ABSTRACT
Traditionally, arctic Finnish Angelica (Angelica archangelica L.), marsh Labrador tea (Rhododendron tomentosum, syn. Ledum palustre) and common tansy (Tanacetum vulgare) have been used as medicinal herbs in folklore medicine. However, these underutilised plants are a source of, e.g., oil-based compounds, which could benefit many modern applications implemented by the green chemistry extraction methods, as well. We extracted Angelica, marsh Labrador tea and common tansy by non-toxic and recyclable extraction methods, i.e., hydrodistillation and supercritical carbon dioxide (scCO2) extraction; characterised the essential oils (EOs) and scCO2 extracts by combination of gas chromatography and mass spectrometry (GC-MS), and in addition, analysed the antimicrobial properties. As expected for Angelica root and common tansy inflorescence, the scCO2 extraction method produced less amount of volatile compounds compared to hydrodistillation. On the other hand, more coumarins, alkanes, fatty alcohols and fatty acids were obtained. Additionally, sesquiterpenoids palustrol and ledol were predominant compounds in both marsh Labrador tea EO and scCO2 extract. According to our results, however, all the EOs and scCO2 extracts showed broad spectrum of antimicrobial activities against the selected microbes, but the effects were extract-specific. The strongest and broadest antimicrobial activities were performed by marsh Labrador tea scCO2 extract, which showed extremely strong effect on Staphylococcusaureus subsp. aureus and strong effect on Candida albicans.
Subject(s)
Angelica archangelica/chemistry , Oils, Volatile/chemistry , Rhododendron/chemistry , Tanacetum/chemistry , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Candida albicans/drug effects , Candida albicans/pathogenicity , Carbon Dioxide/chemistry , Gas Chromatography-Mass Spectrometry , Oils, Volatile/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicityABSTRACT
OBJECTIVES: Consumption of fish/seafood is clearly linked to higher mercury levels in human tissue samples. However, correlations between methylmercury (MeHg) intakes calculated from dietary surveys and mercury body burdens are usually weak and can vary across populations. Different factors may affect MeHg absorption, distribution, metabolism and excretion, including co-exposures to phytochemicals and antibiotics, which were shown to affect mercury body burdens in rodents. Based on the observation that rat pups developmentally exposed to MeHg and a Rhododendron tomentosum extract (Labrador Tea) presented significantly higher blood mercury levels at weaning compared to pups exposed to MeHg alone, the modulation of MeHg toxicokinetics by Labrador Tea was further investigated in adult rats. RESULTS: Total mercury levels were quantified in the blood, liver, kidney and feces of adult male rats exposed to MeHg (1.2 mg/kg bodyweight/day, for 3 weeks) administered either alone or in combination with Labrador Tea (100 mg/kg bodyweight/day) or with an antibiotics cocktail (to inhibit MeHg demethylation by gut bacteria). While the reduced fecal excretion and higher blood mercury levels expected from antibiotics-treated rats were observed, mercury levels in samples from Labrador Tea-treated rats were not significantly different from those measured in samples from rats exposed to MeHg alone.
Subject(s)
Kidney/drug effects , Liver/drug effects , Methylmercury Compounds/pharmacokinetics , Plant Extracts/pharmacokinetics , Rhododendron/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Biological Transport/drug effects , Feces/chemistry , Kidney/chemistry , Kidney/metabolism , Ledum/chemistry , Liver/chemistry , Liver/metabolism , Male , Neomycin/administration & dosage , Penicillins/administration & dosage , Rats , Rats, Sprague-Dawley , Streptomycin/administration & dosageABSTRACT
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that is one of the more common pediatric malignancies in addition to occurring with high incidence in the aging population. Unfortunately, these patient groups are quite sensitive to toxicity from chemotherapy. Northern Labrador tea, or Rhododendron tomentosum Harmaja (a.k.a. Ledum palustre subsp. decumbens) or "tundra tea," is a noteworthy medicinal plant used by indigenous peoples in Alaska, Canada, and Greenland to treat a diversity of ailments. However, laboratory investigations of Northern Labrador tea, and other Labrador tea family members, as botanical sources for anticancer compounds have been limited. Utilizing an AML cell line in both in vitro and in vivo studies, as well as in vitro studies using primary human AML patient samples, this study demonstrated for the first time that Northern Labrador tea extracts can exert anti-AML activity and that this may be attributed to ursolic acid as a constituent component. Therefore, this medicinal herb holds the potential to serve as a source for further drug discovery efforts to isolate novel anti-AML compounds.
Subject(s)
Ledum/chemistry , Leukemia, Myeloid, Acute/drug therapy , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred C57BL , Plants, Medicinal/chemistry , Ursolic AcidABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Rhododendron groenlandicum (Oeder) Kron & Judd (Labrador tea) was identified as an antidiabetic plant through an ethnobotanical study carried out with the close collaboration of Cree nations of northern Quebec in Canada. OBJECTIVES: In a previous study the plant showed glitazone-like activity in a 3T3-L1 adipogenesis bioassay. The current study sought to identify the active compounds responsible for this potential antidiabetic activity using bioassay guided fractionation based upon an in vitro assay that measures the increase of triglycerides content in 3T3-L1 adipocyte. MATERIALS AND METHODS: Isolation and identification of the crude extract's active constituents was carried out. The 80% ethanol extract was fractionated using silica gel column chromatography. Preparative HPLC was then used to isolate the constituents. The identity of the isolated compounds was confirmed by UV and mass spectrometry. RESULTS: Nine chemically distinct fractions were obtained and the adipogenic activity was found in fraction 5 (RGE-5). Quercetins, (+)-catechin and (-)-epicatechin were detected and isolated from this fraction. While (+)-catechin and (-)-epicatechin stimulated adipogenesis (238±26% and 187±21% relative to vehicle control respectively) at concentrations equivalent to their concentrations in the active fraction RGE-5, none afforded biological activity similar to RGE-5 or the plant's crude extract when used alone. When cells were incubated with a mixture of the two compounds, the adipogenic activity was close to that of the crude extract (280.7±27.8 vs 311± 30%). CONCLUSION: Results demonstrate that the mixture of (+)-catechin and (-)-epicatechin is responsible for the adipogenic activity of Labrador tea. This brings further evidence for the antidiabetic potential of R. groenlandicum and provides new opportunities to profile active principles in biological fluids or in traditional preparations.
Subject(s)
Adipogenesis/drug effects , Catechin/pharmacology , Hypoglycemic Agents/pharmacology , Ledum/chemistry , Plant Extracts/pharmacology , Rhododendron/chemistry , 3T3 Cells , Animals , Bays , Cell Line , Medicine, Traditional/methods , Mice , Plants, Medicinal/chemistry , QuebecABSTRACT
PURPOSE: Using a diet-induced obesity (DIO) mouse model, we investigated the antidiabetic effect of Labrador tea [Rhododendron groenlandicum (Oeder) Kron and Judd], a beverage and medicinal tea used by the Cree Nations of northern Quebec. METHODS: C57BL6 mice were divided into five groups and given standard chow (~4 % of lipids) or high-fat diet (~35 % of lipids) for 8 weeks until they became obese and insulin resistant. Treatment began by adding the plant extract at three doses (125, 250 and 500 mg/kg) to the high-fat diet for another 8 weeks. At the end of the study, insulin-sensitive tissues (liver, skeletal muscle, adipose tissue) were collected to investigate the plant's molecular mechanisms. RESULTS: Labrador tea significantly reduced blood glucose (13 %), the response to an oral glucose tolerance test (18.2 %) and plasma insulin (65 %) while preventing hepatic steatosis (42 % reduction in hepatic triglyceride levels) in DIO mice. It stimulated insulin-dependent Akt pathway (55 %) and increased the expression of GLUT4 (53 %) in skeletal muscle. In the liver, Labrador tea stimulated the insulin-dependent Akt and the insulin-independent AMP-activated protein kinase pathways. The improvement in hepatic steatosis observed in DIO-treated mice was associated with a reduction in inflammation (through the IKK α/ß) and a decrease in the hepatic content of SREBP-1 (39 %). CONCLUSIONS: Labrador tea exerts potential antidiabetic action by improving insulin sensitivity and mitigating high-fat diet-induced obesity and hyperglycemia. They validate the safety and efficacy of this plant, a promising candidate for culturally relevant complementary treatment in Cree diabetics.
Subject(s)
Hypoglycemic Agents/pharmacology , Insulin Resistance , Ledum/chemistry , Obesity/blood , Plant Extracts/pharmacology , Rhododendron/chemistry , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Animals , Aspartate Aminotransferases/blood , Blood Glucose/metabolism , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Creatinine/blood , Diet, High-Fat/adverse effects , Disease Models, Animal , Dose-Response Relationship, Drug , Fatty Liver/prevention & control , Glucose Tolerance Test , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Insulin/blood , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Obesity/drug therapy , Triglycerides/bloodABSTRACT
Labrador tea is a name for the dried leaves of Rhododendron groenlandicum, R. tomentosum or R. neoglandulosum (family Ericaceae, previously genus Ledum) as well as for the beverage native to North America, which is made from them. The above species are rich in the essential oil, which gives a conifer aroma to the tisane. Labrador tea is a valuable source of ascorbic acid, with tonic, improving digestion and relaxing activity. However, this beverage should not be drunk more than once daily because of the ledol and grayanotoxin toxicity. The common recipe for making Labrador tea is to add one teaspoonful of dried leaves to one cup of boiling water and to brew for 5 min. It is often sweetened or enriched with other flavors. Additionally, Labrador tea dried leaves are used to spice meat, soups, sauces, salads, beer, cakes and other dishes. In agriculture, its insecticidal properties can be useful for controlling pests.
Subject(s)
Beverages , Food Handling , Food Safety , Ledum , Diterpenes/analysis , Diterpenes/toxicity , Flavonoids/analysis , Food Handling/methods , Humans , Insecticides , Ledum/chemistry , Ledum/toxicity , North America , Oils, Volatile/analysis , Phytotherapy , Plant Extracts/adverse effects , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Sesquiterpenes/analysis , Sesquiterpenes/toxicity , Spices , Toxins, Biological/analysisABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Rhododendron groenlandicum (Bog Labrador tea), Rhododendron tomentosum (Marsh Labrador tea) and Juniperus communis (Juniper) are used in medicinal teas by Canadian aboriginal cultures alone and in combination with conventional drug products. The safety of this combination had not been previously examined and this study was initiated to examine the potential of medicinal teas to inhibit the major human drug metabolizing enzyme, cytochrome P450 3A4 (CYP3A4). MATERIALS AND METHODS: The decoctions of Rhododendron groenlandicum and Rhododendron tomentosum leaves and Juniperus communis berries were examined in a microtiter fluorometric assay to examine their potential to inhibit CYP-mediated metabolism. RESULTS: The decoctions showed progressive inhibition towards CYP3A4 the longer the leaves or berries were brewed. R. Rhododendron groenlandicum and Juniperus communis may have the potential to inhibit CYP3A4-mediated metabolism. CONCLUSIONS: The findings of this study with these traditional medicines are significant in that they provide mechanistic support that these products have the potential to affect the safety and efficacy of other health and medicinal products. As this study only examined CYP3A4, it is possible that these medicinals contain substances that could also affect other metabolic enzymes.