Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38519750

ABSTRACT

Research on natural products is growing due to their potential health benefits and medicinal properties. Despite regional variations in phytochemical composition and bioactivity, Smilax glabra Roxb (SGB) has attracted the interest of researchers. Scientists are particularly interested in the Vietnamese SGB variant, which is influenced by biological and environmental factors. Despite geographical differences in phytochemical makeup and bioactivities, SGB remains a fascinating subject in traditional herbal medicine. Using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), the phytochemicals in Vietnamese SGB extracts were investigated. This study revealed a wide range of phytochemical compounds, including flavonoids, terpenoids, glycosides, alkaloids, organic acids, phenolics, and steroids. Furthermore, utilizing zebrafish as a model organism, we discovered that these extracts have the surprising ability to greatly improve the survival rate of zebrafish larvae exposed to oxidative stress caused by arsenite (NaAsO2) and hydrogen peroxide (H2O2). Notably, our discoveries suggest the occurrence of new antioxidative pathways in addition to the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, expanding the understanding of the antioxidant properties and potential therapeutic uses of these plants. To summarize, our research findings shed light on the phytochemical composition of Vietnamese SGB, revealing its potential as a natural antioxidant and encouraging further exploration of its underlying mechanisms for future innovative antioxidant therapies.

2.
Pharm Biol ; 62(1): 285-295, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38516898

ABSTRACT

CONTEXT: Membranous glomerulonephritis (MGN) is a leading cause of nephrotic syndrome in adults. Diosgenin (DG) has been reported to exert antioxidative and anti-inflammatory effects. OBJECTIVE: To investigate the renoprotective activity of DG in a cationic bovine serum albumin-induced rat model of MGN. MATERIALS AND METHODS: Fourty male Sprague-Dawley rats were randomized into four groups. The MGN model was established and treated with a DG dose (10 mg/kg) and a positive control (TPCA1, 10 mg/kg), while normal control and MGN groups received distilled water by gavage for four consecutive weeks. At the end of the experiment, 24 h urinary protein, biochemical indices, oxidation and antioxidant levels, inflammatory parameters, histopathological examination, immunohistochemistry and immunoblotting were evaluated. RESULTS: DG significantly ameliorated kidney dysfunction by decreasing urinary protein (0.56-fold), serum creatinine (SCr) (0.78-fold), BUN (0.71-fold), TC (0.66-fold) and TG (0.73-fold) levels, and increasing ALB (1.44-fold). DG also reduced MDA (0.82-fold) and NO (0.83-fold) levels while increasing the activity of SOD (1.56-fold), CAT (1.25-fold), glutathione peroxidase (GPx) (1.55-fold) and GSH (1.81-fold). Furthermore, DG reduced Keap1 (0.76-fold) expression, Nrf2 nuclear translocation (0.79-fold), and induced NQO1 (1.25-fold) and HO-1 (1.46-fold) expression. Additionally, DG decreased IL-2 (0.55-fold), TNF-α (0.80-fold) and IL-6 (0.75-fold) levels, and reduced protein expression of NF-κB p65 (0.80-fold), IKKß (0.93-fold), p-IKKß (0.89-fold), ICAM-1 (0.88-fold), VCAM-1 (0.91-fold), MCP-1 (0.88-fold) and E-selectin (0.87-fold), and also inhibited the nuclear translocation of NF-κB p65 (0.64-fold). DISCUSSION AND CONCLUSIONS: The results suggest a potential therapeutic benefit of DG against MGN due to the inhibition of the NF-κB pathway, supporting the need for further clinical trials.


Subject(s)
Glomerulonephritis, Membranous , Rats , Male , Animals , Glomerulonephritis, Membranous/chemically induced , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/prevention & control , NF-kappa B/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , Rats, Sprague-Dawley , I-kappa B Kinase/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Antioxidants/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/prevention & control
3.
Amino Acids ; 56(1): 23, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506925

ABSTRACT

Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Humans , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Amino Acids/metabolism , Oxidative Stress , Inflammation/drug therapy
4.
Bioorg Chem ; 145: 107242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428285

ABSTRACT

Colostrum/Milk is a chief repertoire of antioxidant peptides. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a viable target for Parkinson's Disease (PD), as this pathway deduced to be impaired in PD. Cullin-3 is one of the crucial E3 ligase responsible for its regulation. The present study screened peptide libraries of buffalo colostrum & milk peptides for Cullin-3 inhibition, thus ensuing activation of Nrf2 to alleviate the molecular etiopathology in PD using the C. elegans as a model. The structure was modelled, binding sites analyzed and peptide-interactions analyzed by docking. Among the 55 sequences (≤1 kDa), the peptide SFVSEVPEL having the highest dock score (-16.919) was synthesized and evaluated for its effects on oxidative stress markers, antioxidant enzymes, neurochemical marker and Nrf2/Skn-1 levels. The lead peptide alleviated the oxidative pathophysiology and behavioural deficits associated with PD in C. elegans.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Female , Pregnancy , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Antioxidants/pharmacology , Buffaloes/metabolism , Cullin Proteins/metabolism , Caenorhabditis elegans/metabolism , NF-E2-Related Factor 2/metabolism , Colostrum/metabolism , Oxidative Stress , Peptides/pharmacology , Peptides/metabolism , Neuroprotective Agents/pharmacology
5.
Phytomedicine ; 128: 155401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507850

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is an incurable hematological malignancy with limited therapeutic efficacy. Eclipta prostrata is a traditional Chinese medicinal plant reported to possess antitumor properties. However, the effects of E. prostrata in MM have not been explored. PURPOSE: The aim of this study was to define the mechanism of the ethanol extract of E. prostrata (EEEP) in treating MM and identify its major components. METHODS: The pro-ferroptotic effects of EEEP on cell death, cell proliferation, iron accumulation, lipid peroxidation, and mitochondrial morphology were determined in RPMI-8226 and U266 cells. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), glutathione peroxidase 4 (GPX4), and 4-hydroxynonenal (4HNE) were detected using western blotting during EEEP-mediated ferroptosis regulation. The RPMI-8226 and U266 xenograft mouse models were used to explore the in vivo anticancer effects of EEEP. Finally, high performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry system (UPLC-Q/TOF-MS) were used to identify the major constituents of EEEP. RESULTS: EEEP inhibited MM cell growth and induced cell death in vitro and in vivo. By promoting malondialdehyde and Fe2+ accumulation, lipid peroxidation, and GSH suppression, EEEP triggers ferroptosis in MM. Mechanistically, EEEP regulates the Keap1/Nrf2/HO-1 axis and stimulates ferroptosis. EEEP-induced lipid peroxidation and malondialdehyde accumulation were blocked by the Nrf2 activator NK-252. In addition, HPLC and UPLC-Q/TOF-MS analysis elucidated the main components of EEEP, including demethylwedelolactone, wedelolactone, chlorogenic acid and apigenin, which may play important roles in the anti-tumor function of EEEP. CONCLUSION: In summary, EEEP exerts its anti-MM function by inducing MM cell death and inhibiting tumor growth in mice. We also showed that EEEP can induce lipid peroxidation and accumulation of ferrous irons in MM cells both in vivo and in vitro, leading to ferroptosis. In addition, this anti-tumor function may be achieved by the EEEP activation of Keap1/Nrf2/HO-1 axis. This is the first study to reveal that EEEP exerts anti-MM activity through the Keap1/Nrf2/HO-1-dependent ferroptosis regulatory axis, making it a promising candidate for MM treatment.


Subject(s)
Eclipta , Ferroptosis , Heme Oxygenase-1 , Kelch-Like ECH-Associated Protein 1 , Multiple Myeloma , NF-E2-Related Factor 2 , Plant Extracts , Ferroptosis/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Multiple Myeloma/drug therapy , Animals , NF-E2-Related Factor 2/metabolism , Humans , Plant Extracts/pharmacology , Cell Line, Tumor , Heme Oxygenase-1/metabolism , Mice , Eclipta/chemistry , Lipid Peroxidation/drug effects , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Mice, Nude , Mice, Inbred BALB C , Male , Antineoplastic Agents, Phytogenic/pharmacology , Ethanol
6.
Antioxidants (Basel) ; 13(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38397804

ABSTRACT

The brain has a high metabolism rate that may generate reactive oxygen and nitrogen species. Consequently, nerve cells require highly efficient antioxidant defenses in order to prevent a condition of deleterious oxidative stress. This is particularly relevant in the hippocampus, a highly complex cerebral area involved in processing superior cognitive functions. Most current evidence points to hippocampal oxidative damage as a causal effect for neurodegenerative disorders, especially Alzheimer's disease. Nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) is a master key for the transcriptional regulation of antioxidant and detoxifying systems. It is ubiquitously expressed in brain areas, mainly supporting glial cells. In the present study, we have analyzed the relationships between Nrf2 and Keap1 isoforms in hippocampal tissue in response to aging and dietary long-chain polyunsaturated fatty acids (LCPUFA) supplementation. The possible involvement of lipoxidative and nitrosative by-products in the dynamics of the Nrf2/Keap1 complex was examined though determination of protein adducts, namely malondialdehyde (MDA), 4-hydroxynonenal (HNE), and 3-nitro-tyrosine (NTyr) under basal conditions. The results were correlated to the expression of target proteins heme-oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPx4), whose expressions are known to be regulated by Nrf2/Keap1 signaling activation. All variables in this study were obtained simultaneously from the same preparations, allowing multivariate approaches. The results demonstrate a complex modification of the protein expression patterns together with the formation of adducts in response to aging and diet supplementation. Both parameters exhibited a strong interaction. Noticeably, LCPUFA supplementation to aged animals restored the Nrf2/Keap1/target protein patterns to the status observed in young animals, therefore driving a "rejuvenation" of hippocampal antioxidant defense.

7.
Phytomedicine ; 126: 155458, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394733

ABSTRACT

BACKGROUND: As a canonical iron-dependent form of regulated cell death (RCD), ferroptosis plays a crucial role in chemical-induced liver injuries. Previous studies have demonstrated that xanthohumol (Xh), a natural prenylflavonoid isolated from hops, exhibits anti-inflammatory, anti-antioxidative and hepatoprotective properties. However, the regulatory effects of Xh on hepatic ferroptosis and the underlying mechanism have not yet been fully elucidated. PURPOSE: To investigate the hepatoprotective effects of Xh against drug-induced liver injury (DILI) and the regulatory effects of Xh on hepatic ferroptosis, as well as to reveal the underlying molecular mechanisms. METHODS/STUDY DESIGN: The hepatoprotective benefits of Xh were investigated in APAP-induced liver injury (AILI) mice and HepaRG cells. Xh was administered intraperitoneally to assess its in vivo effects. Histological and biochemical studies were carried out to evaluate liver damage. A series of ferroptosis-related markers, including intracellular Fe2+ levels, ROS and GSH levels, the levels of MDA, LPO and 4-HNE, as well as the expression levels of ferroptosis-related proteins and modulators were quantified both in vivo and in vitro. The modified peptides of Keap1 by Xh were characterized utilizing nano LC-MS/MS. RESULTS: Xh remarkably suppresses hepatic ferroptosis and ameliorates AILI both in vitro and in vivo, via suppressing Fe2+ accumulation, ROS formation, MDA generation and GSH depletion, these observations could be considerably mitigated by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistically, Xh could significantly activate the Nrf2/xCT/GPX4 signaling pathway to counteract AILI-induced hepatocyte ferroptosis. Further investigations showed that Xh could covalently modify three functional cysteine residues (cys151, 273, 288) of Keap1, which in turn, reduced the ubiquitination rates of Nrf2 and prolonged its degradation half-life. CONCLUSIONS: Xh evidently suppresses hepatic ferroptosis and ameliorates AILI via covalent modifying three key cysteines of Keap1 and activating Nrf2/xCT/GPX4 signaling pathway.


Subject(s)
Ferroptosis , Flavonoids , Propiophenones , Animals , Mice , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Reactive Oxygen Species , Tandem Mass Spectrometry , Liver , Signal Transduction , Cysteine
8.
J Ethnopharmacol ; 326: 117937, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38423409

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Moschus, first described in the Shennong's Classic of the Materia medicine, is a scarce and precious animal medicine. Modern pharmacological researches have suggested that Moschus has neuroprotective actions, and its mechanism is related to anti-inflammatory, antioxidant, and anti-apoptosis effects. Ferroptosis is one of the major pathologies of Alzheimer's disease (AD) and is widely implicated in the pathogenesis and progression of AD. Although previous studies have suggested that Moschus possesses neuroprotective effect, whether Moschus could mitigate neuronal damages by inhibiting the onset of ferroptosis is unknown in model cells of AD. AIM OF THE STUDY: The aim of study was to explore the water extract of Moschus (WEM) on ferroptosis caused by erastin and the potential mechanism. MATERIALS AND METHODS: Erastin was used to stimulate HT22 cells to form ferroptosis model to evaluate the anti-ferroptosis effect of WEM by cell counting kit-8 and lactic dehydrogenase (LDH) tests. The malondialdehyde (MDA) and glutathione (GSH) kits are used for detection of MDA and GSH levels, and 2',7'-dichlorofluorescein diacetate and C11 BODIPY 581/591 fluorescence probe are used for evaluation of reactive oxygen species (ROS) and lipid peroxide (LOOH) levels. And Western blot was used to test nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), and ferroptosis associated proteins including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter subunit (SLC7A11), ferritin heavy chain 1 (FTH1), ferroportin1 (FPN1), transferrin receptor (TFRC). In addition, the Nrf2 inhibitor ML385 was applied to verify whether WEM prevents erastin-induced ferroptosis by activating the Keap1/Nrf2 pathway. RESULTS: After WEM treatment, erastin-induced HT22 cell survival was significantly elevated, the accumulation of intracellular MDA, ROS, and LOOH were significantly reduced, the level of GSH and expressions of ferroptosis inhibitors GPX4 and SLC7A11 were significantly increased, and iron metabolism-related proteins TFRC, FPN1, and FTH1 were regulated. These effects of WEM are implemented by activating the Keap1/Nrf2 pathway. CONCLUSIONS: This study demonstrated that WEM could perform neuroprotective effects by alleviating ferroptosis, verified that WEM treatment of AD can be mediated by the Keap1/Nrf2 pathway, and provided theoretical support for the application of WEM in the treatment of AD.


Subject(s)
Alzheimer Disease , Ferroptosis , Piperazines , Animals , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Reactive Oxygen Species
9.
BMC Complement Med Ther ; 24(1): 71, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303002

ABSTRACT

BACKGROUND: Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS: Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-ß1) were determined. RESULTS: MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-ß1/Smad pathway. CONCLUSION: Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.


Subject(s)
Hyperthyroidism , Liver Diseases , Melissa , Plant Extracts , Animals , Rats , Gene Expression , Hyperthyroidism/complications , Hyperthyroidism/drug therapy , Inflammation/metabolism , Liver , Melissa/chemistry , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Thyroid Hormones/metabolism , Thyroxine/genetics , Thyroxine/metabolism , Transforming Growth Factor beta1/metabolism , Liver Diseases/etiology , Liver Diseases/therapy
10.
J Ethnopharmacol ; 328: 117899, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38341111

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: This study has important ethnopharmacological implications since it systematically investigated the therapeutic potential of Bacopa monnieri(L.) Wettst. (Brahmi) in treating neurological disorders characterized by oxidative stress-a growing issue in the aging population. Bacopa monnieri, which is strongly rooted in Ayurveda, has long been recognized for its neuroprotective and cognitive advantages. The study goes beyond conventional wisdom by delving into the molecular complexities of Bacopa monnieri, particularly its active ingredient, Bacoside-A, in countering oxidative stress. The study adds to the ethnopharmacological foundation for using this herbal remedy in the context of neurodegenerative disorders by unravelling the scientific underpinnings of Bacopa monnieri's effectiveness, particularly at the molecular level, against brain damage and related conditions influenced by oxidative stress. This dual approach, which bridges traditional wisdom and modern investigation, highlights Bacopa monnieri's potential as a helpful natural remedy for oxidative stress-related neurological diseases. AIM OF THE STUDY: The aim of this study is to investigate the detailed molecular mechanism of action (in vitro, in silico and in vivo) of Bacopa monnieri (L.) Wettst. methanolic extract and its active compound, Bacoside-A, against oxidative stress in neurodegenerative disorders. MATERIALS AND METHODS: ROS generation activity, mitochondrial membrane potential, calcium deposition and apoptosis were studied through DCFDA, Rhodamine-123, FURA-2 AM and AO/EtBr staining respectively. In silico study to check the effect of Bacoside-A on the Nrf-2 and Keap1 axis was performed through molecular docking study and validated experimentally through immunofluorescence co-localization study. In vivo antioxidant activity of Bacopa monnieri extract was assessed by screening the oxidative stress markers and stress-inducing hormone levels as well as through histopathological analysis of tissues. RESULTS: The key outcome of this study is that the methanolic extract of Bacopa monnieri (BME) and its active component, Bacoside-A, protect against oxidative stress in neurodegenerative diseases. At 100 and 20 µg/ml, BME and Bacoside-A respectively quenched ROS, preserved mitochondrial membrane potential, decreased calcium deposition, and inhibited HT-22 mouse hippocampus cell death. BME and Bacoside-A regulated the Keap1 and Nrf-2 axis and their downstream antioxidant enzyme-specific genes to modify cellular antioxidant machinery. In vivo experiments utilizing rats subjected to restrained stress indicated that pre-treatment with BME (50 mg/kg) downregulated oxidative stress markers and stress-inducing hormones, and histological staining demonstrated that BME protected the neuronal cells of the Cornu Ammonis (CA1) area in the hippocampus. CONCLUSIONS: Overall, the study suggests that Bacopa monnieri(L.) Wettst. has significant potential as a natural remedy for neurodegenerative disorders, and its active compounds could be developed as new drugs for the prevention and treatment of oxidative stress-related diseases.


Subject(s)
Bacopa , Neurodegenerative Diseases , Saponins , Mice , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Reactive Oxygen Species/metabolism , Calcium/metabolism , Molecular Docking Simulation , Saponins/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Extracts/pharmacology
11.
Heliyon ; 10(3): e25233, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38327393

ABSTRACT

Chlorpyrifos (CPS), an organophosphorus insecticide, is widely used for agricultural and non-agricultural purposes with hazardous health effects. Berberine (BBR) is a traditional Chinese medicine and a phytochemical with anti-inflammatory and anti-oxidative properties. The present study evaluated the effects of BBR against kidney damage induced by CPS and the underlying mechanisms. An initial study indicated that BBR 50 mg/kg was optimal under our experimental conditions. Then, 24 rats (6/group) were randomized into: control, BBR (50 mg/kg/day), CPS (10 mg/kg/day), and CPS + BBR. BBR was administration 1 h prior to CPS. Each treatment was delivered daily for a period of 28 consecutive days using a gastric gavage tube. Compared to CPS-alone treated rats, BBR effectively improved renal function by preventing the rise in serum urea, creatinine, and uric levels. The reno-protective effects of BBR were confirmed through a histological examination of kidney tissues. BBR restored oxidant-antioxidant balance in renal tissues mediated by Keap1/Nrf2/HO-1 axis modulation. In addition, BBR decreased nitric oxide (NO) and myeloperoxidase (MPO) activity. This was paralleled with the potent down-regulation of NF-κB. Furthermore, BBR exhibited anti-apoptotic activities supported by the upregulation of Bcl-2 and down-regulation of Bax and caspase-3 expression. In conclusion, our data suggest that BBR attenuates CPS-induced nephrotoxicity in rats by restoring oxidant-antioxidant balance and inhibiting inflammatory response and apoptosis in renal tissue. This is mediated, at least partly, by modulation of the Nrf2/HO-1 axis.

12.
Free Radic Biol Med ; 213: 174-189, 2024 03.
Article in English | MEDLINE | ID: mdl-38246515

ABSTRACT

Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Humans , Aged , Osteogenesis/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Carnitine/metabolism , Signal Transduction , Osteoclasts/metabolism , Macrophages/metabolism , Bone Resorption/complications , Bone Resorption/metabolism , Osteoporosis/drug therapy , Osteoporosis/genetics , RANK Ligand/pharmacology
13.
Brain Res ; 1831: 148744, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38163562

ABSTRACT

BACKGROUND: Electroacupuncture, recognized as a crucial non-pharmacological therapeutic approach, has demonstrated notable efficacy in enhancing cognitive function among Alzheimer's disease (AD) patients. This study aimed to investigate the neuroprotective properties of electroacupuncture in APP/PS1 mice with AD. METHODS: A total of thirty APP/PS1 mice were randomly assigned to three groups: the Alzheimer's disease group (AD), the electroacupuncture treatment group (EA), and the ferroptosis inhibitor deferasirox treatment group (DFX). Additionally, ten C57BL/6 mice were included as a control group (Control). In the EA group, mice underwent flat needling at Baihui and Yintang, as well as point needling at Renzhong, once daily for 15 min each time. In the DFX group, mice received intraperitoneal injections of deferasirox at a dosage of 100 mg/kg/day. Following the 28-day treatment period, behavioral evaluation, morphological observation of neurons, and detection of neuronal ferroptosis were conducted. RESULTS: The electroacupuncture treatment demonstrated a significant improvement in spatial learning, memory ability, and neuronal damage in mice with AD. Analysis of neuronal ferroptosis markers indicated that electroacupuncture interventions reduced the elevated levels of malondialdehyde, iron, and ptgs2 expression, while also increasing superoxide dismutase activity, Ferroportin 1 and glutathione peroxidase 4 expression. Moreover, the regulatory impact of electroacupuncture on ferroptosis may be attributed to its ability to enhance the expression and nuclear translocation of Nrf2. CONCLUSIONS: This study suggested that electroacupuncture could inhibit the neuronal ferroptosis by activating the antioxidant function in neurons through p62/Keap1/Nrf2 signal pathway, thereby improve the cognitive function of AD mice by the neuronal protection effect.


Subject(s)
Alzheimer Disease , Electroacupuncture , Ferroptosis , Animals , Mice , Alzheimer Disease/therapy , Amyloid Precursor Protein Secretases/genetics , Cognition , Deferasirox , Hippocampus/metabolism , Hippocampus/pathology , Kelch-Like ECH-Associated Protein 1 , Mice, Inbred C57BL , Mice, Transgenic , Neurons , NF-E2-Related Factor 2 , Oxidative Stress , Presenilin-1/genetics
14.
Phytomedicine ; 124: 155304, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176274

ABSTRACT

BACKGROUND: Oxidative stress is known as a hallmark of cerebral ischaemia‒reperfusion injury and it exacerbates the pathologic progression of ischaemic brain damage. Vialinin A, derived from a Chinese edible mushroom, possesses multiple pharmacological activities in cancer, Kawasaki disease, asthma and pathological scarring. Notably, vialinin A is an inhibitor of ubiquitin-specific peptidase 4 (USP4) that shows anti-inflammatory and antioxidative properties. However, the precise effect of vialinin A in ischaemic stroke, as well as its underlying mechanisms, remains largely unexplored. PURPOSE: The present research focuses on the impacts of vialinin A on oxidative stress and explores the underlying mechanisms involved while also examining its potentiality as a therapeutic candidate for ischaemic stroke. METHODS: Mouse ischaemic stroke was conducted by MCAO surgery. Vialinin A was administered via lateral ventricular injection at a dose of 2 mg/kg after reperfusion. Subsequent experiments were meticulously conducted at the appropriate time points. Stroke outcomes were evaluated by TTC staining, neurological score, Nissl staining and behavioural analysis. Co-IP assays were operated to examine the protein-protein interactions. Immunoblot analysis, qRT-PCR, and luciferase reporter assays were conducted to further investigate its underlying mechanisms. RESULTS: In this study, we initially showed that administration of vialinin A alleviated cerebral ischaemia‒reperfusion injury-induced neurological deficits and neuronal apoptosis. Furthermore, vialinin A, which is an antioxidant, reduced oxidative stress injury, promoted the activation of the Keap1-Nrf2-ARE signaling pathway and increased the protein degradation of Keap1. The substantial neuroprotective effects of vialinin A against ischaemic stroke were compromised by the overexpression of USP4. Mechanistically, vialinin A inhibited the deubiquitinating enzymatic activity of USP4, leading to enhanced ubiquitination of Keap1 and subsequently promoting its degradation. This cascade caused the activation of Nrf2-dependent antioxidant response, culminating in a reduction of neuronal apoptosis and the amelioration of neurological dysfunction following ischaemic stroke. CONCLUSIONS: This study demonstrates that inhibition of USP4 to activate Keap1-Nrf2-ARE signaling pathway may represent a mechanism by which vialinin A conferred protection against cerebral ischaemia‒reperfusion injury and sheds light on its promising prospects as a therapeutic intervention for ischaemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Stroke , Terphenyl Compounds , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Brain Ischemia/drug therapy , NF-E2-Related Factor 2/metabolism , Stroke/drug therapy , Oxidative Stress , Reperfusion Injury/metabolism
15.
J Ethnopharmacol ; 322: 117576, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38104880

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Type 1 diabetes mellitus (T1DM) results from insulin deficiency due to the destruction of pancreatic ß-cells. Previously, our studies showed that inhibition of Keap1/Nrf2 signaling pathway promoted the onset of T1DM, which suggests that finding drugs that can activate the Keap1/Nrf2 signaling may be a promising therapeutic strategy for the T1DM treatment. Astragalus membranaceus (Fisch.) Bunge is a common traditional Chinese medicine that has been frequently applied in Chinese clinics for the treatment of diabetes and other diseases. Formononetin (FMNT), one of the major isoflavonoid constituents isolated from this herbal medicine, possesses diverse pharmacological benefits and T1DM therapeutic potential. However, the exact molecular mechanisms underlying the action of FMNT in ameliorating T1DM have yet to be fully elucidated. AIMS OF THE STUDY: This study is to investigate the regulation of FMNT on the Keap1/Nrf2 signaling pathway to ameliorate T1DM based on network pharmacology approach combined with experimental validation. MATERIALS AND METHODS: A mouse-derived pancreatic islet ß-cell line (MIN6) was used for the in vitro studies. An alloxan (ALX)-induced T1DM model in wild-type and Nrf2 knockout (Nrf2-/-) C57BL/6J mice were established for the in vivo experiments. The protective effects of FMNT against ALX-stimulated MIN6 cell injury were evaluated using MTT, EdU, apoptosis and comet assays. The levels of blood glucose in mice were measured by using a blood monitor and test strips. The protein expression was detected by Western blot analysis. Furthermore, the binding affinity of FMNT to Keap1 was evaluated using cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and solvent-induced protein precipitation (SIP) assay. The interaction pattern between FMNT and Keap1 was assessed by molecular docking and molecular dynamics simulation techniques. RESULTS: Network pharmacology analysis revealed that FMNT exerted its therapeutic effect against T1DM by mainly regulating oxidative stress response-associated signaling molecules and pathways, such as Nrf2 regulating anti-oxidant/detoxification enzymes and Keap1-Nrf2 signaling pathway. The in vivo results showed that FMNT significantly deceased the ALX-induced high blood glucose levels and conversely increased the ALX-induced low insulin contents. In vitro, FMNT markedly protected MIN6 cells from ALX-induced cytotoxicity, proliferation inhibition and DNA damage and reduced the ALX-stimulated cell apoptosis. FMNT also inhibited ALX-induced overproduction of intracellular ROS to alleviate oxidative stress. In addition, FMNT could bind to Keap1 to notably activate the Keap1/Nrf2 signaling to upregulate Nrf2 expression and promote the Nrf2 translocation from the cytoplasm to the nucleus, resulting in enhancing the expression of antioxidant proteins HO-1 and NQO1. Inhibition of Keap1/Nrf2 signaling by ALX was also markedly abolished in the cells and mice exposed to FMNT. Moreover, these effects of FMNT in ameliorating T1DM were not observed in Nrf2-/- mice. CONCLUSIONS: This study demonstrates that FMNT could bind to Keap1 to activate the Keap1/Nrf2 signaling to prevent intracellular ROS overproduction, thereby attenuating ALX-induced MIN6 cell injury and ameliorating ALX-stimulated T1DM. Results from this study might provide evidence and new insight into the therapeutic effect of FMNT and indicate that FMNT is a promising candidate agent for the treatment of T1DM in clinics.


Subject(s)
Diabetes Mellitus, Type 1 , Insulins , Isoflavones , Mice , Animals , Diabetes Mellitus, Type 1/drug therapy , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Astragalus propinquus , Blood Glucose , Molecular Docking Simulation , Network Pharmacology , Mice, Inbred C57BL , Oxidative Stress , Signal Transduction , Insulins/metabolism , Insulins/pharmacology
16.
J Ethnopharmacol ; 319(Pt 3): 117358, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37890806

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inulae Herba (IH) is known as Jinfeicao recorded in Chinese Pharmacopoeia with effects of lowering qi and eliminating phlegm, and used for the treatment of pulmonary diseases. However, its protective mechanism on pulmonary diseases, especially acute lung injury (ALI), is still undefined. AIM OF THE STUDY: This study aimed to explore anti-inflammatory and anti-oxidation effects of IH and its underlying mechanism for treating ALI. MATERIALS AND METHODS: We constructed a lipopolysaccharide (LPS)-ALI mouse model to reveal the therapeutical effect of IH. Western blot, real-time quantitative PCR, flow cytometry, small RNA interference, immunohistochemical staining, and the dual-luciferase experiment were performed to study the mechanism of IH for treating ALI. RESULTS: IH attenuated LPS-mediated pathological changes (e.g. pneumonedema and pulmonary congestion) through inactivation of macrophages in an ALI mouse model. The result of flow cytometry demonstrated that IH regulated the homeostasis of M1 (CD80+CD206-) and M2 (CD80+CD206+) phenotype macrophages. Furthermore, IH suppressed mRNA expressions of M1 phenotype markers, such as iNOS and IL-6, whereas promoted mRNA expressions of M2 phenotype markers, such as ARG1 and RETNLA in LPS-mediated mice. Notably, IH targeted Keap1 to activate the Nrf2 receptor, exerting its anti-inflammatory and anti-oxidation effects proved by using immunohistochemical staining, dual-luciferase, and Keap1 knockdown technologies. CONCLUSION: These findings suggested that targeting Keap1 with IH alleviated LPS-mediated ALI, and it could serve as a herbal agent for developing anti-ALI drugs.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Animals , Mice , Kelch-Like ECH-Associated Protein 1/genetics , Lipopolysaccharides/toxicity , NF-E2-Related Factor 2/genetics , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Luciferases , RNA, Messenger
17.
Biomed Pharmacother ; 170: 116067, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150877

ABSTRACT

BACKGROUND: Neuropathic pain, a chronic condition with a high incidence, imposes psychological burdens on both patients and society. It is urgent to improve pain management and develop new analgesic drugs. Traditional Chinese medicine has gained popularity as a method for pain relief. Diosmetin (Dio) is mainly found in Chinese herbal medicines with effective antioxidant, anti-cancer, and anti-inflammatory properties. There are few known mechanisms underlying the effectiveness of Dio in treating neuropathic pain. However, the complete understanding of its therapeutic effect is missing. PURPOSE: This study aimed to evaluate Dio's therapeutic effects on neuropathic pain models and determine its possible mechanism of action. We hypothesized that Dio may activate antioxidants and reduce inflammation, inhibit the activation of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor-k-gene binding (NF-κB), promote the metastasis of nuclear factor erythroid 2-related factor 2 (Nrf2) and the expression of heme oxygenase 1 (HO-1), thus alleviating the neuropathic pain caused by spinal nerve ligation. METHODS: Chronic nociceptive pain mouse models were established in vivo by L4 spinal nerve ligation (SNL). Different dosages of Dio (10, 50, 100 mg/kg) were intragastrically administered daily from the third day after the establishment of the SNL model. Allodynia, caused by mechanical stimuli, and hyperalgesia, caused by heat, were assessed using the paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL), respectively. Cold allodynia were assessd by acetone test. RT-PCR was used to detect the content of interleukin-(IL)- 1ß, IL-6 and tumor necrosis factor (TNF)-a. Immunofluorescence and western blotting were employed to assess the expression levels of Glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), Keap1, Nrf2, HO-1, and NF-κB p-p65 protein. RESULTS: Dio administration relieved SNL-induced transient mechanical and thermal allodynia in mice. The protective effect of Dio in the SNL model was associated with its anti-inflammatory and anti-glial responses in the spinal cord. Dio inhibited both inflammatory factors and macrophage activation in the DRG. Furthermore, Dio regulated the Keap1/Nrf2/NF-κB signaling pathway. HO-1 and Nrf2 were upregulated following Dio administration, which also decreased the levels of Keap1 and NF-κB p65 protein. CONCLUSION: Mice with SNL-induced neuropathic pain were therapeutically treated with Dio. Dio may protect against pain by inhibiting inflammatory responses and improved Keap1/Nrf2/NF-κB pathway. These results highlight the potential therapeutic effect of Dio for the development of new analgesic drugs.


Subject(s)
NF-kappa B , Neuralgia , Humans , Mice , Animals , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , Epichlorohydrin/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , Hyperalgesia/drug therapy , Signal Transduction , Analgesics/pharmacology , Analgesics/therapeutic use , Neuralgia/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
18.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38136184

ABSTRACT

This study evaluated the effects of maternal selenium-enriched yeast (SeY) supplementation during late gestation and lactation on sow performance, transfer of selenium (Se) and redox status, and gut microbiota community, as well as on the gut health of offspring. Seventy pregnant sows on day 85 of gestation were randomly allocated to the following two treatments: (1) sows who were fed a basal diet (basal diet contained 0.3 mg/kg Se as Na2SeO3, n = 35); (2) and sows who were fed a SeY-supplemented diet (basal diet with 0.2 mg/kg Se as SeY, n = 35). The offspring piglets were only cross-fostered within the group on day 3 of lactation (L3) according to the pig farm epidemic prevention policy. The plasma, milk, and feces samples from 10 sows, as well as plasma and intestinal samples per treatment, were collected on L1 and L21, respectively. Our results showed that maternal SeY supplementation increased the first week average weight and ADG of piglets (p < 0.05). Compared with the CON group, the SeY supplementation increased the Se content in the plasma and milk of sows and the plasma of piglets on L1 and L21 (p < 0.05). In addition, in sows, the levels of fat in the milk on L21, the level of IgA, T-AOC, and GSH-Px in the plasma on L21, and the level of T-AOC and GSH-Px in the colostrum were increased, while the MDA content was decreased in the plasma on L1 and in the colostrum and milk on L14 (p < 0.05). In the piglet plasma, the levels of IgA on L1 and L21, GSH-Px on L1, and GSH on L21 were increased, while the MDA content was decreased on L1 (p < 0.05). Maternal SeY supplementation up-regulated the small intestinal protein abundances of MUC1, E-cadherin, ZO-1, occludin, and claudin and activated the Nrf2/Keap1 signaling pathway in weaned offspring piglets. The 16S rRNA sequencing results showed that fecal microbiota had distinct separations during lactation, and the relative abundances of unclassified_f_Lachnospiraceae, Prevotaceae_UCG-001, and Lachnospiraceae_NK4A136_group were increased on L1. Collectively, the current findings suggest that maternal SeY supplementation during late gestation and lactation could improve the piglet's growth performance, Se status, antioxidant capacity and immunoglobulins transfer at the first week of lactation, as well as alter the fecal microbiota composition by increasing antioxidative-related and SCFA-producing microbiota in sows. These changes contributed to enhancing the small intestinal barrier function and activating the Nrf2/Keap1 pathway in offspring.

19.
Int Immunopharmacol ; 125(Pt A): 111079, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149576

ABSTRACT

Sepsis is a life-threatening organ dysfunction associated with macrophage overactivation. Targeted therapy against macrophages is considered a promising strategy for sepsis treatment. Mollugin (MLG), a compound extracted from traditional Chinese medicine Rubia cordifolia L., possesses anti-tumor and anti-inflammatory activities. This study aimed to investigate the anti-inflammatory effects and mechanisms of MLG in macrophages and its therapeutic role in CLP-induced sepsis in mice. The results demonstrated that MLG downregulated the inflammatory response induced by LPS or tumor necrosis factor α (TNF-α) in macrophages. Mechanistically, MLG suppressed the phosphorylation of TAK1, the upstream modulator of IKKα/ß and MAPKs, thereby inhibiting the pro-inflammatory signaling transduction of NF-κB and MAPKs. Additionally, MLG also activated the Nrf2 antioxidant pathway, reducing intracellular reactive oxygen species. CETSA and molecular docking analyses revealed that MLG could effectively bind to TAK1 and Keap1, which may be involved in the inhibition of TAK1- NF-κB/MAPKs and activation of Nrf2 mediated by MLG. Animal study demonstrated that MLG ameliorated inflammatory injury of lung and liver in CLP-induced sepsis mice probably by reducing the levels of pro-inflammatory cytokines. Therefore, our study suggests that bi-directional roles of MLG in improving sepsis via blocking the TAK1-NF-κB/MAPKs and activating Nrf2 pathways, indicating its potential as a promising candidate drug for sepsis treatment.


Subject(s)
NF-kappa B , Sepsis , Mice , Animals , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Docking Simulation , Inflammation/drug therapy , Macrophages , Anti-Inflammatory Agents/adverse effects , Sepsis/drug therapy , Sepsis/metabolism , Lipopolysaccharides/pharmacology
20.
Nutrients ; 15(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38140314

ABSTRACT

The prevalence of inflammatory bowel disease (IBD) is progressively rising each year, emphasizing the significance of implementing rational dietary interventions for disease prevention. Oats, being a staple agricultural product, are abundant in protein content. This study aimed to investigate the protective effects and underlying mechanisms of oat peptides (OPs) in a mouse model of acute colitis induced by dextran sulfate sodium salt (DSS) and a Caco-2 cell model. The findings demonstrated that intervention with OPs effectively mitigated the symptoms associated with DSS-induced colitis. The physicochemical characterization analysis demonstrated that the molecular weight of the OPs was predominantly below 5 kDa, with a predominant composition of 266 peptides. This study provides further evidence of the regulatory impact of OPs on the Keap1-Nrf2 signaling axis and elucidates the potential role of WGVGVRAERDA as the primary bioactive peptide responsible for the functional effects of OPs. Ultimately, the results of this investigation demonstrate that OPs effectively mitigate DSS-induced colitis by preserving the integrity of the intestinal barrier and modulating the Keap1-Nrf2 axis. Consequently, these findings establish a theoretical foundation for the utilization of OPs as dietary supplements to prevent the onset of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Avena , Dextran Sulfate/adverse effects , NF-E2-Related Factor 2/metabolism , Caco-2 Cells , Kelch-Like ECH-Associated Protein 1/metabolism , Colitis/chemically induced , Colitis/prevention & control , Colitis/metabolism , Sodium Chloride/adverse effects , Sodium Chloride, Dietary/adverse effects , Inflammatory Bowel Diseases/chemically induced , Disease Models, Animal , Mice, Inbred C57BL , Colon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL