: 115232, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37406400

ABSTRACT

The harmful irregular jellyfish blooms in recent years are difficult to be deciphered by macro hydrographic condition changes. To fundamentally explain the dynamic of jellyfish populations, we shifted the focus to the polyp stage of jellyfish life cycle and local benthic ecosystems. We monitored the population dynamics of Aurelia coerulea polyps in Jiaozhou Bay and other benthic biofouling species in situ to explore the adaptive mechanism of polyps and interspecific interactions in the benthic microhabitat. Our results showed that as temperature increased, the polyps multiplied on the bare substrate, however, other benthic fouling organisms simultaneously invaded the polyp colony according to their different colonisation methods and physiological characteristics. In addition, the polyps were extremely tolerant to food scarcity in the natural environment at low temperatures. Our study indicated that it is necessary to consider the local benthic ecosystem and implement ecosystem-based management strategies to predict and manage problematic jellyfish blooms.


Subject(s)
Ecosystem , Scyphozoa , Animals , Life Cycle Stages , Population Dynamics , Cold Temperature
4.
Mar Pollut Bull ; 186: 114462, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521364

ABSTRACT

Massive blooms of Nemopilema nomurai have occurred recently across East Asian waters. They are potentially important as zooplankton predators, as well as being competitors for prey with zooplanktivorous fish. Few studies have estimated the predation effects on zooplankton by N. nomurai in situ. To quantify the natural diets and feeding rates and estimate the predation effects, N. nomurai medusae were collected in the northern East China Sea and southern Yellow Sea, one of the principal nursery grounds of this jellyfish, during May 2019. The gut contents indicated that copepods were an important food source for N. nomurai; copepods <1000 µm represented the bulk of total prey intake in number (> 99 %). Linear regression analyses showed that the copepods number in the gut contents was significantly influenced by medusa diameter and prey abundance. Calculations using the above data indicated that one medusa (mean diameter: 26.06 ± 9.73 cm) consumed approximately 5248 ± 2768 of copepods daily. However, even the maximum predation pressure was <0.1 % of the total copepods standing stock daily due to the small diameter and low density/biomass of N. nomurai medusae in May 2019. The data presented here suggested that the predation effects of N. nomurai on copepods were low and might not reduce prey availability to fish with diets consisting mainly of copepods during the early occurrence stage of the N. nomurai population.


Subject(s)
Cnidaria , Copepoda , Scyphozoa , Animals , Predatory Behavior , Zooplankton
5.
Mar Pollut Bull ; 149: 110507, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31421568

ABSTRACT

This study focused on the bloom-developing process of the giant jellyfish, Nemopilema nomurai, on phytoplankton and microzooplankton communities. Two repeated field observations on the jellyfish bloom were conducted in June 2012 and 2014 in the southern Yellow Sea where blooms of N. nomurai were frequently observed. We demonstrated that the bloom was made up of two stages, namely the developing stage and the mature stage. Total chlorophyll a increased and the concentrations of inorganic nutrients decreased during the developing stage, while both concentrations maintained stable and at low levels during the mature stage. Our analysis revealed that phosphate excreted by growing N. nomurai promoted the growth of phytoplankton at the developing stage. At the mature stage, size compositions of microzooplankton were altered and tended to be smaller via a top-down process, while phytoplankton compositions, affected mainly through a bottom-up process, shifted to be less diatoms and cryptophytes but more dinoflagellates.


Subject(s)
Phytoplankton/growth & development , Scyphozoa/physiology , Zooplankton/physiology , Animals , Biomass , China , Chlorophyll A/analysis , Diatoms/physiology , Dinoflagellida/physiology , Oceans and Seas , Phosphates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL