Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Ethnopharmacol ; 330: 118217, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641072

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The natural anodyne Ligustilide (Lig), derived from Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort., has been traditionally employed for its analgesic properties in the treatment of dysmenorrhea and migraine, and rheumatoid arthritis pain. Despite the existing reports on the correlation between TRP channels and the analgesic effects of Lig, a comprehensive understanding of their underlying mechanisms of action remains elusive. AIM OF THE STUDY: The objective of this study is to elucidate the mechanism of action of Lig on the analgesic target TRPA1 channel. METHODS: The therapeutic effect of Lig was evaluated in a rat acute soft tissue injury model. The analgesic target was identified through competitive inhibition of TRP channel agonists at the animal level, followed by Fluo-4/Ca2+ imaging on live cells overexpressing TRP proteins. The potential target was verified through in-gel imaging, colocalization using a Lig-derived molecular probe, and a drug affinity response target stability assay. The binding site of Lig was identified through protein spectrometry and further analyzed using molecular docking, site-specific mutation, and multidisciplinary approaches. RESULTS: The administration of Lig effectively ameliorated pain and attenuated oxidative stress and inflammatory responses in rats with soft tissue injuries. Moreover, the analgesic effects of Lig were specifically attributed to TRPA1. Mechanistic studies have revealed that Lig directly activates TRPA1 by interacting with the linker domain in the pre-S1 region of TRPA1. Through metabolic transformation, 6,7-epoxyligustilide (EM-Lig) forms a covalent bond with Cys703 of TRPA1 at high concentrations and prolonged exposure time. This irreversible binding prevents endogenous electrophilic products from entering the cysteine active center of ligand-binding pocket of TRPA1, thereby inhibiting Ca2+ influx through the channel opening and ultimately relieving pain. CONCLUSIONS: Lig selectively modulates the TRPA1 channel in a bimodal manner via non-electrophilic/electrophilic metabolic conversion. The epoxidized metabolic intermediate EM-Lig exerts analgesic effects by irreversibly inhibiting the activation of TRPA1 on sensory neurons. These findings not only highlight the analgesic mechanism of Lig but also offer a novel nucleophilic attack site for the development of TRPA1 antagonists in the pre-S1 region.


Subject(s)
4-Butyrolactone , Analgesics , TRPA1 Cation Channel , Animals , Female , Humans , Male , Rats , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , 4-Butyrolactone/chemistry , Analgesics/pharmacology , Analgesics/chemistry , Binding Sites , Cysteine/pharmacology , Cysteine/chemistry , HEK293 Cells , Molecular Docking Simulation , Pain/drug therapy , Rats, Sprague-Dawley , TRPA1 Cation Channel/metabolism
2.
Phytomedicine ; 126: 155443, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394737

ABSTRACT

BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which social impairment is the core symptom. Presently, there are no definitive medications to cure core symptoms of ASD, and most therapeutic strategies ameliorate ASD symptoms. Treatments with proven efficacy in autism are imminent. Ligustilide (LIG), an herbal monomer extracted from Angelica Sinensis and Chuanxiong, is mainly distributed in the cerebellum and widely used in treating neurological disorders. However, there are no studies on its effect on autistic-like phenotypes and its mechanism of action. PURPOSE: Investigate the efficacy and mechanism of LIG in treating ASD using two Valproic acid(VPA)-exposed and BTBR T + Itpr3tf/J (BTBR) mouse models of autism. METHODS: VPA-exposed mice and BTBR mice were given LIG for treatment, and its effect on autistic-like phenotype was detected by behavioral experiments, which included a three-chamber social test. Subsequently, RNA-Sequence(RNA-Seq) of the cerebellum was performed to observe the biological changes to search target pathways. The autophagy and ferroptosis pathways screened were verified by WB(Western Blot) assay, and the cerebellum was stained by immunofluorescence and examined by electron microscopy. To further explore the therapeutic mechanism, ULK1 agonist BL-918 was used to block the therapeutic effect of LIG to verify its target effect. RESULTS: Our work demonstrates that LIG administration from P12-P14 improved autism-related behaviors and motor dysfunction in VPA-exposed mice. Similarly, BTBR mice showed the same improvement. RNA-Seq data identified ULK1 as the target of LIG in regulating ferritinophagy in the cerebellum of VPA-exposed mice, as evidenced by activated autophagy, increased ferritin degradation, iron overload, and lipid peroxidation. We found that VPA exposure-induced ferritinophagy occurred in the Purkinje cells, with enhanced NCOA4 and Lc3B expressions. Notably, the therapeutic effect of LIG disappeared when ULK1 was activated. CONCLUSION: LIG treatment inhibits ferritinophagy in Purkinje cells via the ULK1/NCOA4-dependent pathway. Our study reveals for the first time that LIG treatment ameliorates autism symptoms in VPA-exposed mice by reducing aberrant Purkinje ferritinophagy. At the same time, our study complements the pathogenic mechanisms of autism and introduces new possibilities for its therapeutic options.


Subject(s)
4-Butyrolactone/analogs & derivatives , Autism Spectrum Disorder , Autistic Disorder , Phenylacetates , Mice , Animals , Valproic Acid/adverse effects , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Autistic Disorder/metabolism , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/metabolism , Purkinje Cells/metabolism , Mice, Inbred Strains , Disease Models, Animal
3.
Adv Biol (Weinh) ; : e2300434, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183407

ABSTRACT

Senescent cells accumulate with age and contribute to age-related diseases and organ dysfunctions. Early evidence suggests that removal of senescent cells using senolytic drugs improves the aging phenotype in mice and may improve the health of individuals with chronic diseases. Signs of skin aging, including wrinkles, and sagging, occur largely due to the accumulation of senescent fibroblasts within the dermis; However, there is currently no skin treatment that eliminates senescent cells. In this study, human fibroblasts subjected to replicative aging and ionizing radiation exposure are used to screen plant extracts for potential senescent cell-destructive and/or senescent cell-forming activities. Angelica acutiloba-a traditional Chinese herbal medicine-selectively kills senescent cells without affecting the proliferating cells. Among the major components of this herb, ligustilide shows promising senescent cell-destructive properties, and selectively eliminates senescent cells by inducing an apoptosis. Moreover, ligustilide markedly inhibits senescence-associated secretory phenotypes. Administration of ligustilide to mouse skin eliminates senescent cells and increases dermal collagen density and subcutaneous adipose tissue content; it selectively promotes death of senescent cells without affecting non-senescent cells. These results provide evidence that a natural compound-ligustilide-may exhibit therapeutic effects on the skin aging phenotype by specifically inducing apoptosis in senescent cells.

4.
Phytomedicine ; 124: 155288, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183698

ABSTRACT

BACKGROUND: The scarcity of drugs targeting AML cells poses a significant challenge in AML management. Z-Ligustilide (Z-LIG), a phthalide compound, shows promising pharmacological potential as a candidate for AML therapy. However, its precise selective mechanism remains unclear. PURPOSE: In order to assess the selective inducement effects of Z-LIG on ferroptosis in AML cells and explore the possible involvement of the Nrf2/HO-1 pathway in the regulation of ferroptosis. METHODS: Through in vitro cell proliferation and in vivo tumor growth tests, the evaluation of Z-LIG's anticancer activity was conducted. Ferroptosis was determined by the measurement of ROS and lipid peroxide levels using flow cytometry, as well as the observation of mitochondrial morphology. To analyze the iron-related factors, western blot analysis was employed. The up-regulation of the Nrf2/HO-1 axis was confirmed through various experimental techniques, including CRISPR/Cas9 gene knockout, fluorescent probe staining, and flow cytometry. The efficacy of Z-LIG in inducing ferroptosis was further validated in a xenograft nude mouse model. RESULTS: Our study revealed that Z-LIG specifically triggered lipid peroxidation-driven cell death in AML cells. Z-LIG downregulated the total protein and nuclear entrance levels of IRP2, resulting in upregulation of FTH1 and downregulation of TFR1. Z-LIG significantly increased the susceptibility to ferroptosis by upregulating ACSL4 levels and simultaneously suppressing the activity of GPX4. Notably, the Nrf2/HO-1 pathway displayed a twofold impact in the ferroptosis induced by Z-LIG. Mild activation suppressed ferroptosis, while excessive activation promoted it, mainly driven by ROS-induced labile iron pool (LIP) accumulation in AML cells, which was not observed in normal human cells. Additionally, Nrf2 knockout and HO-1 knockdown reversed iron imbalance and mitochondrial damage induced by Z-LIG in HL-60 cells. Z-LIG effectively inhibited the growth of AML xenografts in mice, and Nrf2 knockout partially weakened its antitumor effect by inhibiting ferroptosis. CONCLUSION: Our study presents biological proof indicating that the selective initiation of ferroptosis in leukemia cells is credited to the excessive activation of the Nrf2/HO-1 pathway triggered by Z-LIG.


Subject(s)
4-Butyrolactone/analogs & derivatives , Ferroptosis , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Leukemia, Myeloid, Acute/metabolism , Iron/metabolism
5.
Phytomedicine ; 123: 155216, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061285

ABSTRACT

BACKGROUND: Thymus is the most crucial organ connecting immunity and aging. The progressive senescence of thymic epithelial cells (TECs) leads to the involution of thymus under aging, chronic stress and other factors. Ligustilide (LIG) is a major active component of the anti-aging Chinese herbal medicine Angelica sinensis (Oliv.) Diels, but its role in preventing TEC-based thymic aging remains elusive. PURPOSE: This study explored the protective role of Ligustilide in alleviating ADM (adriamycin) -induced thymic immune senescence and its underlying molecular mechanisms. METHOD: The protective effect of Ligustilide on ADM-induced thymic atrophy was examined by mouse and organotypic models, and conformed by SA-ß-gal staining in TECs. The abnormal spatial distribution of TECs in the senescent thymus was analyzed using H&E, immunofluorescence and flow cytometry. The possible mechanisms of Ligustilide in ADM-induced thymic aging were elucidated by qPCR, fluorescence labeling and Western blot. The mechanism of Ligustilide was subsequently validated through actin polymerization inhibitor, genetic engineering to regulate Thymosin ß15 (Tß15) and Tß4 expression, molecular docking and ß Thymosin-G-actin cross-linking assay. RESULTS: At a 5 mg/kg dose, Ligustilide markedly ameliorated ADM-induced weight loss and limb grip weakness in mice. It also reversed thymic damage and restored positive selection impaired by ADM. In vitro, ADM disrupted thymic structure, reduced TECs number and hindered double negative (DN) T cell differentiation. Ligustilide counteracted these effects, promoted TEC proliferation and reticular differentiation, leading to an increase in CD4+ single positive (CD4SP) T cell proportion. Mechanistically, ADM diminished the microfilament quantity in immortalized TECs (iTECs), and lowered the expression of cytoskeletal marker proteins. Molecular docking and cross-linking assay revealed that Ligustilide inhibited the protein binding between G-actin and Tß15 by inhibiting the formation of the Tß15-G-actin complex, thus enhancing the microfilament assembly capacity in TECs. CONCLUSION: This study, for the first time, reveals that Ligustilide can attenuate actin depolymerization, protects TECs from ADM-induced acute aging by inhibiting the binding of Tß15 to G-actin, thereby improving thymic immune function. Moreover, it underscores the interesting role of Ligustilide in maintaining cytoskeletal assembly and network structure of TECs, offering a novel perspective for deeper understanding of anti thymic aging.


Subject(s)
4-Butyrolactone/analogs & derivatives , Actins , Thymosin , Mice , Animals , Actins/metabolism , Thymosin/pharmacology , Thymosin/metabolism , Molecular Docking Simulation , Epithelial Cells
6.
J Nat Med ; 78(1): 42-52, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37698739

ABSTRACT

Ligustilide (LIG) is the main active ingredient of Angelica sinensis (Oliv.) Diels, which could promote focal angiogenesis to exert neuroprotection. However, there was no report that verified the exact effects of LIG on endometrial angiogenesis and the pregnancy outcomes. To explore the effects of LIG on low endometrial receptivity (LER) and angiogenesis, pregnancy rats were assigned into Control (saline treatment), LER (hydroxyurea-adrenaline treatment), LIG 20 mg/kg and LIG 40 mg/kg groups. Hematoxylin and eosin (H&E) staining was performed to evaluate endometrial morphology. Quantitative real-time PCR, immunofluorescence staining, western blot and immunohistochemistry staining were employed to assess the expression of endometrial receptivity factors and angiogenesis-related gene/protein, respectively. RNA sequencing was used to analyze the effects of LIG on LER caused by Kidney deficiency and blood stasis. We found that endometrial thickness and the implanted embryo number were substantially reduced in the hydroxyurea-adrenaline-treated pregnancy rats. At the same time, the gene and protein expressions of ERα, LIF, VEGFA and CD31 in the endometrium were markedly reduced, while the expressions of MUC1, E-cadherin were increased in the LER group. Administration of LIG raised the endometrial thickness and implanted embryos, as well as reversed the expressions of these factors. Collectively, our findings revealed that LIG could facilitate embryo implantation via recovery of the endometrium receptivity and promotion of endometrial angiogenesis.


Subject(s)
Hydroxyurea , Pregnancy Outcome , Pregnancy , Female , Rats , Animals , Hydroxyurea/metabolism , Hydroxyurea/pharmacology , Angiogenesis , Endometrium/metabolism , Epinephrine/metabolism , Epinephrine/pharmacology
7.
J Evid Based Integr Med ; 28: 2515690X231191101, 2023.
Article in English | MEDLINE | ID: mdl-37553989

ABSTRACT

Psoriasis is an incurable, chronic and auto-immune skin disorder with a global prevalence rate of approximately 2-3%. The study investigated the antipsoriasis activities of Deprungsith formulation and its bioactive components and their potential for inhibitory activities on human cytochrome P450 (CYP450). HaCaT and peripheral blood mononuclear cells (PBMCs) from healthy volunteers (n = 9) and psoriasis patients (n = 10) were exposed to Deprungsith formulation (Thai traditional medicine for psoriasis consisting of 16 plants), ethyl p-methoxycinnamate (EPMC), ligustilide and cyclosporin for 24 and 48 h. The antiproliferative, cell apoptosis and cell cycle arrest activities were evaluated using MTT assay and flow cytometry, respectively. The pro-inflammatory cytokine mRNA expression levels were measured using real-time polymerase chain reaction (RT-PCR). The CYP450 inhibitory effect was investigated using a bioluminescent-based CYP450 assay. Deprungsith formulation and the bioactive compounds inhibited HaCaT cells and PBMCs with weak to moderate potencies. EPMC and ligustilide combination produced an additive effect. Most substances arrested cell transition at sub-G1 and S phases, leading to early and late apoptosis induction. With prolonged exposure (48 h), all test substances decreased PBMCs necrosis. The mRNA expression of all pro-inflammatory cytokines was downregulated. Deprungsith formulation, EPMC, ligustilide and ferulic acid inhibited CYP1A2, CYP2C9, CYP2D6 and CYP3A4 activities with weak to moderate potencies. Deprungsith formulation and bioactive components induced cell apoptosis by inhibiting cell transition at specific cell cycle phases, which was correlated with the mRNA downregulation of interleukin (IL-6, IL-12p19, IL-23) and tumor necrosis factor (TNF-α). There is a low risk of potential adverse drug reactions and toxicity due to CYP450 interaction when Deprungsith formulation is concurrently administered with modern medicines.


Subject(s)
Herb-Drug Interactions , Psoriasis , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Leukocytes, Mononuclear/metabolism , Cytochrome P-450 Enzyme System/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Psoriasis/drug therapy , Cytokines , RNA, Messenger/therapeutic use
8.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3046-3054, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37381963

ABSTRACT

The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.


Subject(s)
Ferroptosis , Animals , Rats , PC12 Cells , Ferroptosis/genetics , Reactive Oxygen Species , Transcription Factors , Glutathione
9.
Article in Chinese | WPRIM | ID: wpr-981435

ABSTRACT

The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.


Subject(s)
Animals , Rats , PC12 Cells , Ferroptosis/genetics , Reactive Oxygen Species , Transcription Factors , Glutathione
10.
Phytother Res ; 37(2): 717-730, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36216328

ABSTRACT

Airway remodeling is one of the hallmarks of chronic obstructive pulmonary disease (COPD) and is closely related to the dysregulation of epithelial-mesenchymal transition (EMT). Smad3, an important transcriptional regulator responsible for transducing TGF-ß1 signals, is a promising target for EMT modulation. We found that ligustilide (Lig), a novel Smad3 covalent inhibitor, effectively inhibited airway remodeling in cigarette smoke (CS) combined with lipopolysaccharide (LPS)-induced COPD mice. Oral administration of an alkynyl-modified Lig probe was used to capture and trace target proteins in mouse lung tissue, revealing Smad3 in airway epithelium as a key target of Lig. Protein mass spectrometry and Smad3 mutation analysis via in-gel imaging indicated that the epoxidized metabolite of Lig covalently binds to the MH2 domain of Smad3 at Cys331/337. This irreversible bonding destroys the interaction of Smad3-SARA, prevents Smad3 phosphorylation activation, and subsequently suppresses the nuclear transfer of p-Smad3, the EMT process, and collagen deposition in TGF-ß1-stimulated BEAS-2B cells and COPD mice. These findings provide experimental support that Lig attenuates COPD by repressing airway remodeling which is attributed to its suppression on the activation of EMT process in the airway epithelium via targeting Smad3 and inhibiting the recruitment of the Smad3-SARA heterodimer in the TGF-ß1/Smad3 pathway.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Airway Remodeling , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Epithelium/metabolism , Epithelial-Mesenchymal Transition , Smad3 Protein/metabolism
11.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292928

ABSTRACT

Angelicae tenussimae root has been used as a traditional medicine in Asia. Recently, anti-melanogenic and anti-photogenic effects of fermented A. tenuissima root (FAT) were identified. However, information about the anti-atopic dermatitis action of FAT is limited. Thus, the purpose of this study is to determine the applicability of FAT to AD by identifying the efficacy of FAT on the skin barrier and inflammatory response, which are the main pathogenesis of AD. Expression levels of skin barrier components and the production of inflammatory mediators in human keratinocyte and mouse macrophage cells were measured by quantitative RT-PCR or ELISA. FAT upregulated the expression of skin barrier components (filaggrin, involucrin, loricurin, SPTLC1) and inhibited the secretion of an inflammatory chemokine TARC in HaCaT cells. Furthermore, it suppressed pro-inflammatory cytokines (IL-6, TNF-α) and nitric oxide production in LPS-induced RAW264.7 cells. In addition, ligustilide increased filaggrin and SPTLC1, and also lowered pro-inflammatory mediators that increased in atopic environments, such as in FAT results. This means that ligustilide, one of the active ingredients derived from FAT, can ameliorate AD, at least in part, by promoting skin barrier formation and downregulating inflammatory mediators. These results suggest that FAT is a potential functional cosmetic material for the care and management of AD.


Subject(s)
Aspergillus oryzae , Tumor Necrosis Factor-alpha , Mice , Animals , Humans , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Interleukin-6/metabolism , Nitric Oxide/metabolism , Plant Extracts/pharmacology , Chemokines/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Skin/metabolism
12.
Molecules ; 27(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889462

ABSTRACT

The separation of chemical components from wild plants to develop new pesticides is a hot topic in current research. To evaluate the antimicrobial effects of metabolites of Ligusticum chuanxiong (CX), we systematically studied the antimicrobial activity of extracts of CX, and the active compounds were isolated, purified and structurally identified. The results of toxicity measurement showed that the extracts of CX had good biological activities against Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata and Pythium aphanidermatum, and the value of EC50 were 130.95, 242.36, 332.73 and 307.29 mg/L, respectively. The results of in vivo determination showed that under the concentration of 1000 mg/L, the control effect of CX extract on Blumeria graminis was more than 40%, and the control effect on Botrytis cinerea was 100%. The antifungal active components of CX were identified as Senkyunolide A and Ligustilide by mass spectrometry and nuclear magnetic resonance. The MIC (minimum inhibitory concentration) value of Senkyunolide A and Ligustilide against Fusarium graminearum were 7.81 and 62.25 mg/L, respectively. As a new botanical fungicide with a brightly exploitative prospect, CX extract has potential research value in the prevention and control of plant diseases.


Subject(s)
Drugs, Chinese Herbal , Ligusticum , Antifungal Agents/pharmacology , Botrytis , Drugs, Chinese Herbal/chemistry , Ligusticum/chemistry
13.
Phytomedicine ; 101: 154111, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35512628

ABSTRACT

BACKGROUND: Mitophagy plays a critical role in cerebral ischemia/reperfusion by timely removal of dysfunctional mitochondria. In mammals, PINK1/Parkin is the most classic pathway mediating mitophagy. And the activation of PINK1/Parkin mediated mitophagy exerts neuroprotective effects during cerebral ischemia reperfusion injury (CIRI). Ligustilide (LIG) is a natural compound extracted from ligusticum chuanxiong hort and angelica sinensis (Oliv.) diels that exerts neuroprotective activity after cerebral ischemia reperfusion injury (CIRI). However, it still remains unclear whether LIG could attenuates cerebral ischemia reperfusion injury (CIRI) through regulating mitophagy mediated by PINK1/Parkin. PURPOSE: To explore the underlying mechanism of LIG on PINK1/Parkin mediated mitophagy in the hippocampus induced by ischemia reperfusion. METHODS: This research used the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model and oxygen-glucose deprivation and reperfusion (OGD/R) as in vitro model. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of LIG in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP) and activities of Na+-K+-ATPase were detected to reflect mitochondrial function. Moreover, transmission electron microscope (TEM) and fluorescence microscope were used to observe mitophagy and the western blot was performed to explore the changes in protein expression in PINK1/Parkin mediated mitophagy. Finally, exact mechanism between neuroprotection of LIG and mitophagy mediated by PINK1/Parkin was explored by cell transfection. RESULTS: The results show that LIG improved mitochondrial functions by mitophagy enhancement in vivo and vitro to alleviate CIRI. Whereas, mitophagy enhanced by LIG under CIRI is abolished by PINK1 deficiency and midivi-1, a mitochondrial division inhibitor which has been reported to have the function of mitophagy, which could further aggravate the ischemia-induced brain damage, mitochondrial dysfunction and neuronal injury. CONCLUSION: LIG could ameliorate the neuronal injury against ischemia stroke by promoting mitophagy via PINK1/Parkin. Targeting PINK1/Parkin mediated mitophagy with LIG treatment might be a promising therapeutic strategy for ischemia stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , 4-Butyrolactone/analogs & derivatives , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Hippocampus/metabolism , Infarction, Middle Cerebral Artery , Mammals/metabolism , Mitophagy , Protein Kinases/metabolism , Rats , Reperfusion , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Ubiquitin-Protein Ligases/metabolism
14.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1897-1903, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534260

ABSTRACT

Mitochondrion, as the main energy-supply organelle, is the key target region that determines neuronal survival and death during ischemia. When an ischemic stroke occurs, timely removal of damaged mitochondria is very important for improving mitochondrial function and repairing nerve damage. This study investigated the effect of ligustilide(LIG), an active ingredient of Chinese medicine, on mitochondrial function and mitophagy based on the oxygen and glucose deprivation/reperfusion(OGD/R)-induced injury model in HT22 cells. By OGD/R-induced injury model was induced in vitro, HT22 cells were pre-treated with LIG for 3 h, and the cell viability was detected by the CCK-8 assay. Immunofluorescence and flow cytometry were used to detect indicators related to mitochondrial function, such as mitochondrial membrane potential, calcium overload, and reactive oxygen species(ROS). Western blot was used to detect the expression of dynamin-related protein 1(Drp1, mitochondrial fission protein) and cleaved caspase-3(apoptotic protein). Immunofluorescence was used to observe the co-localization of the translocase of outer mitochondrial membrane 20(TOMM20, mitochondrial marker) and lysosome-associated membrane protein 2(LAMP2, autophagy marker). The results showed that LIG increased the cell viability of HT22 cells as compared with the conditions in the model group. Furthermore, LIG also inhibited the ROS release, calcium overload, and the decrease in mitochondrial membrane potential in HT22 cells after OGD/R-induced injury, facilitated Drp1 expression, and promoted the co-localization of TOMM20 and LAMP2. The findings indicate that LIG can improve the mitochondrial function after OGD/R-induced injury and promote mitophagy. When mitophagy inhibitor mdivi-1 was administered, the expression of apoptotic protein increased, suggesting that the neuroprotective effect of LIG may be related to the promotion of mitophagy.


Subject(s)
Mitophagy , Reperfusion Injury , 4-Butyrolactone/analogs & derivatives , Apoptosis , Calcium/pharmacology , Glucose/metabolism , Humans , Mitochondrial Proteins , Reactive Oxygen Species/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/genetics
15.
J Food Biochem ; 46(7): e14146, 2022 07.
Article in English | MEDLINE | ID: mdl-35365921

ABSTRACT

Ligustilide (LIG) is a major active ingredient in traditional Chinese medicines that is also found in plant rhizomes such as carrot, coriander, and others, and it has been demonstrated to have cardiovascular preventive benefits. However, the mechanisms through which LIG protects the cardiovascular and cerebrovascular systems in atherosclerosis (AS) remain unknown. This study was aimed to investigate the mechanisms of LIG in AS utilizing the network pharmacology and molecular docking, and then to validate the putative mechanism through experiments. The network pharmacological analysis indicated that a total of 55 were performed on LIG and AS intersection targets. The genes of LIG and AS intersection targets enriched in the regulation of receptor and enzyme activity, cytokines-related, and transcription factors, indicating that these targets were primarily involved in cell proliferation and migration, regulating cell differentiation and skeletal activities in the development of AS. Finally, molecular docking was used to validate the major targets of LIG and AS intersection targets. Further experiments revealed that LIG may inhibit cell migration induced by AngII by reducing calcium influx, and regulating phenotypic translation-related proteins SM-22α and OPN. The present study investigated the potential targets and signaling pathways of LIG, which provides new insight into its anti-atherosclerosis actions in terms of reducing inflammation, cell proliferation, and migration, and may constitute a novel target for the treatment of AS. PRACTICAL APPLICATIONS: LIG has been shown to have cardiovascular protective benefits, the mechanism by which it protects the cardiovascular and cerebrovascular systems in AS remains unknown. This study uses a holistic network pharmacology strategy to investigate putative treatment pathways and conducts exploratory experimentation. The findings demonstrate that LIG reduces VSMC migration in the treatment of AS, acts as an anti-inflammatory agent, and prevents excessive cell proliferation and migration. Finally, the goal of our research is to uncover the molecular mechanism of LIG's influence on AS. The findings will provide a new research avenue for LIG as well as suggestions for the study of other herbal treatments. These research results will provide a new research direction for LIG and provide guidance for the research of other herbal medicines. This work revealed the multi-component, multi-target, multi-pathway, and multi-disease mechanism of LIG.


Subject(s)
Atherosclerosis , Network Pharmacology , 4-Butyrolactone/analogs & derivatives , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation
16.
J Nat Med ; 76(1): 298-305, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34622386

ABSTRACT

Angelica acutiloba (Siebold & Zucc.) Kitag., the source plant of the crude drug Angelicae acutilobae radix, is traditionally cultivated in western regions of Japan. Since A. acutiloba is now also grown in Hokkaido, the northernmost prefecture of the country, the cultivation method, especially the quantity of fertilizer, needs to be adapted because of the cooler climate and shorter growing period. In this study, we compared plant growth and harvest yield of A. acutiloba cultivated with different amounts of nitrogen (N) fertilizer. When plants were fertilized with 24 kg N/10 a, the aerial part was lush, and the diameter at the top of the root was about 1.3 times thicker than that in plants treated with 12 kg N/10 a. On the other hand, the weight of the harvested root grown with 24 kg N/10 a was slightly, although not significantly, less than that in plants grown with 12 kg N/10 a. In addition, we found that the content of (Z)-ligustilide, a major essential oil contained in A. acutiloba root, is affected by nitrogen application. Interestingly, it increased with increasing amounts of supplied nitrogen. However, the importance of Angelicae acutilobae radix as the crude drug is not limited to its (Z)-ligustilide content, and there are also other crucial quality features, such as having thick lateral roots, which were generated in this study with a moderate nitrogen application. We conclude that about 12 kg N/10 a is the optimal amount of nitrogen for healthy growth of A. acutiloba in Hokkaido.


Subject(s)
Angelica , Oils, Volatile , Fertilization , Nitrogen , Plant Roots
17.
Phytomedicine ; 95: 153884, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34929562

ABSTRACT

BACKGROUND: Ischemic stroke is a major global cause of death and permanent disability. Studies have suggested that mitochondria play a critical role in maintaining cellular energy homeostasis and inevitably involved in neuronal damage during cerebral ischemic. Ligustilide is the main active ingredient of Angelica sinensis and Ligusticum chuanxiongs with neuroprotective activity. PURPOSE: These study sought to exlopre the role of LIG in improving mitochondrial function and the relationship between LIG induced mitochondrial fission and mitophagy in ischemic stroke. METHODS: Cerebral I/R injury was established by the model of Oxygen-glucose deprivation/reperfusion (OGD/R) in HT22 cells and middle cerebral artery occlusion (MCAO) in rats. Mitochondrial functions of were detected by flow cytometry and immunofluorescence, and mitochondrial fission were detected by western blots. Furthermore, we studied the role of AMPK pathway in the neuroprotective effect of LIG. RESULTS: LIG treatment significantly increased the MMP and ATP production, decreased the reactive oxygen species (ROS) generation and Ca2+ overload, and further induced mitochondrial fission and mitophagy. Moreover, we found that blocking mitochondrial fission by mdivi-1 resulted in accumulation of damaged mitochondria mainly through selectively blocking mitophagy, thereby inhibiting viability of HT-22 cells after OGD/R. Also, Drp-1 inhibitor mdivi-1 increased the infarct volume and aggravated the neurological deficits after MCAO operation in vivo. Additionally, LIG triggered AMP-activated protein kinase (AMPK) pathway. AMPKα2 knockdown attenuated LIG-induced mitochondrial fission through inhibiting the expression of Drp1 and Fis1, and led to nerve cell apoptosis. CONCLUSION: Our study indicate that LIG attenuated the injury of ischemic stroke by improving mitochondrial function and highlight the critical role of LIG in the regulation of LIG-induced mitochondrial fission and mitophagy via an AMPK-dependent manner. These findings indicate that LIG protects nerve damage against ischemic stroke by inducing Drp1-mediated mitochondrial fission via activation of AMPK signaling pathway in vivo and in vitro.


Subject(s)
4-Butyrolactone/pharmacology , AMP-Activated Protein Kinases/metabolism , Brain Ischemia , Ischemic Stroke , Mitochondrial Dynamics , 4-Butyrolactone/analogs & derivatives , Animals , Apoptosis , Brain Ischemia/drug therapy , Dynamins , Ischemic Stroke/drug therapy , Mitochondrial Dynamics/drug effects , Rats
18.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6196-6203, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34951246

ABSTRACT

A HPLC method was established for simultaneous determination of two organic acids(chlorogenic acid and ferulic acid) and five phthalides(senkyunolide I, senkyunolide H, senkyunolide A, ligustilide, and butylidenephthalide) in Angelicae Sinensis Radix and its processed products to clarify the underlying material transferring rules. The analysis was performed on a Welch Ultimate C_8 column(4.6 mm×250 mm, 5 µm) with acetonitrile(A)-0.085% phosphoric acid water(B) as the mobile phase in a gradient elution mode at the flow rate of 1.1 mL·min~(-1), the column temperature of 25 ℃, the detection wavelength of 280 nm, and the injection volume of 10 µL. Under these conditions, the content of the above-mentioned seven components was analyzed in 15 batches of Angelicae Sinensis Radix and its processed products, and the transfer rate of each compound was calculated. As a result, in the processed products, the average content of chlorogenic acid was slightly decreased and that of ferulic acid was equivalent to the medicinal materials. The content of senkyunolide I, senkyunolide H, senkyunolide A, and butylidenephthalide showed an increasing trend in the processed products as compared with the medicinal materials. The mass fraction of ligustilide in the medicinal materials was above 0.7%(0.94% on average), meeting the requirement of 0.6% in the Hong Kong Chinese Materia Medica Standards, but was 0.47% on average in the processed products, which was decreased by 50% approximately. Further investigation showed that the content of ligustilide in freshly made processed products of Angelicae Sinensis Radix did not change significantly compared with that in the medicinal materials, indicating that the loss of ligustilide in the processed products mainly occurred in the storage. Therefore, Angelicae Sinensis Radix is suitable for storing in the form of medicinal materials and the freshly made processed products should be used except for special cases. Additionally, it is recommended to control the content of volatile oils or ligustilide in medicinal materials and processed products of Angelicae Sinensis Radix to ensure its effectiveness in clinical medication.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Chlorogenic Acid , Chromatography, High Pressure Liquid , Plant Roots
19.
Zhongguo Zhong Yao Za Zhi ; 46(4): 972-980, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33645104

ABSTRACT

This study aims to establish a method for the determination of the concentration of five main components of phthalide target areas of Chaxiong(CPTA) and its inclusion of ß-CD in the plasma of rats, and determine the pharmacokinetic parameters, absolute bioavailability and relative bioavailability of CPTA/ß-CD inclusion compound in vivo. The plasma concentrations of senkyunolide A, N-butylphthalide, new osthol lactone, Z-ligustilide and butenyl phthalide were determined with UPLC-MS/MS. The content determination was conducted at the chromatographic conditions as follows: Shim-pack GIST C_(18)-AQ HP column(2.1 mm×100 mm, 3 µm), mobile phase of 0.1% formic acid solution(A)-acetonitrile(B), gradient elution, flow rate of 0.3 mL·min~(-1), column temperature of 35 ℃ and injection volume of 2 µL. The mass spectra were obtained with electrospray ion source(ESI), positive ion mode and multi reaction monitoring. CPTA/ß-CD inclusion compound was prepared by grinding method, DAS 2.0 software was used to model the data, and the absolute bioavailability of CPTA and relative bioavailability of inclusion compound were calculated. Finally, the methods for the determination of five components of senkyunolide A, N-butylphthalide, new osthol lactone, Z-ligustilide and butenyl phthalide in CPTA, were successfully established. The linear relationship among the five components was good within their respective ranges, r>0.99. The absolute bioavailability of the five components in rats was 22.30%, 16.32%, 21.90%, 10.16% and 12.43%, respectively. After CPTA/ß-CD inclusion was prepared, the relative bioavailability of the five components was 138.69%, 198.39%, 218.01%, 224.54% and 363.55%, respectively, significantly improved. This method is rapid, accurate and sensitive, so it is suitable for the pharmacokinetic study of extracts in traditional Chinese medicine and their preparations.


Subject(s)
Tandem Mass Spectrometry , Animals , Benzofurans , Chromatography, High Pressure Liquid , Chromatography, Liquid , Rats , Rats, Sprague-Dawley , Reproducibility of Results
20.
J Nat Med ; 75(3): 565-576, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33686489

ABSTRACT

By using Angelica acutiloba seedlings produced by short-period raising in paper pot (PP), we investigated the effect of taproot base diameter on the growth after planting and evaluated the quality of toki (, Angelicae Acutilobae Radix) produced from PP-grown seedlings (PT). In this study, PP-grown seedlings of seven classes which are sorted difference taproot base diameter (P1-P7) were transplanted. As a result, the survival rates were not less than 90% for P6 (taproot base diameter: 10.0-12.7 cm) and P7 (taproot base diameter: 12.8-17.3 cm), and the bolting rates were 20.5% and 24.1% for P6 and P7, respectively. The traditionally grown seedling (TS) showed the highest available harvest rate of 82.3%, followed by P6 (71.8%) and P7 (69.0%). P7 showed the highest fresh weight and dry weight per 1a (100 m2), followed by P6 and TS. However, PP-grown seedlings are prone to bolting, and it is expected the yield can be increased by preventing bolting. In addition, PT satisfied the regulations of JP17 in terms of, for example, dilute ethanol-soluble extract content, total ash content, and acid-insoluble ash content. It was also found that PT has a higher proportion of lateral roots with respect to the total weight than toki produced from traditionally grown seedlings (TT). The total (Z)-ligustilide contents were 0.07% in PT and 0.12% in TT. It was revealed that it is possible to produce toki that satisfies JP17 regulations; moreover, the period required for toki production was shortened by 6 months with PP-grown seedlings.


Subject(s)
Angelica/growth & development , Drugs, Chinese Herbal/analysis , Seedlings/growth & development , Angelica sinensis , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL