ABSTRACT
BACKGROUND: We describe a male with functionally impairing radial deviation of the thumb who presented to us at 24 years of age. Two sclerotic skin lesions had been excised 7 years before because of consecutive skin contracture. Latest radiological examination showed a spotted pattern consistent with osteopoikilosis. CASE PRESENTATION: A corrective osteotomy of the thumb was carried out due to the patients discomfort. Facing the simultaneous osteo-cutaneous malformation we postulated a Buschke-Ollendorff syndrome. Buschke-Ollendorff syndrome is a rare autosomal-dominant hereditary disorder of connective tissue with typical osteo-cutaneous manifestations. To explore our hypothesis, biopsies were taken from the affected bone lesions and surrounding skin and soft tissue for histological investigation and genetic testing of the LEMD3 gene was performed on blood of the patient. The histology showed typical changes of the bone architecture and a fibrotic collagenous nodule of the skin. The genetic testing on DNA extracted from peripheral blood leucocytes confirmed a heterozygous loss of function mutation in the LEM domain-containing protein 3 (LEMD3) gene coding for the inner nuclear membrane protein MAN1, which causes osteopoikilosis by antagonizing transforming growth factor ß (TGF-ß) and bone morphogenetic protein (BMP) signalling. CONCLUSIONS: In atypical cases of simultaneous occurrence of fibrotic skin lesions and a spotted pattern in the X-ray we recommend the genetic screening of the LEMD3 gene. A correct diagnosis of Buschke-Ollendorff syndrome is necessary to spare patients from expensive investigations and to provide reassurance about the benign nature of the disease.
Subject(s)
Abnormalities, Multiple/pathology , Osteopoikilosis/pathology , Skin Abnormalities , Skin Diseases, Genetic/pathology , Thumb/abnormalities , Abnormalities, Multiple/genetics , Base Sequence , DNA Mutational Analysis/methods , DNA-Binding Proteins , Humans , Male , Membrane Proteins/genetics , Mutation , Nuclear Proteins/genetics , Osteopoikilosis/genetics , Sequence Homology, Nucleic Acid , Skin Diseases, Genetic/genetics , Thumb/surgery , Young AdultABSTRACT
INTRODUCTION: Osteopoikilosis is a rare and benign autosomal dominant genetic disorder, characterized by a symmetric but unequal distribution of multiple hyperostotic areas in different parts of the skeleton. Recent studies have reported loss-of-function mutations in the LEM domain containing 3 (LEMD3) gene, encoding an inner nuclear membrane protein, as a cause of osteopoikilosis. METHODS: We investigated LEMD3 gene in a three-generation family from China, with six patients affected with osteopoikilosis. Peripheral blood samples were collected from family members and 100 healthy controls. All exons of the LEMD3 gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. RESULTS: A novel heterozygous c.2612_2613insA (p.Y871X) mutation in exon 13 of LEMD3 was identified, which resulted in a frame shift predicted to generate a premature stop codon at amino acid position 871. The mutation co-segregates with the osteopoikilosis phenotype and was not found in 100 ethnically matched controls. CONCLUSION: We identified a new mutation in LEMD3 gene, accounting for the familial case of osteopoikilosis. In addition we also review the clinical manifestation, diagnosis and treatment of osteopoikilosis.