Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
Add more filters

Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Article in English | MEDLINE | ID: mdl-38580030

ABSTRACT

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Nanoparticles , Needles , Polylysine , Polylysine/chemistry , Doxycycline/administration & dosage , Doxycycline/pharmacology , Doxycycline/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Animals , Pseudomonas aeruginosa/drug effects , Mice , Drug Delivery Systems , Administration, Cutaneous , Skin/drug effects , Skin/microbiology , Pseudomonas Infections/drug therapy
2.
Animal ; 18(4): 101127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574452

ABSTRACT

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Subject(s)
Lactation , Lysine , Female , Cattle , Animals , Lysine/metabolism , Rumen/metabolism , Biological Availability , Diet/veterinary , Amino Acids/metabolism , Milk Proteins/metabolism , Amines/metabolism , Methionine/metabolism
3.
Reprod Domest Anim ; 59(4): e14558, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566368

ABSTRACT

We aimed to evaluate the effects of rumen-protected lysine (RPL) supplementation during the close-up period on uterine involution and the resumption of ovarian function in dairy cows. Fifty-two multiparous Holstein cows were categorized based on parity and expected calving date and randomly assigned to the RPL or control (CON) groups. The RPL group received 80 g of RPL daily from day 21 before the expected calving date until parturition. Blood samples were obtained twice weekly from pre-supplementation to 6 weeks postpartum. The onset of luteal activity postpartum was determined via ultrasonography twice weekly for up to 6 weeks postpartum. Uterine involution was tracked at 3 and 5 weeks postpartum through the vaginal discharge score, percentage of polymorphonuclear cells (PMN) in endometrial cytology samples, presence of intrauterine fluid, and gravid horn diameter via ultrasonography. Before supplementation, the RPL group showed amino acid imbalance, which was improved by RPL supplementation. There were no significant differences in the onset of luteal activity, percentage of PMN, intrauterine fluid, or the diameter of the uterine horn between the two groups. The vaginal discharge score in the RPL group decreased from 3 to 5 weeks postpartum, whereas that in the CON groups did not decrease. The number of cows with clinical endometritis was lower in the RPL group. Overall, RPL supplementation during the close-up period enhanced vaginal discharge clearance, potentially averting clinical endometritis, but did not affect the first ovulation in dairy cows.


Subject(s)
Cattle Diseases , Endometritis , Vaginal Discharge , Animals , Cattle , Female , Pregnancy , Cattle Diseases/drug therapy , Cattle Diseases/prevention & control , Cattle Diseases/metabolism , Diet/veterinary , Dietary Supplements , Endometritis/prevention & control , Endometritis/veterinary , Endometritis/metabolism , Lactation , Lutein/analysis , Lutein/metabolism , Lysine/pharmacology , Milk/chemistry , Postpartum Period , Rumen/metabolism , Vaginal Discharge/veterinary
4.
Pathogens ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535596

ABSTRACT

Urinary tract infections occupy a special niche among diseases of infectious etiology. Many microorganisms associated with urinary tract infections, such as Klebsiella oxytoca, Enterococcus spp., Morganella morganii, Moraxella catarrhalis, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Staphylococcus spp., and Candida spp., can form biofilms. The aim of this research was to study the effect of the enzyme L-lysine-Alpha-oxidase (LO) produced by the fungus Trichoderma harzianum Rifai on the biofilm formation process of microorganisms associated with urinary tract infections. Homogeneous LO showed a more pronounced effect than the culture liquid concentrate (cCL). When adding samples at the beginning of incubation, the maximum inhibition was observed in relation to Enterococcus faecalis 5960-cCL 86%, LO 95%; Enterococcus avium 1669-cCL 85%, LO 94%; Enterococcus cloacae 6392-cCL 83%, LO-98%; and Pseudomonas aeruginosa 3057-cCL 70%, LO-82%. The minimum inhibition was found in Candida spp. Scanning electron microscopy was carried out, and numerous morphological and structural changes were observed in the cells after culturing the bacterial cultures in a medium supplemented with homogeneous LO. For example, abnormal division was detected, manifesting as the appearance of joints in places where the bacteria diverge. Based on the results of this work, we can draw conclusions about the possibility of inhibiting microbial biofilm formation with the use of LO; especially significant inhibition was achieved when the enzyme was added at the beginning of incubation. Thus, LO can be a promising drug candidate for the treatment or prevention of infections associated with biofilm formation.

5.
Int J Biol Macromol ; 264(Pt 2): 130729, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460643

ABSTRACT

Astrocyte elevated gene-1 (AEG-1) oncogene is a notorious and evolving target in a variety of human malignancies including osteosarcoma. The RNA interference (RNAi) has been clinically proven to effectively knock down specific genes. To successfully implement RNAi in vivo, protective vectors are required not only to protect unstable siRNAs from degradation, but also to deliver siRNAs to target cells with controlled release. Here, we synthesized a Zein-poly(l-lysine) dendrons non-viral modular system that enables efficient siRNA-targeted AEG-1 gene silencing in osteosarcoma and encapsulation of antitumor drugs for controlled release. The rational design of the ZDP integrates the non-ionic and low immunogenicity of Zein and the positive charge of the poly(l-lysine) dendrons (DPLL) to encapsulate siRNA and doxorubicin (DOX) payloads via electrostatic complexes and achieve pH-controlled release in a lysosomal acidic microenvironment. Nanocomplexes-directed delivery greatly improves siRNA stability, uptake, and AEG-1 sequence-specific knockdown in 143B cells, with transfection efficiencies comparable to those of commercial lipofectamine but with lower cytotoxicity. This AEG-1-focused RNAi therapy supplemented with chemotherapy inhibited, and was effective in inhibiting the growth in of osteosarcoma xenografts mouse models. The combination therapy is an alternative or combinatorial strategy that can produce durable inhibitory responses in osteosarcoma patients.


Subject(s)
Bone Neoplasms , Dendrimers , Nanoparticles , Osteosarcoma , Zein , Animals , Mice , Humans , Polylysine , Azides , Delayed-Action Preparations , Alkynes , Doxorubicin/pharmacology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , RNA, Small Interfering/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment
6.
J Dairy Sci ; 107(7): 4537-4557, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395403

ABSTRACT

Lysine is one of the limiting AA in the diets of dairy cows and is typically fed as rumen-protected Lys (RPL). We hypothesized that supplementation of RPL during the postpartum period would improve the productive performance in dairy cows. Objectives were to use meta-analytic methods to explore the effects of feeding RPL on performance and blood AA profile in lactating dairy cows. An additional objective was to identify an optimal concentration (%) of Lys in MP (LYSMP) and determine if responses to LYSMP were associated with the concentration (%) of Met in MP (METMP). The literature was systematically reviewed, and 13 experiments, comprising 40 treatment means and 594 lactating cows, were included in the meta-analysis. All experiments had a nonsupplemental control (CON; n = 17 treatment means), or a group supplemented with RPL (n = 23 treatment means). Cows supplemented with RPL were supplied additionally with a mean (±standard deviation) 19.3 ± 10.3 g/d metabolizable Lys (5.1-40.6 g/d). Meta-analytical statistics were used to estimate the weighted mean difference in STATA. Mixed models were fitted to the data to investigate the linear and quadratic effects of LYSMP, METMP, and interactions between LYSMP and METMP. All models included the random effect of experiment and weighting by the inverse of the SE of the means squared. Cows that began receiving RPL in early lactation (≤90 DIM) or for an extended duration (≥70 DIM) produced 1.51 kg/d more milk compared with CON cows. Increasing digestible LYSMP from 6.5% to 8.5% linearly increased yields of milk, FCM, ECM, and milk fat by 1.8, 2.5, 2.4, and 0.10 kg/d, respectively, and tended to increase milk protein yield and body weight gain by 0.07 and 0.09 kg/d, respectively, without a concurrent increase in DMI. Interactions between the linear effects of LYSMP and METMP were observed for FCM/DMI or ECM/DMI. In a diet with low METMP (e.g., 1.82% of MP), a digestible supply of 7.40% LYSMP would result in 1.46 and 1.47 kg/kg FCM/DMI or ECM/DMI, respectively; however, with high digestible METMP (e.g., 2.91% of MP), supplying 7.40% of digestible LYSMP would result in 1.68 and 1.62 kg/kg FCM/DMI or ECM/DMI, respectively. Increasing digestible LYSMP from 6.5% to 8.5% linearly increased blood concentrations of Lys by 16.6 µM, whereas blood concentrations of Met and Ala decreased by 4.6 and 6.0 µM, respectively. Nevertheless, an interaction was also observed between LYSMP and METMP for blood concentrations of total EAA because as METMP increased, the positive response to LYSMP on total EAA was also increased, suggesting a competitive mobilization of AA and their utilization in various body tissues. Only 4 out of the 13 experiments in this meta-analysis involved primiparous cows; thus, insufficient data were available to understand the role of supplemental RPL in primiparous cows. Collectively, feeding RPL improved productive performance, and the increments were maximized up to 9.25% of LYSMP in multiparous dairy cows.


Subject(s)
Amino Acids , Animal Feed , Dietary Supplements , Lactation , Lysine , Milk , Rumen , Animals , Cattle , Female , Amino Acids/metabolism , Diet/veterinary , Lactation/drug effects , Lysine/pharmacology , Milk/chemistry , Postpartum Period , Rumen/metabolism
7.
Mol Neurobiol ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386135

ABSTRACT

DNA damage is associated with hyperhomocysteinemia (HHcy) and neural tube defects (NTDs). Additionally, HHcy is a risk factor for NTDs. Therefore, this study examined whether DNA damage is involved in HHcy-induced NTDs and investigated the underlying pathological mechanisms involved. Embryonic day 9 (E9) mouse neuroectoderm cells (NE4C) and homocysteine-thiolactone (HTL, active metabolite of Hcy)-induced NTD chicken embryos were studied by Western blotting, immunofluorescence. RNA interference or gene overexpression techniques were employed to investigate the impact of Menin expression changes on the DNA damage. Chromatin immunoprecipitation-quantitative polymerase chain reaction was used to investigate the epigenetic regulation of histone modifications. An increase in γH2AX (a DNA damage indicator) was detected in HTL-induced NTD chicken embryos and HTL-treated NE4C, accompanied by dysregulation of phospho-Atr-Chk1-nucleotide excision repair (NER) pathway. Further investigation, based on previous research, revealed that disruption of NER was subject to the epigenetic regulation of low-expressed Menin-H3K4me3. Overexpression of Menin or supplementation with folic acid in HTL-treated NE4C reversed the adverse effects caused by high HTL. Additionally, by overexpressing the Mars gene, we tentatively propose a mechanism whereby HTL regulates Menin expression through H3K79hcy, which subsequently influences H3K4me3 modifications, reflecting an interaction between histone modifications. Finally, in 10 human fetal NTDs with HHcy, we detected a decrease in the expression of Menin-H3K4me3 and disorder in the NER pathway, which to some extent validated our proposed mechanism. The present study demonstrated that the decreased expression of Menin in high HTL downregulated H3K4me3 modifications, further weakening the Atr-Chk1-NER pathway, resulting in the occurrence of NTDs.

8.
Adv Sci (Weinh) ; 11(14): e2307526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38298064

ABSTRACT

Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.


Subject(s)
Lysine , Nucleosomes , Lysine/metabolism , Protein Processing, Post-Translational , Histones/metabolism , Chromatin , Arginine/metabolism
9.
BMC Chem ; 18(1): 20, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281043

ABSTRACT

High performance liquid chromatography is one of the techniques of choice for the separation and quantitative determination of drugs in mixture form. Ipriflavone, ascorbic acid, pyridoxine, vitamin D3, and lysine are formulated together as an adjuvant combination in osteoporosis. In this work, we developed and validated two complementary high performance liquid chromatographic methods to determine the five compounds in their pharmaceutical dosage form. The first method (method A) was capable of determining ipriflavone, ascorbic acid, pyridoxine, and vitamin D3 in their bulk and combined pharmaceutical formulation. The method is based on Liquid Chromatographic separation with UV detection at 254 nm using Agilent Eclipse XDB-C18 column with a mobile phase consisting of 25 mM ammonium acetate buffer (pH 4.2): methanol in gradient mode. Due to the high polarity of lysine, it was difficult to achieve satisfactory retention on reversed phase columns. So, we separated it on a strong cation exchange column (Exsil 100 SCX) without derivatization with a mobile phase consisting of 10 mM sodium dihydrogen phosphate and 200 mM sodium chloride (pH 6) with UV detection at 210 nm (method B). Validation of the proposed methods was performed according to ICH guidelines Q2(R1). The proposed methods proved to be valid for selective analysis of the stated drugs in their bulk and combined pharmaceutical formulation. Greenness assessment of the developed methods was evaluated using three assessment tools: ESA, GAPI and the most recently developed tool AGREE, showing a satisfactory comprehensive guide of the greenness of the developed methods.

10.
Environ Sci Pollut Res Int ; 31(7): 10594-10608, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198090

ABSTRACT

Cadmium significantly impacts plant growth and productivity by disrupting physiological, biochemical, and oxidative defenses, leading to severe damage. The application of Zn-Lys improves plant growth while reducing the stress caused by heavy metals on plants. By focusing on cadmium stress and potential of Zn-Lys on pea, we conducted a pot-based study, organized under completely randomized block design CRD-factorial at the Botanical Garden of Government College University, Faisalabad. Both pea cultivars were grown in several concentrations of cadmium @ 0, 50 and 100 µM, and Zn-Lys were exogenously applied @ 0 mg/L and 10 mg/L with three replicates for each treatment. Cd-toxicity potentially reduces plant growth, chlorophyll contents, osmoprotectants, and anthocyanin content; however, an increase in MDA, H2O2 initiation, enzymatic antioxidant activities as well as phenolic, flavonoid, proline was observed. Remarkably, exogenously applied Zn-Lys significantly enhanced the plant growth, biomass, photosynthetic attributes, osmoprotectants, and anthocyanin contents, while further increase in enzymatic antioxidant activities, total phenolic, flavonoid, and proline contents were noticed. However, application of Zn-Lys instigated a remarkable decrease in levels of MDA and H2O2. It can be suggested with recommendation to check the potential of Zn-Lys on plants under cadmium-based toxic soil.


Subject(s)
Antioxidants , Soil Pollutants , Humans , Cadmium , Pisum sativum , Hydrogen Peroxide , Anthocyanins , Zinc , Proline , Dietary Supplements , Soil Pollutants/analysis
11.
Exp Anim ; 73(1): 83-92, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37648521

ABSTRACT

The incidence of autoimmune hepatitis (AIH) has increased significantly worldwide. The present study aims to explore the protective effect of L-lysine supplementation against AIH and to investigate its potential underlying mechanisms. A chronic experimental AIH mouse model was established by repeated tail vein injection of human cytochrome P450 2D6 (CYP2D6) plasmid. Starting from day 14 of the modeling, mice in the CYP2D6-AIH +L-lysine group were given 200 µl of purified water containing 10 mg/kg L-lysine by gavage until day27, once a day, and mice in the healthy control group and model group were given an equal volume of purified water by gavage. Our results showed that L-lysine supplementation partially reversed the liver injury mediated by CYP2D6 overexpression. These effects were consistent with the restraining impacts of L-lysine supplementation on decreasing pro-inflammatory cytokines expression level and CD4+ and CD8+ T lymphocytes infiltration, as well as curbing hepatic oxidative stress. Furthermore, L-lysine supplement relieved liver fibrosis in the context of AIH. In conclusion, L-lysine supplementation attenuates CYP2D6-induced immune liver injury in mice, which may serve as a novel nutrition support approach for AIH.


Subject(s)
Hepatitis, Autoimmune , Mice , Humans , Animals , Hepatitis, Autoimmune/prevention & control , Hepatitis, Autoimmune/etiology , Lysine , Cytochrome P-450 CYP2D6 , Disease Models, Animal , Autoantigens , Liver/metabolism , Dietary Supplements , Water
12.
Poult Sci ; 103(1): 103222, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980732

ABSTRACT

The etiology of Wooden Breast (WB) is unknown; therefore, it is difficult to produce broiler flocks with similar proportions of WB-affected and unaffected birds. Because WB has been detected as early as 15 d posthatch, the objective of this randomized complete block experiment with a 2 × 2 factorial treatment arrangement was to determine whether combining the effects of light intensity (LI) and early nutrient reduction strategies could reliably produce WB-affected and normal broilers to further investigate the physiological mechanisms underlying WB. On day of hatch, male, Ross 708 × Yield Plus broilers (n = 384; 16 birds per pen; 3 replicate blocks) were randomly allotted to floor pens in the same facility and exposed to either 2 (LOWLI) or 30 (HIGHLI) lux of light from d 0 to 35. Birds were fed either a commercial starter diet (CON) or the CON diet with a 10% reduction in both ME and digestible lysine (dLys; RED) from d 0 to 14 and then a common grower diet from d 15 to 35. Broiler growth performance, breast yield, and incidence and severity of WB and White Striping (WS) were assessed. Data were analyzed as a 2-way ANOVA with SAS PROC GLIMMIX and means separated at P < 0.05 with PDIFF. No interaction among LI and diet was observed (P > 0.05). Broilers reared with HIGHLI were heavier on d 35 and consumed more feed in all phases compared with broilers reared under LOWLI (P ≤ 0.0096). Broilers reared under LOWLI gained less BW from d 15 to 35 and d 0 to 35 compared with broilers reared under HIGHLI (P = 0.0073). Broilers fed the RED starter diet consumed more feed and had higher FCR from d 0 to 14 compared with broilers fed the CON diet (P ≤ 0.0012). In conclusion, combining reductions in LI and starter diet ME and dLys did not produce the hypothesized reductions in breast yield and incidence and severity of WB or WS.


Subject(s)
Chickens , Lysine , Animals , Male , Lysine/pharmacology , Chickens/physiology , Animal Feed/analysis , Random Allocation , Diet/veterinary , Meat/analysis , Animal Nutritional Physiological Phenomena , Dietary Supplements
13.
Nutr Res ; 121: 67-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043437

ABSTRACT

Rice is the primary staple food for half of the world's population but is low in lysine content. Previously, we developed transgenic rice with enhanced free lysine content in rice seeds (lysine-rich rice), which was shown safe for consumption and improved the growth in rats. However, the effects of lysine-rich rice on skeletal growth and development remained unknown. In this study, we hypothesized that lysine-rich rice improved skeletal growth and development in weaning rats. Male weaning Sprague-Dawley rats received lysine-rich rice (HFL) diet, wild-type rice (WT) diet, or wild-type rice with various contents of lysine supplementation diet for 70 days. Bone microarchitectures were examined by microcomputed tomography, bone strength was investigated by mechanical test, and dynamics of bone growth were examined by histomorphometric analysis. In addition, we explored the molecular mechanism of lysine and skeletal growth through biochemical testing of growth hormone, bone turnover marker, and amino acid content of rat serum analysis, as well as in a cell culture system. Results indicated that the HFL diet improved rats' bone growth, strength, and microarchitecture compared with the WT diet group. In addition, the HFL diet increased the serum essential amino acids, growth hormone (insulin-like growth factor-1), and bone formation marker concentrations. The cell culture model showed that lysine deficiency reduced insulin-like growth factor-1 and Osterix expression, Akt/mammalian target of rapamycin signaling, and matrix mineralization, and inhibited osteoblast differentiation associated with bone growth. Our findings showed that lysine-rich rice improved skeletal growth and development in weaning rats. A further increase of rice lysine content is highly desirable to fully optimize bone growth and development.


Subject(s)
Lysine , Oryza , Rats , Male , Animals , Rats, Sprague-Dawley , Oryza/genetics , Oryza/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism , X-Ray Microtomography , Body Weight , Growth Hormone/metabolism , Mammals/metabolism
14.
Anim Nutr ; 15: 320-331, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053803

ABSTRACT

This study was conducted to evaluate the effects of dietary crude protein (CP) and rumen-protected lysine (RPL) supplementation on lactation performance, amino acid (AA) balance, nitrogen (N) utilization and hindgut microbiota in dairy cows. Treatments were in a 2 × 2 factorial arrangement, and the main effects were CP concentration (16% vs. 18%) and RPL supplementation (with or without RPL at 40 g/cow per day). Forty cows were randomly allocated to 4 groups: low-CP diet (LP), low-CP diet plus RPL (LPL), high-CP diet (HP), high-CP diet plus RPL (HPL). The experiment was conducted for 8 weeks. Results showed that RPL increased the dry matter intake (P < 0.01), milk protein yield (P = 0.04) and energy corrected milk (P = 0.04), and tended to increase milk fat yield (P = 0.06) and fat corrected milk (P = 0.05). Cows in the HP group tended to have higher milk urea N (P = 0.07). Plasma concentrations of Arg, Ile, Lys, Met, Pro, total essential AA and total nonessential AA were increased by RPL (P < 0.05). The total essential AA, total nonessential AA and most AA (except Ile, Phe, Gly and Pro) were increased in the HP group (P < 0.05). N excretion was increased in the HP group through an increase in urea N excretion (P < 0.01) and an upward trend in plasma urea N (P = 0.07). In addition, RPL tended to increase milk protein N secretion (P = 0.08), milk N (P = 0.07) and microbial protein synthesis (P = 0.06), and decreased plasma urea N (P < 0.001). In the hindgut, the bacterial community were different between the LP and LPL groups (P < 0.01). The probiotic abundances of Christensenellaceae_R-7_group and Acinetobacter were increased by RPL (P = 0.03 and 0.03, respectively). The pathogenic abundances of Clostridium_sensu_stricto_1 (P < 0.001) and Turicibacter (P < 0.01) were decreased by RPL. In conclusion, supplementing RPL with low dietary CP could balance AA supply and increase milk protein yield, resulting in an improvement in N utilization efficiency, and altered the composition of the hindgut microbiota to favor the lactation performance of dairy cows.

15.
Cancers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38136297

ABSTRACT

Advanced cutaneous melanoma is considered to be the most aggressive type of skin cancer and has variable rates of treatment response. Currently, there are some classes of immunotherapy and target therapies for its treatment. Immunotherapy can inhibit tumor growth and its recurrence by triggering the host's immune system, whereas targeted therapy inhibits specific molecules or signaling pathways. However, melanoma responses to these treatments are highly heterogeneous, and patients can develop resistance. Epigenomics (DNA/histone modifications) contribute to cancer initiation and progression. Epigenetic alterations are divided into four levels of gene expression regulation: DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation. Deregulation of lysine methyltransferase enzymes is associated with tumor initiation, invasion, development of metastases, changes in the immune microenvironment, and drug resistance. The study of lysine histone methyltransferase (KMT) and nicotinamide N-methyltransferase (NNMT) inhibitors is important for understanding cancer epigenetic mechanisms and biological processes. In addition to immunotherapy and target therapy, the research and development of KMT and NNMT inhibitors is ongoing. Many studies are exploring the therapeutic implications and possible side effects of these compounds, in addition to their adjuvant potential to the approved current therapies. Importantly, as with any drug development, safety, efficacy, and specificity are crucial considerations when developing methyltransferase inhibitors for clinical applications. Thus, this review article presents the recently available therapies and those in development for advanced cutaneous melanoma therapy.

16.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37971408

ABSTRACT

This project was conducted to determine if providing standardized ileal digestible (SID) Lys at 40% above estimated requirements (NRC, 2012), with the concomitant increased protein intake, from days 90 to 110 of gestation stimulates mammary development in multiparous sows. From day 90 of gestation, Yorkshire × Landrace multiparous sows (parities 2 and 3) were fed 2.6 kg/d of either a conventional diet (CTL, control, n = 17) providing 14.8 g/d of SID Lys or a diet providing 20.8 g/d of SID Lys via additional soybean meal (HILYS, n = 16). The diets were isoenergetic. Concentrations of IGF-1, glucose, free fatty acids (FFA), urea, and amino acids (AA) were measured in jugular blood samples obtained on days 90 and 110 of gestation. Sows were necropsied on day 110 ±â€…1 of gestation to obtain mammary glands for compositional and histological analyses. Backfat or BW changes of sows during late gestation were unaffected by treatment (P > 0.10), as was the case for fetal BW (P > 0.10). None of the variables measured in mammary tissue were altered by supplementary Lys (P > 0.10). Circulating IGF-1, glucose, and FFA did not differ (P > 0.10) between HILYS and CTL sows on day 110 of gestation, whereas concentrations of urea were greater (P < 0.01) in HILYS versus CTL gilts. Concentrations of Ile and Thr in plasma were also greater (P < 0.05), and those of Glu were lower (P < 0.01) in HILYS than CTL sows. These results demonstrate that feeding Lys (via protein) above current NRC recommendations during late gestation does not improve mammary development of multiparous sows. Hence, the use of a two-phase feeding strategy to provide more Lys (protein) to multiparous sows during this period is not necessary.


Results indicate that there is no advantage in terms of mammary development to feeding late-pregnant multiparous sows with 40% more lysine (via protein) than current recommendations (NRC, 2012). From days 90 to 110 of gestation, multiparous sows (parities 2 and 3) were fed 2.6 kg/d of either a conventional diet providing 14.8 g/d of standardized ileal digestible (SID) lysine or a diet providing 20.8 g/d of SID lysine via the inclusion of additional soybean meal. Diets were isoenergetic. Feeding supplementary SID lysine had no effect on mammary development at the end of gestation. Contrary to our previous report for gilts, mammary gland development is not improved by providing more lysine to multiparous sows in late gestation. Such information is crucial for developing the best feeding strategies to maximize milk yield. The use of a two-phase feeding strategy to provide more lysine (protein) as of day 90 of gestation is not necessary in multiparous sows.


Subject(s)
Insulin-Like Growth Factor I , Lysine , Pregnancy , Swine , Animals , Female , Lysine/metabolism , Lactation , Diet/veterinary , Sus scrofa/metabolism , Parity , Dietary Supplements , Urea , Glucose , Animal Feed/analysis
17.
Nutrients ; 15(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38004100

ABSTRACT

Skeletal muscle is the key tissue for maintaining protein and glucose homeostasis, having a profound impact on the development of diabetes. Diabetes causes deleterious changes in terms of loss of muscle mass, which will contribute to reduced glucose uptake and therefore progression of the disease. Nutritional approaches in diabetes have been directed to increase muscle glucose uptake, and improving protein turnover has been at least partially an oversight. In muscle, ß-hydroxy ß-methyl butyrate (HMB) promotes net protein synthesis, while arginine and lysine increase glucose uptake, albeit their effects on promoting protein synthesis are limited. This study evaluates if the combination of HMB, lysine, and arginine could prevent the loss of muscle mass and function, reducing the progression of diabetes. Therefore, the combination of these ingredients was tested in vitro and in vivo. In muscle cell cultures, the supplementation enhances glucose uptake and net protein synthesis due to an increase in the amount of GLUT4 transporter and stimulation of the insulin-dependent signaling pathway involving IRS-1 and Akt. In vivo, using a rat model of diabetes, the supplementation increases lean body mass and insulin sensitivity and decreases blood glucose and serum glycosylated hemoglobin. In treated animals, an increase in GLUT4, creatine kinase, and Akt phosphorylation was detected, demonstrating the synergic effects of the three ingredients. Our findings showed that nutritional formulations based on the combination of HMB, lysine, and arginine are effective, not only to control blood glucose levels but also to prevent skeletal muscle atrophy associated with the progression of diabetes.


Subject(s)
Diabetes Mellitus , Lysine , Rats , Animals , Lysine/pharmacology , Lysine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Blood Glucose/metabolism , Arginine/pharmacology , Arginine/metabolism , Muscle, Skeletal/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Insulin/metabolism , Dietary Supplements
18.
World J Microbiol Biotechnol ; 40(1): 20, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996724

ABSTRACT

To meet the growing demand for L-lysine, an essential amino acid with various applications, it is crucial to produce it on a large scale locally instead of relying solely on imports. This study aimed to evaluate the potential of using Corynebacterium glutamicum ATCC 13032 for L-lysine production from agricultural by-products such as palm kernel cake, soybean cake, groundnut cake, and rice bran. Solid-state fermentation was conducted at room temperature for 72 h, with the addition of elephant grass extract as a supplement. The results revealed that these agricultural by-products contain residual amounts of L-lysine. By employing solid-state fermentation with C. glutamicum (106 CFU/ml) in 100 g of various agricultural by-products, L-lysine production was achieved. Interestingly, the addition of elephant grass extract (1 g of elephant grass: 10 ml of water) further enhanced L-lysine production. Among the tested substrates, 100 g of groundnut cake moistened with 500 ml of elephant grass extract yielded the highest L-lysine concentration of 3.27 ± 0.02 (mg/gds). Furthermore, fermentation led to a substantial rise (p < 0.05) in soluble protein, with solid-state fermented soybean cake moistened with 500 ml of elephant grass extract exhibiting the highest amount of 7.941 ± 0.05 mg/gds. The activities of xylanase, amylase and protease were also significantly enhanced. This study demonstrates a viable biotechnological approach for locally producing L-lysine from agricultural by-products using solid-state fermentation with C. glutamicum. The findings hold potential for both health and industrial applications, providing a sustainable and economically feasible method for L-lysine production.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/metabolism , Fermentation , Lysine
19.
Pharmaceutics ; 15(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38004524

ABSTRACT

To prevent neural tube defects and other cardiovascular diseases in newborns, folic acid (FA) is recommended in pregnant women. A daily dose of 600 µg FA consumption is widely prescribed for women during pregnancy and 400 µg for women with childbearing potential. FA is a class IV compound according to the Biopharmaceutics Classification System (BCS) due to its low permeability (1.7 × 10-6 cm/s) and low solubility (1.6 mg/L); therefore, it must be administered via a formulation that enhances its solubility. Studies reported in the literature have proved that co-amorphization and salt formation of a poorly soluble drug with amino acids (AA) can significantly increase its solubility. Although arginine has been used with FA as a supplement, there is no information on the effect of basic AA (arginine and lysine) on the physical and chemical properties of FA-AA binary formulations. The present study implemented a conductimetric titration methodology to find the effective molar ratio to maximize FA solubility. The results showed that a 1:2.5 FA:AA molar ratio maximized solubility for arginine and lysine. Binary formulations were prepared using different methods, which led to an amorphous system confirmed by the presence of a glass transition, broad FTIR bands, and the absence of an X-ray diffraction pattern. Results of FA:AA (1:2.5) solubility increased in the range of 5500-6000 times compared with pure FA. In addition to solubility enhancement, the binary systems presented morphological properties that depend on the preparation method and whose consideration could be strategic for scaling purposes.

20.
Food Res Int ; 174(Pt 1): 113628, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37986479

ABSTRACT

Protein-bound Nε-(carboxymethyl)lysine (CML), an advanced glycation end product within meat products, poses a potential health risk to humans. The objective of this study was to explore the impact of various edible oils on the formation of protein-bound CML in roasted pork patties. Eleven commercially edible oils including lard oil, corn oil, palm oil, olive oil, flaxseed oil, blended oil, camellia oil, walnut oil, soybean oil, peanut oil, and colza oil were added to pork tenderloin mince, respectively, at a proportion of 4 % to prepare raw pork patties. The protein-bound CML contents in the pork patties were determined by HPLC-MS/MS before and after roasting at 200 °C for 20 min. The results indicated that walnut oil, flaxseed oil, colza oil, olive oil, lard oil, corn oil, blended oil, and palm oil significantly reduced the accumulation of protein-bound CML in pork patties, of which the inhibition rate was in the 24.43 %-37.96 % range. Moreover, the addition of edible oil contributed to a marginal reduction in the loss of lysine. Meanwhile, glyoxal contents in pork patties were reduced by 16.72 %-43.21 % after roasting. Other than blend oil, all the other edible oils restrained protein oxidation in pork patties to varying degrees (between 20.16 % and 61.26 %). In addition, camellia oil, walnut oil, and flaxseed oil increased TBARS values of pork patties by 2.2-8.6 times when compared to the CON group. After analyzing the fatty acid compositions of eleven edible oils, five main fatty acids (palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid) were selected to establish Myofibrillar protein-Glucose-fatty acids systems to simulate the roasting process. The results showed that palmitic acid, oleic acid, linoleic acid, and linolenic acid obviously mitigated the formation of myofibrillar protein-bound CML, exhibiting suppression rates ranging from 10.38 % to 40.32 %. In conclusion, the addition of specific edible oil may curb protein-bound CML production in roasted pork patty by restraining protein or lipid oxidation, reducing lysine loss, and suppressing glyoxal production, which may be attributed to the fatty acid compositions of edible oils. This finding provides valuable guidance for the selection of healthy roasting oils in the thermal processing of meat products.


Subject(s)
Pork Meat , Red Meat , Animals , Humans , Swine , Olive Oil , Linseed Oil , Lysine , Corn Oil , Tandem Mass Spectrometry , Plant Oils , Linoleic Acid , Palmitic Acid , Oleic Acid , Glyoxal , Linolenic Acids
SELECTION OF CITATIONS
SEARCH DETAIL