Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Hazard Mater ; 469: 134047, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492392

ABSTRACT

Microplastics (MPs) have attracted increasing attention due to their ubiquitous occurrence in freshwater sediments and the detrimental effects on benthic invertebrates. However, a clear understanding of their downstream impacts on ecosystem services is still lacking. This study examines the effects of bio-based polylactic acid (PLA), fuel-based polyethylene terephthalate (PET), and biofilm-covered PET (BPET) MPs on the bioturbator chironomid larvae (Tanypus chinensis), and the influence on phosphorus (P) profiles in microcosms. The changes in biochemical responses and metabolic pathways indicated that MPs disrupted energy synthesis by causing intestinal blockage and oxidative stress in T. chinensis, leading to energy depletion and impaired bioturbation activity. The impairment further resulted in enhanced sedimentary P immobilization. For larval treatments, the internal-P loadings were respectively 11.4%, 8.6%, and 9.0% higher in the PLA, PET, and BPET groups compared to the non-MP control. Furthermore, the influence of bioturbation on P profiles was MP-type dependent. Both BPET and PLA treatments displayed more obvious impacts on P profiles compared to PET due to the changes in MP bioavailability or sediment microenvironment. This study connects individual physiological responses to broader ecosystem services, showing that MPs alter P biogeochemical processes by disrupting the bioturbation activities of chironomid larvae.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics , Water , Phosphorus , Ecosystem , Geologic Sediments , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Polyethylene Terephthalates , Larva
2.
Animals (Basel) ; 14(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38473136

ABSTRACT

The objective of this research was to evaluate palatability, plasma biochemistry, antioxidative and anti-inflammatory capacity, and immune levels in cats by feeding supplementing inclusion of different levels of a mixture of protein hydrolysate from black soldier fly larvae and schizochytrium (BSFPs) in diets. In the feed experiment, a total of 24 adult cats (12 females and 12 males; BW: 3.02 ± 0.06 kg) were randomly divided into four groups: (1) diet with chicken and fish meal as primary protein resource (CON); (2) diet with 5% BSFPs replacing chicken meal, fish meal, chicken oil, and fish oil (5% BSFPs); (3) 10% BSFPs; and (4) 15% BSFPs. The body weight and feed intake were recorded, and a blood sample was collected for analysis. In the palatability experiment, three diets containing 5%, 10%, and 15% BSFPs were evaluated by comparing with CON. These results suggested that different levels of BSFPs could improve palatability in cat diets by enhancing the first sniff, the first bite, and feed intake (p < 0.05). However, no significant influence existed in body weight and average daily feed intake (p > 0.05). In comparison to the CON group, 5% and 15% BSFPs significantly increased the total protein content, and all treatment groups decreased the triglyceride content and enhanced the calcium concentration in plasma; in addition, the activity of aspartate aminotransferase and alanine aminotransferase and the content of creatinine and urea nitrogen were significantly reduced by the supplementation inclusion of BSFPs in the diets (p < 0.05). The enzyme activity of glutathione peroxidase was dramatically enhanced by the supplementation of 10% and 15% BSFPs in diets compared with the CON diet, and the activity of superoxide dismutase was increased and the malondialdehyde concentration was remarkably reduced in all three treatments (p < 0.05). Compared with the CON group, different levels of BSFPs in the diets significantly increased the immunoglobulin A content in plasma; similarly, the immunoglobulin G concentration was significantly enhanced by the supplementation of 10% and 15% BSFPs in the diets (p < 0.05). Furthermore, the interleukin-1ß content was significantly reduced in the inclusion of 10% and 15% BSFPs in the diets, and 15% BSFPs remarkably decreased the content of interleukin-8 in plasma compared with the CON diet (p < 0.05). To sum up, the supplementation of different levels of BSFPs exhibited a positive effect on palatability and enhanced the antioxidant, anti-inflammatory, and immune capacity. Particularly, the addition levels of 10% and 15% BSFPs were more effective in antioxidation, anti-inflammation, and immunity.

3.
Microorganisms ; 12(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38543547

ABSTRACT

Protaetia brevitarsis larvae are farm-raised for food, are used in traditional East Asian medicine, and convert organic waste into biofertilizers. Here, the comparative analysis of the gut microbiota of third-instar larvae obtained from five different farms was investigated using 16S rRNA microbial profiling. Species richness, evenness, and diversity results using α-diversity analysis (observed species, Chao1, Shannon, Simpson) were similar between farms, except for those between the TO and KO farms. ß-diversity was significantly different in distribution and relative abundance between farms (PERMANOVA, pseudo-F = 13.20, p = 0.001). At the phylum level, Bacillota, Bacteroidota, Actinomycetota, and Pseudomonadota were the most dominant, accounting for 73-88% of the hindgut microbial community. At the genus level, Tuberibacillus, Proteiniphilum, Desulfovibrio, Luoshenia, and Thermoactinomyces were the most abundant. Although oak sawdust was the main feed component, there were large variations in distribution and relative abundance across farms at the phylum and genus levels. Venn diagram and linear discriminant analysis effect size analyses revealed large variations in the hindgut microbial communities of P. brevitarsis larvae between farms. These results suggest environmental factors were more important than feed ingredients or genetic predisposition for the establishment of the intestinal microbiota of P. brevitarsis larvae. These findings serve as reference data to understand the intestinal microbiota of P. brevitarsis larvae.

4.
Metabolites ; 14(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535325

ABSTRACT

Protein hydrolysate from black soldier fly larvae (BSFP) has garnered great attention with its lower allergenicity, high amount of essential amino acids, and small bioactive peptides. Schizochytrium is a promising alternative source of n-3 FUFA because it has enriched docosahexaenoic acid (DHA, C22: 6). The aim of this study was to assess palatability, the presence of diarrhea, plasma biochemistry panels, anti-oxidative and anti-inflammatory effects, and immune function in beagle dogs when supplementing a mixture of protein hydrolysate from black soldier fly larvae and schizochytrium (BSFPs) into their diets. Experiment I: 24 young beagle dogs (16 males and 8 females; 4-5 months; BW: 6.40 ± 0.15 kg) were randomly divided into four groups: (1) control (CON), (2) 5% BSFPs, (3) 10% BSFPs, (4) 15% BSFPs. Their body weights and fecal scores were recorded, and blood samples were collected for analysis. Experiment II: three diets containing 5%, 10%, and 15% BSFPs were evaluated by comparing them with a basal diet (CON) to evaluate palatability. These results suggested that a lower presence of diarrhea existed in the BSFP diet than the CON diet (p < 0.05). Three treatment groups remarkably increased their total protein (TP) and albumin (ALB) contents and decreased their concentrations of triglyceride (TG) and total cholesterol (TC) in plasma (p < 0.05). Moreover, the 5% and 15% BSFPs groups had a higher calcium (CA) content in plasma, and the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and contents of creatinine (CREA) and urea nitrogen (BUN) were significantly reduced by supplementing BSFP in their diets (p < 0.05). Their anti-oxidative enzyme activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were dramatically enhanced, and their malondialdehyde (MDA) concentrations were remarkably reduced (p < 0.05). Immunoglobulin A and G (IgA and IgG) concentrations in the plasma in the 10% and 15% BSFPs groups were significantly increased (p < 0.05). Furthermore, lower interleukin-8 (IL-8) contents were shown in the BSFP diets than the CON diet (p < 0.05). Similarly, the diets supplemented with BSFPs exhibited a positive effect on palatability (p < 0.05). To sum up, the diets supplemented with BSFPs significantly enhanced palatability, immune function, and anti-oxidative and anti-inflammatory capacity to alleviate diarrhea and improve the general health of the beagle dogs.

5.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474561

ABSTRACT

Berberis species have a long history of use in traditional Chinese medicine, Ayurvedic medicine, and Western herbal medicine. The aim of this study was the quantification of the main isoquinoline alkaloids in extracts obtained from various Berberis species by HPLC, in vitro and in silico determination of anti-cholinesterase activity, and in vitro and in vivo investigations of the cytotoxic activity of the investigated plant extracts and alkaloid standards. In particular, Berberis species whose activity had not been previously investigated were selected for the study. In the most investigated Berberis extracts, a high content of berberine and palmatine was determined. Alkaloid standards and most of the investigated plant extracts exhibit significant anti-cholinesterase activity. Molecular docking results confirmed that both alkaloids are more favourable for forming complexes with acetylcholinesterase compared to butyrylcholinesterase. The kinetic results obtained by HPLC-DAD indicated that berberine noncompetitively inhibited acetylcholinesterase, while butyrylcholinesterase was inhibited in a mixed mode. In turn, palmatine exhibited a mixed inhibition of acetylcholinesterase. The cytotoxic activity of berberine and palmatine standards and plant extracts were investigated against the human melanoma cell line (A375). The highest cytotoxicity was determined for extract obtained from Berberis pruinosa cortex. The cytotoxic properties of the extract were also determined in the in vivo investigations using the Danio rerio larvae xenograft model. The obtained results confirmed a significant effect of the Berberis pruinosa cortex extract on the number of cancer cells in a living organism. Our results showed that extracts obtained from Berberis species, especially the Berberis pruinosa cortex extract, can be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of neurodegenerative diseases and human melanoma.


Subject(s)
Alkaloids , Antineoplastic Agents , Berberine , Berberis , Melanoma , Humans , Berberine/pharmacology , Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Alkaloids/pharmacology , Plant Extracts/pharmacology
6.
Article in English | MEDLINE | ID: mdl-38387740

ABSTRACT

The maturation of the intestinal digestive and absorptive functions might limit the amount of absorbed nutrients to fulfil the high requirements of the fast-growing marine fish larva. Glutamine (Gln) has been described to improve intestinal epithelium functions, due to its involvement in energy metabolism and protein synthesis. The purpose of this study was to evaluate dietary 0.2% Gln supplementation on aspects of intestinal physiology, protein metabolism and growth-related genes expression in Senegalese sole larvae. Experiment was carried out between 12 and 33 days post hatching (DPH) and fish were divided into two experimental groups, one fed Artemia spp. (CTRL) and the other fed Artemia spp. supplemented with Gln (GLN). GLN diet had two times more Gln than the CTRL diet. Samples were collected at 15, 19, 26 and 33 DPH for biometry, histology, and digestive enzymes activity, and at 33 DPH for gene expression, protein metabolism and AA content determination. Growth was significantly higher for Senegalese sole fed GLN diet, supported by differences on protein metabolism and growth-related gene expression. Slight differences were observed between treatments regarding the intestinal physiology. Overall, GLN diet seems to be directed to enhance protein metabolism leading to higher larval growth.


Subject(s)
Flatfishes , Glutamine , Animals , Glutamine/pharmacology , Glutamine/metabolism , Dietary Supplements , Intestines , Diet/veterinary
7.
Vet Parasitol ; 327: 110135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308932

ABSTRACT

This study adapted the in vitro rumen incubation (IVRI) method to evaluate the biological activity of a Gymnopodium floribundum leaves extract against the exsheathment of Haemonchus contortus infective larvae (L3), and to determine the role of plant polyphenols on the biological activity. The incubation protocol followed the IVRI method, adding polyethylene glycol (PEG) as a polyphenol-blocking agent. The L3 were incubated in ruminal liquor (RL), ruminal liquor with PEG (RL+PEG), ruminal liquor with G. floribundum extract (RLE), and ruminal liquor with G. floribundum extract and PEG (RLE+PEG). Incubation condition controls included phosphate buffered saline (PBS), PBS with PEG (PBS+PEG), incubation medium (without ruminal liquor) (IM), and incubation medium with PEG (IM+PEG). The L3 were recovered after incubation times of 0, 1, 3, 6, 9, and 24 h (39 °C). The respective L3 exsheathment kinetics were estimated for the different treatments (RL, RL+PEG, RLE, and RLE+PEG) using Log-Logistic models. The parameters of the different models were compared to determine the impact of the extract, with or without PEG, on the L3 exsheathment kinetics. The exsheathment in PBS and PBS+PEG remained < 2.71% at each incubation time. The exsheathment in IM and IM+PEG reached 13.58% and 17.18% at 24 h, respectively. The exsheathment percentages for RLE were lower than those for RL at 3, 6 and 9 h of incubation. The inflection point, indicating the time required to reach 50% of the maximal exsheathment (T50), was the only parameter that differed between the ruminal liquor models. The T50 in RLE (7.106 h) was higher than the values obtained for RL (5.385 h) and RL+PEG (4.923 h) (99.99% probability of being different). Such delay resulted in a reduction of exsheathment in RLE of 62% at 3 h, 38% at 6 h, and 12% at 9 h, relative to RL values. When PEG was added with the extract (RLE+PEG), the T50 (5.045 h) was similar to that of RL and RL+PEG. The IVRI method was adapted as an in vitro rumen exsheathment test (IVRET). The IVRET showed that H. contortus L3 exposed to G. floribundum extract delayed their exsheathment kinetics at different time points. The exsheathment delay was attributed to the polyphenol content of the extract.


Subject(s)
Haemonchus , Plant Extracts , Animals , Plant Extracts/pharmacology , Tannins/pharmacology , Larva , Rumen , Polyphenols/pharmacology , Polyethylene Glycols/pharmacology
8.
J Invertebr Pathol ; 203: 108075, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350523

ABSTRACT

Colorado Potato Beetle (CPB) is one of the most destructive potato pests that can quickly develop resistance to insecticides. Therefore, new safe and effective control strategies that are less susceptible to the development of resistance by CPB are urgently needed. Due to their complex mode of action, the likelihood of resistance development by target pests is generally low with antifeedants. In the present study, we assessed the effect of secondary metabolites of various Xenorhabdus bacteria species and strains on CPB adult feeding and on larval development. The metabolites were applied in the form of cell free supernatants (CFSs) from Xenorhabdus cultures. In bioassay 1, leaves treated with ten Xenorhabdus cultures were fed to CPB adults, and their feeding was assessed daily for one week. In bioassay 2, CPB egg masses were placed on the leaves treated with five bacterial cultures, and larval development to pupae was monitored. Out of the ten Xenorhabdus cultures tested, two strains exhibited a significant reduction in the feeding behavior of Colorado Potato Beetle adults, with reductions of up to 70% compared to the control. The effect of CFSs on larval development was variable, and when treated with X. khoisanae SGI 197, over 90% of larvae died in the first few days before reaching the 2nd instar, and complete mortality was achieved on the 8th day of the experiment. Our study is the first study to demonstrate the antifeedant effect of Xenorhabdus cultures towards herbivorous beetles, and the metabolites of these bacteria may have potential for CPB control. Clearly, the metabolites produced by X. khoisanae SGI-197 may be a promising tool for CPB larvae control with the potential to significantly decrease damage to potato plants.


Subject(s)
Coleoptera , Solanum tuberosum , Xenorhabdus , Animals , Larva , Bacteria
9.
Antioxidants (Basel) ; 13(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38247526

ABSTRACT

Camu-camu (Myrciaria dubia) is known for its antioxidant properties, although little is known about its developmental safety effects, particularly on adult neural function under basal redox and oxidative stress conditions. Therefore, this study sought to address this gap by conducting three complementary protocols using Drosophila melanogaster to investigate these effects. The initial assays revealed that second-stage larvae consumed diets supplemented with various concentrations of camu-camu uniformly, establishing a 50% lethal concentration at 4.799 mg/mL. Hence, non-lethal (0.1, 0.5, and 1 mg/mL) and sub-lethal (5 and 10 mg/mL) concentrations were then chosen to evaluate the effects of camu-camu on preimaginal development and adult neural function. Our observations showed that camu-camu impacts the expression of antioxidant enzymes, reactive species, and lipoperoxidation. Notably, sub-lethal concentrations decreased preimaginal viability and locomotor activity, negatively influenced geotaxis and acetylcholinesterase activity, and increased reactive species, catalase, and glutathione S-transferase activity in flies. Additionally, the protective effects of camu-camu against oxidative stress induced by iron (20 mM) were assessed. Flies supplemented with 0.5 mg/mL of camu-camu during the larval period showed improved neural viability and function, and this supplementation was found to protect against oxidative stress. These findings are instrumental in evaluating the safety and efficacy of commercial supplements based on camu-camu, offering significant insights for future research and application.

10.
J Tradit Complement Med ; 14(1): 82-90, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223809

ABSTRACT

Background and aim: Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to insulin. Loss of insulin sensitivity disrupts glucose homeostasis and elevates the risk of developing the metabolic syndrome that includes Type 2 diabetes. This study assesses the effect on subcritical-water extract of Gracilaria chorda (GC) at 210 °C (GCSW210) in IR induction models of high glucose (HG)-induced zebrafish larvae and dexamethasone (DEX)-induced L6 myotubes. Experimental procedure: The dose of HG and DEX for IR induction in zebrafish larvae and L6 myotubes was 130 mM or 0.5 µM. The capacity of glucose uptake was quantified by fluorescence staining or intensity. In addition, the activation of protein and mRNA expressions for insulin signaling (insulin-dependent or independent pathways) was measured. Results and conclusion: Exposure of zebrafish larvae to HG significantly reduced the intracellular glucose uptake with dose-dependnet manner compared to control. However, the group treated with GCSW210 significantly averted HG levels like the insulin-treated group, and significantly up- or down-regulated the mRNA expressions related to insulin production (insα) and insulin signaling pathways. Moreover, the treatment with GCSW210 effectively regulated the protein expression of PI3K/AKT, AMPK, and GLUT4 involved in the action of insulin in IR models of L6 myotubes compared to DEX-treated control. Our data indicate that GCSW210 stimulates activation of PI3K/AKT and AMPK pathways to attenuate the development of IR induced by HG in zebrafish and DEX in L6 myotubes. In conclusion, GCSW210 is a potential agent for alleviating various diseases associated with the insulin resistance.

11.
J Food Sci ; 89(1): 259-275, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37983838

ABSTRACT

This study explores the multifaceted attributes of black soldier fly larvae protein (BSFLP), focusing on its physicochemical, functional, and antioxidant properties. BSFLP is characterized by 16 amino acids, with a predominant random coil secondary structure revealed by circular dichroism spectra. Differential scanning calorimetry indicates a substantial thermal denaturation temperature of 97.63°C. The protein exhibits commendable solubility, emulsification, and foaming properties in alkaline and low-salt environments, albeit with reduced water-holding capacity and foam stability under elevated alkaline and high-temperature conditions. In vitro assessments demonstrate that BSFLP displays robust scavenging proficiency against 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl radicals, with calculated EC50 values of 1.90 ± 0.57, 0.55 ± 0.01, and 1.14 ± 0.02 mg/mL, respectively, along with notable reducing capabilities. Results from in vivo antioxidant experiments reveal that BSFLP, administered at doses of 300 and 500 mg/kg, significantly enhances the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) (p < 0.05) while simultaneously reducing malondialdehyde levels in both serum and tissues of d-galactose-induced oxidative stress in mice. Moreover, the protein effectively attenuates oxidative damage in liver and hippocampal tissues. These findings underscore the potential utility of BSFLP as a natural antioxidant source, with applications spanning the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATION: Black soldier fly larvae protein emerges as an environmentally sustainable reservoir of natural antioxidants, holding significant promise for the food, pharmaceutical, and cosmetic sectors. Its advantageous amino acid composition, robust thermal resilience, and impressive functional attributes position it as a compelling subject for continued investigation and advancement in various applications.


Subject(s)
Antioxidants , Diptera , Animals , Mice , Antioxidants/chemistry , Larva , Diptera/metabolism , Oxidative Stress , Plant Extracts/chemistry
12.
Aquat Toxicol ; 266: 106791, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070396

ABSTRACT

Selenium, a trace mineral, is essential for several physiological processes in humans and animals. It is an antioxidant vital for the immunological response, DNA synthesis, thyroid hormone metabolism, and antioxidant defense enzymes. Zebrafish embryos and larvae were exposed to different concentrations of sodium selenite (SodSe) and selenium nanoparticles (SeNs) at various developmental stages. The study evaluated the impact of SodSe and SeNs on larvae survival, hatching rate, and morphological abnormalities. Also, acridine orange staining was used to analyze the apoptotic cell death, and behavioral tests were conducted to assess anxiety-like behaviors. The results showed that both SodSe and SeNs influence the development and neurobehavior of zebrafish larvae in a concentration-dependent manner. SodSe at high concentration causes low survival rates, delayed hatching, and increased morphological defects in zebrafish larvae. In addition, exposure to SodSe resulted in elevated apoptosis in different larval tissues. Zebrafish larvae treated with SodSe and SeNs exhibited anxiety-like behaviour, increased thigmotaxis, less exploratory behaviour, and less swimming patterns. The nerve conductions and stimuli responses evaluated through acetylcholine esterase (AChE) and cortisol assays, revealed a decrease in the activity in a dose-dependent manner of SodSe and SeNs. Interestingly, the effects of SeNs were lower even at higher concentrations when compared with SodSe at lower concentrations on zebrafish embryos. This shows that SeNs synthesized through biological methods may be less toxic and may have lower effect on the development and neurobehavior of zebrafish larvae. Thus, our study confirms the cytotoxic and neurobehavioral effects of SodSe and suggests the use of SeNs at lower concentration to provide insights into better understanding of developmental stages and metabolic pathways in zebrafish larvae.


Subject(s)
Nanoparticles , Selenium , Water Pollutants, Chemical , Humans , Animals , Selenium/toxicity , Zebrafish/physiology , Sodium Selenite/toxicity , Antioxidants/pharmacology , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Larva , Embryo, Nonmammalian
13.
Int J Biol Macromol ; 257(Pt 2): 128779, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100959

ABSTRACT

The effect of pectin concentration on the structural and emulsifying properties of black soldier fly larvae albumin (BSFLA) modified by pH-shifting (pH12) and ultrasound (US) was studied. The results (intrinsic fluorescence, surface hydrophobicity, Fourier transform infrared spectrum, and disulfide bonds) showed that modified BSFLA samples, especially pH12-US, were more likely to bind to pectin through hydrogen bonding, electrostatic interactions, and hydrophobic interactions due to the unfolding of BSFLA, the collapse of disulfide bonds and exposure of hydrophobic groups. Thus, a BSFLA-pectin complex with smaller particle size, more negative charges, and a relatively loose structure was formed. The emulsifying activity (EAI) and stability index (ESI) of pH12-US modified BSFLA were significantly enhanced by the addition of pectin, reaching the highest values (associated with 174.41 % and 643.22 % increase, respectively) at pectin concentration of 1.0 %. Furthermore, the interface modulus of the emulsion prepared by the modified BSFLA was mainly viscous, and had higher apparent viscosity, smaller particle size and droplet size, contributing to higher EAI and ESI. The study findings suggest the addition of pectin to pH12-US treated BSFLA could be used in industry to prepare BSFLA-pectin emulsion with exceptional/desirable properties.


Subject(s)
Diptera , Pectins , Animals , Larva , Emulsions/chemistry , Pectins/chemistry , Albumins , Hydrogen-Ion Concentration , Disulfides
14.
Gene ; 893: 147928, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37898452

ABSTRACT

The fall armyworm, Spodoptera frugiperda, is a destructive agricultural pest that seriously threatens global food security. Insecticide resistance of this pest has gradually formed in recent years due to improper usage, and alternative methods are badly needed. Toosendanin (TSN) is a botanical compound with broad-spectrum insecticidal activities against many pests. However, the effects of TSN on S. frugiperda are still unclear. In this study, the growth inhibition phenomenon, including weight loss and prolonged developmental duration, in the larvae with TSN exposure was clearly observed. Compared to the control group, a total of 450 and 3314 differentially expressed genes (DEGs) were identified by RNA-Seq in the larvae groups treated with 10 and 20 mg/kg TSN, respectively. Furthermore, the DEGs involved in the juvenile hormone and ecdysone signal pathways and downstream processes, including detoxifying enzyme genes, chitin synthesis and metabolism genes, and cuticular protein genes, were found. Our findings suggest that TSN regulates the expression of key genes in juvenile hormone and ecdysone signal pathways and a series of downstream processes to alter the hormone balance and cuticle formation and eventually inhibit larval growth, which laid the foundation for the molecular toxicological mechanism research of TSN on S. frugiperda larvae.


Subject(s)
Drugs, Chinese Herbal , Insecticides , Animals , Spodoptera/genetics , Transcriptome , Ecdysone , Insecticides/toxicity , Drugs, Chinese Herbal/pharmacology , Larva , Juvenile Hormones
15.
Mar Pollut Bull ; 199: 115928, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141581

ABSTRACT

Anthropogenic inputs of petroleum hydrocarbons into the marine environment can have long lasting impacts on benthic communities. Sponges form an abundant and diverse component of benthic habitats, contributing a variety of important functional roles; however, their responses to petroleum hydrocarbons are largely unknown. This study combined a traditional ecotoxicological experimental design and endpoint with global gene expression profiling and microbial indicator species analysis to examine the effects of a water accommodated fraction (WAF) of condensate oil on a common Indo-Pacific sponge, Phyllospongia foliascens. A no significant effect concentration (N(S)EC) of 2.1 % WAF was obtained for larval settlement, while gene-specific (N(S)EC) thresholds ranged from 3.4 % to 8.8 % WAF. Significant shifts in global gene expression were identified at WAF treatments ≥20 %, with larvae exposed to 100 % WAF most responsive. Results from this study provide an example on the incorporation of non-conventional molecular and microbiological responses into ecotoxicological studies on petroleum hydrocarbons.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Larva/metabolism , Hydrocarbons/analysis , Petroleum/analysis , Weather , Water/analysis , Water Pollutants, Chemical/analysis , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/analysis
16.
Biol Trace Elem Res ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38091170

ABSTRACT

The nutritional requirement of fish larvae remains a limiting factor in advanced aquaculture. Micronutrients are crucial for early development, but their dietary inclusion level in the larval feed of carps has not been standardized. The present study was executed to determine the optimum dietary inclusion level of organic and inorganic selenium in the larval feed of Rohu, Labeo rohita. A 35-day feeding trial in triplicate under semi-control conditions was conducted in 21 troughs divided into seven groups. Each trough (capacity 4.0 L) contained 200 larvae (average body weight 0.4 mg). The first group (control) was reared on nano-particulate basal diet (CP 50%), while three groups Se-Na(0.5), Se-Na(1), and Se-Na(1.5) were fed basal diet supplemented with graded levels (0.5-1.5 mg/kg diet) of inorganic form of Se, sodium selenite (Se-Na). The last three groups (Se-Met(0.5), Se-Met(1), and Se-Met(1.5)) were fed organic form of dietary Se, selenium methionine (Se-Met) at the same inclusion level as Se-Na. Results indicated the curvilinear relationship of dietary Se levels with body weight, activity of digestive enzymes (protease, amylase, lipases, and trypsin), and antioxidant enzymes (SOD, CAT, POD, and GSH-Px) activity, intestinal villi, width, and absorptive area. A positive correlation was observed with up to 0.5 and 1 mg/kg diet of Se-Na and Se-Met, respectively; however, above these levels, a negative impact was observed. The upregulation of growth hormone mediator (IGF-1) and downregulation of heat shock protein (HSP-70) also followed a similar trend in response to Se-Na and Se-Met inclusion. Based on the results, 1 mg/kg diet Se-Met could be considered the optimum level and is recommended for the early rearing of rohu larvae.

17.
Environ Sci Technol ; 57(48): 19304-19315, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37963269

ABSTRACT

Metamorphosis is a critical process in the life cycle of most marine benthic invertebrates, determining their transition from plankton to benthos. It affects dispersal and settlement and therefore decisively influences the dynamics of marine invertebrate populations. An extended period of metamorphic competence is an adaptive feature of numerous invertebrate species that increases the likelihood of finding a habitat suitable for settlement and survival. We found that crude oil and residues of burnt oil rapidly induce metamorphosis in two different marine invertebrate larvae, a previously unknown sublethal effect of oil pollution. When exposed to environmentally realistic oil concentrations, up to 84% of tested echinoderm larvae responded by undergoing metamorphosis. Similarly, up to 87% of gastropod larvae metamorphosed in response to burnt oil residues. This study demonstrates that crude oil and its burned residues can act as metamorphic inducers in marine planktonic larvae, short-circuiting adaptive metamorphic delay. Future studies on molecular pathways and oil-bacteria-metamorphosis interactions are needed to fully understand the direct or indirect mechanisms of oil-induced metamorphosis in marine invertebrates. With 90% of chronic oiling occurring in coastal areas, this previously undescribed impact of crude oil on planktonic larvae may have global implications for marine invertebrate populations and biodiversity.


Subject(s)
Petroleum , Animals , Petroleum/toxicity , Invertebrates/physiology , Metamorphosis, Biological , Ecosystem , Life Cycle Stages , Larva/metabolism
18.
Environ Res ; 238(Pt 2): 117168, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37742751

ABSTRACT

Early diagnosis and prognosis are prerequisites for mitigating mortality in gastric cancer (GaCa). Identifying some causative or sensitive elements (coding RNA (cRNA)-non-cRNAs (ncRNAs)) can be very helpful in the early diagnosis of GaCa. Notably, despite significant development in the GaCa treatment, the outcome of patients does not remain satisfactory due to limitations such as multi-drug resistance and tumor relapse. Therefore, more attention has been drawn to complementary therapies and the use of supplements. In this regard, Polyphenol natural compounds (PNC) and maggot larvae (MaLa) alone or in combination were administered along with chemotherapy (paclitaxel) to N-methyl-N-nitrosourea (MNU)- induced murine tumor model. In addition, in order to identify potential diagnostic or prognostic biomarkers, transcriptomics analysis was performed through a bioinformatics approach. Then transcription profile of ncRNAs with their target hub genes was assessed through qPCR Real-Time, Western blot, and ELISA. According to the bioinformatics results, 17 hub genes (e.g., IL-6, CXCL8, MKI67, IL-2, IL-4, IL-10, IL-1ß, SPP1, LOX, COL1A1, and IFN-γ) were explored that contribute towards inflammation and oxidative stress and ultimately GaCa development. Upstream of the mentioned hub genes, regulatory factors (lncRNA XIST and NEAT1) were also identified and introduced as prognosis and diagnosis biomarkers for GaCa. Our results showed that PNC alone and in combination with MaLa was able to reduce the size and number of tumors, which is related to the reduction of genes expression levels (including IL-6, CXCL8, MKI67, IL-2, IL-4, IL-10, IL-1ß, SPP1, LOX, COL1A1, IFN-γ, NEAT1, and XIST). In conclusion, PNC and MaLa have the potential to be considered as complementary and improving chemotherapy due to their effective compounds. Also, the introduced hub gene and lncRNA in addition to diagnostic and prognostic biomarkers can be used as druggable proteins for novel therapeutic targeting of GaCa.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Interleukin-10 , Interleukin-6 , Interleukin-2 , RNA, Long Noncoding/genetics , Interleukin-4 , Neoplasm Recurrence, Local , Biomarkers , Biology , Computational Biology
19.
BMC Med ; 21(1): 361, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726738

ABSTRACT

BACKGROUND: This is the first clinical trial to investigate the effectiveness of maggot debridement therapy (MDT) for full-thickness burn injuries in comparison to conventional silver dressings. METHODS: Thirty-one cases with full-thickness (grade III based on ICD-10 classifications version 2019) burns were assigned into larval therapy (15 cases) and conventional treatment (16 cases) groups. Participants in the MDT group have received loose larvae on days 0, 2, 4, and 6, while controls received a conventional regimen comprised of sharp debridement, silver sulfadiazine, antibiotic therapy, and offloading every day. The primary and secondary outcomes were defined as the time to debridement (from admission to skin autograft) and time to healing (from admission to complete healing post-skin autograft). Patients in two groups were also compared in terms of necrosis resolution, granulation, and granulation/necrosis (g/n) ratio during study time periods. RESULTS: Participants who received larvae had significantly decreased necrosis on days 2 (p = 0.028) and 4 (p = 0.023) compared to those who received control treatment. Significant differences (p < 0.001) were also observed for granulation between the two groups in favor of MDT and the fold changes of g/n in the larvae group were 5, 15, and 13 times higher than that for the conventional regimen on days 2, 4, and 6 of treatment, respectively. Strikingly, a subgroup analysis of high necrotic burns (necrosis > 50%) revealed a significant improvement (p < 0.001) for MDT compared to the control treatment. There were also significant differences (p < 0.001) for the time to debridement and time to healing between the two groups. However, bacterial contamination did not show significant changes between the two treatment regimens. CONCLUSIONS: Our findings revealed that MDT has a favorable superiority over conventional regimen for the treatment of grade-III burns, and thus further clinical trials with larger sample size are warranted to confirm these results.


Subject(s)
Burns , Silver , Humans , Animals , Burns/therapy , Bandages , Larva , Necrosis
20.
Poult Sci ; 102(10): 102984, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586189

ABSTRACT

This study evaluated the effect supplementation of black soldier fly larvae oil calcium salt (BSFLO-SCa) on performance, blood biochemical profile, carcass characteristic, meat quality, and gene expression in fat metabolism broiler chickens. A total of 280 male New Lohmann strain MB 202 broiler chicks (1-day-old) were randomly placed into 4 treatments, including a control group (T0) were fed basal diet and a basal diet supplemented with 1% (T1), 2% (T2), and 3% (T3) BSFLO-SCa. Each treatment consisted of 7 pens with 10 chickens each. Results showed that 1% BSFLO-SCa supplementation significantly reduced (P < 0.05) abdominal and meat fat, while gene expression on fat synthesis (FAS, ACC) was downregulated. Meat fatty acid profiles such as medium-chain fatty acid being dominant in lauric and myristic and monosaturated fatty acid significantly increased (P < 0.05). On the other hand, polyunsaturated fatty acid significantly decreased (P < 0.05). In addition, the other parameters did not affect by supplementation of 1% BSFLO-SCa. The addition starting from 2% significantly reduced (P < 0.05) performance and carcass characteristics. Blood biochemical profiles (HDL, protein, albumin) and meat qualities (protein, cholesterol, water-holding capacity, cooking losses, a* (redness), and b* (yellowness) values) were significantly increased (P < 0.05), while gene expression on fat oxidation (CPT-1) was upregulated. In conclusion, broiler chicken that received of 1% BSFL-SCa does not negatively affect growth performance and carcass characteristics but reduced fattening in broiler meat.


Subject(s)
Chickens , Diptera , Animals , Male , Larva , Calcium/metabolism , Animal Feed/analysis , Dietary Supplements , Diet/veterinary , Meat/analysis , Fatty Acids/metabolism , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL