Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.093
Filter
Add more filters

Complementary Medicines
Publication year range
1.
ACS Infect Dis ; 10(5): 1552-1560, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38623820

ABSTRACT

Tyrosine cross-linking has recently been used to produce nanoclusters (NCs) from peptides to enhance their immunogenicity. In this study, NCs were generated using the ectodomain of the ion channel Matrix 2 (M2e) protein, a conserved influenza surface antigen. The NCs were administered via intranasal (IN) or intramuscular (IM) routes in a mouse model in a prime-boost regimen in the presence of the adjuvant CpG. After boost, a significant increase in anti-M2e IgG and its subtypes was observed in the serum and lungs of mice vaccinated through the IM and IN routes; however, significant enhancement in anti-M2e IgA in lungs was observed only in the IN group. Analysis of cytokine concentrations in stimulated splenocyte cultures indicated a Th1/Th17-biased response. Mice were challenged with a lethal dose of A/California/07/2009 (H1N1pdm), A/Puerto Rico/08/1934 (H1N1), or A/Hong Kong/08/1968 (H3N2) strains. Mice that received M2e NCs + CpG were significantly protected against these strains and showed decreased lung viral titers compared with the naive mice and M2e NC-alone groups. The IN-vaccinated group showed superior protection against the H3N2 strain as compared to the IM group. This research extends our earlier efforts involving the tyrosine-based cross-linking method and highlights the potential of this technology in enhancing the immunogenicity of short peptide immunogens.


Subject(s)
Antibodies, Viral , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Tyrosine , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Tyrosine/chemistry , Tyrosine/pharmacology , Influenza A Virus, H1N1 Subtype/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Mice, Inbred BALB C , Influenza A Virus, H3N2 Subtype/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Lung/virology , Lung/immunology , Administration, Intranasal , Injections, Intramuscular , Cytokines , Cross Protection , Viroporin Proteins
2.
Free Radic Biol Med ; 219: 215-230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636715

ABSTRACT

Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.


Subject(s)
Epithelial Cells , Intestinal Mucosa , Macrophages , Selenium , Trichothecenes , Animals , Trichothecenes/toxicity , Mice , Macrophages/metabolism , Macrophages/drug effects , Selenium/pharmacology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Macrophage Activation/drug effects , Mice, Inbred C57BL , Signal Transduction/drug effects , Ferroptosis/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism
3.
Article in English | MEDLINE | ID: mdl-38627266

ABSTRACT

Depression is common in attention-deficit/hyperactivity disorder (ADHD), but preventive behavioural interventions are lacking. This randomised controlled, pilot phase-IIa trial aimed to study a physical exercise intervention (EI) and bright light therapy (BLT)-both implemented and monitored in an individual, naturalistic setting via a mobile health (m-health) system-for feasibility of trial design and interventions, and to estimate their effects on depressive symptoms in young people with ADHD. Two hundred seven participants aged 14-45 years were randomised to 10-week add-on intervention of either BLT (10,000 lx; daily 30-min sessions) (n = 70), EI (aerobic and muscle-strengthening activities 3 days/ week) (n = 69), or treatment-as-usual (TAU) (n = 68), of whom 165 (80%) were retained (BLT: n = 54; EI: n = 52; TAU: n = 59). Intervention adherence (i.e. ≥ 80% completed sessions) was very low for both BLT (n = 13, 22%) and EI (n = 4, 7%). Usability of the m-health system to conduct interventions was limited as indicated by objective and subjective data. Safety was high and comparable between groups. Changes in depressive symptoms (assessed via observer-blind ratings, Inventory of Depressive Symptomatology) between baseline and end of intervention were small (BLT: -0.124 [95% CI: -2.219, 1.971], EI: -2.646 [95% CI: -4.777, -0.515], TAU: -1.428 [95% CI: -3.381, 0.526]) with no group differences [F(2,153) = 1.45, p = 0.2384]. These findings suggest that the m-health approach did not achieve feasibility of EI and BLT in young people with ADHD. Prior to designing efficacy studies, strategies how to achieve high intervention adherence should be specifically investigated in this patient group. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03371810, 13 December 2017.

4.
Int J Low Extrem Wounds ; : 15347346241245159, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571403

ABSTRACT

Chronic wounds remain a significant clinical challenge both for those affected and for healthcare systems. The treatment is often comprised and complex. All patients should receive wound care that is integrated into a holistic approach involving local management that addresses the underlying etiology and provides for gold standard therapy to support healing, avoid complications and be more cost effective. There have been significant advances in medicine over the last few decades. The development of new technologies and therapeutics for the local treatment of wounds is also constantly increasing. To help standardize clinical practice with regard to the multitude of wound products, the M.O.I.S.T. concept was developed by a multidisciplinary expert group. The M stands for moisture balance, O for oxygen balance, I for infection control, S for supporting strategies, and T for tissue management. Since the M.O.I.S.T. concept, which originated in the German-speaking countries, is now intended to provide healthcare professionals with an adapted instrument to be used in clinical practice, and a recent update to the concept has been undertaken by a group of interdisciplinary experts to align it with international standards. The M.O.I.S.T. concept can now be used internationally both as an educational tool and for the practical implementation of modern local treatment concepts for patients with chronic wounds and can also be used in routine clinical practice.

5.
J Ethnopharmacol ; 330: 118208, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636581

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zhilong Huoxue Tongyu Capsule (ZL) is clinically prescribed for acute ischemic stroke (AIS). However, only a few studies have addressed the mechanisms of ZL in treating AIS. AIM OF THE STUDY: To explore the underlying mechanism of macrophage polarization and inflammation mediated by ZL, and to provide a reference for AIS treatment. MATERIALS AND METHODS: Sixteen SD rats were fed with different dose of ZL (0, 0.4, 0.8, and 1.6 g/kg/d) for 4 days to prepare ZL serum. After 500 ng/mL lipopolysaccharide (LPS) stimulation, RAW264.7 cells were administrated with ZL serum. Then, experiments including ELISA, flow cytometry, real-time quantitative PCR and Western blot were performed to verify the effects of ZL on macrophage polarization and inflammation. Next, let-7i inhibitor was transfected in RAW264.7 cells when treated with LPS and ZL serum to verify the regulation of ZL on the let-7i/TLR9/MyD88 signaling pathway. Moreover, the interaction between let-7i and TLR9 was confirmed by the dual-luciferase assay. RESULTS: ZL serum significantly decreased the expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and increased the expression of IL-10 and transforming growth factor ß1 (TGF-ß1) of LPS stimulated-macrophages. Furthermore, ZL serum polarized macrophages toward M2, decreased the expressions of TLR9, MyD88, and iNOS, as well as increased the expressions of let-7i, CHIL3, and Arginase-1. It is worth mentioning that the effect of ZL serum is dose-dependent. However, let-7i inhibitor restored all the above effects in LPS stimulated-macrophages. In addition, TLR9 was the target of let-7i. CONCLUSIONS: ZL targeted let-7i to inhibit TLR9 expression, thereby inhibiting the activation of the TLR9/MyD88 pathway, promoting the M2 polarization, and inhibiting the development of inflammation in AIS.


Subject(s)
Drugs, Chinese Herbal , Macrophages , MicroRNAs , Myeloid Differentiation Factor 88 , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 9 , Animals , Myeloid Differentiation Factor 88/metabolism , Mice , RAW 264.7 Cells , Signal Transduction/drug effects , Macrophages/drug effects , Macrophages/metabolism , Toll-Like Receptor 9/metabolism , Drugs, Chinese Herbal/pharmacology , MicroRNAs/metabolism , Rats , Male , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology
6.
BMC Complement Med Ther ; 24(1): 145, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575994

ABSTRACT

BACKGROUND: Ginger is a common aromatic vegetable with a wide range of functional ingredients and considerable medicinal and nutritional properties. Numerous studies have shown that ginger and its active ingredients have suppressive effects on manifold tumours, including ovarian cancer (OC). However, the molecular mechanism by which ginger inhibits OC is not clear. The aim of this study was to investigate the function and mechanism of ginger in OC. METHODS: The estimation of n6-methyladenosine (m6A) levels was performed using the m6A RNA Methylation Quantification Kit, and RT-qPCR was used to determine the expression of m6A-related genes and proteins. The m6A methylationome was detected by MeRIP-seq, following analysis of the data. Differential methylation of genes was assessed utilizing RT-qPCR and Western Blotting. The effect of ginger on SKOV3 invasion in ovarian cancer cells was investigated using the wound healing assay and transwell assays. RESULTS: Ginger significantly reduced the m6A level of OC cells SKOV3. The 3'UTR region is the major site of modification for m6A methylation, and its key molecular activities include Cell Adhesion Molecules, according to meRIP-seq results. Moreover, it was observed that Ginger aids significantly in downregulating the CLDN7, CLDN11 mRNA, and protein expression. The results of wound healing assay and transwell assay showed that ginger significantly inhibited the invasion of OC cells SKOV3. CONCLUSIONS: Ginger inhibits ovarian cancer cells' SKOV3 invasion by regulating m6A methylation through CLDN7, CLDN11, and CD274.


Subject(s)
Ovarian Neoplasms , Zingiber officinale , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , RNA Methylation , B7-H1 Antigen , Claudins
7.
Malar J ; 23(1): 103, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609987

ABSTRACT

BACKGROUND: The emergence of resistance to artemisinin-based combination therapy necessitates the search for new, more potent antiplasmodial compounds, including herbal remedies. The whole extract of Maytenus senegalensis has been scientifically investigated for potential biological activities both in vitro and in vivo, demonstrating strong antimalarial activity. However, there is a lack of data on the electrocardiographic effects of M. senegalensis in humans, which is a crucial aspect in the investigation of malaria treatment. Assessing the electrocardiographic effects of M. senegalensis is essential, as many anti-malarial drugs can inadvertently prolong the QT interval on electrocardiograms. Therefore, the study's objective was to evaluate the electrocardiographic effects of M. senegalensis in healthy adult volunteers. METHODS: This study is a secondary analysis of an open-label single-arm dose escalation. Twelve healthy eligible Tanzanian males, aged 18 to 45, were enrolled in four study dose groups. A single 12-lead electrocardiogram (ECG) was performed at baseline and on days 3, 7, 14, 28, and 56. RESULTS: No QTcF adverse events occurred with any drug dose. Only one volunteer who received the highest dose (800 mg) of M. senegalensis experienced a moderate transient change (△QTcF > 30 ms; specifically, the value was 37 ms) from baseline on day 28. There was no difference in maximum QTcF and maximum △QTcF between volunteers in all four study dose groups. CONCLUSIONS: A four-day regimen of 800 mg every 8 h of M. senegalensis did not impact the electrocardiographic parameters in healthy volunteers. This study suggests that M. senegalensis could be a valuable addition to malaria treatment, providing a safer alternative and potentially aiding in the battle against artemisinin-resistant malaria. The results of this study support both the traditional use and the modern therapeutic potential of M. senegalensis. They also set the stage for future research involving larger and more diverse populations to explore the safety profile of M. senegalensis in different demographic groups. This is especially important considering the potential use of M. senegalensis as a therapeutic agent and its widespread utilization as traditional medicine. Trial registration ClinicalTrials.gov, NCT04944966. Registered 30 June 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04944966?term=kamaka&draw=2&rank=1.


Subject(s)
Antimalarials , Artemisinins , Malaria , Maytenus , Adult , Humans , Male , Antimalarials/pharmacology , Electrocardiography , Healthy Volunteers , Malaria/drug therapy , Tanzania , Volunteers , Young Adult , Middle Aged
8.
Phytomedicine ; 128: 155558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547614

ABSTRACT

BACKGROUND: The experimental autoimmune myocarditis (EAM) model is valuable for investigating myocarditis pathogenesis. M1-type macrophages and CD4+T cells exert key pathogenic effects on EAM initiation and progression. Baicalein (5,6,7-trihydroxyflavone, C15H10O5, BAI), which is derived from the Scutellaria baicalensis root, is a primary bioactive compound with potent anti-inflammatory and antioxidant properties. BAI exerts good therapeutic effects against various autoimmune diseases; however, its effect in EAM has not been thoroughly researched. PURPOSE: This study aimed to explore the possible inhibitory effect of BAI on M1 macrophage polarisation and CD4+T cell differentiation into Th1 cells via modulation of the JAK-STAT1/4 signalling pathway, which reduces the secretion of pro-inflammatory factors, namely, TNF-α and IFN-γ, and consequently inhibits TNF-α- and IFN-γ-triggered apoptosis in cardiomyocytes of the EAM model mice. STUDY DESIGN AND METHODS: Flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (q-PCR), and western blotting were performed to determine whether BAI alleviated M1/Th1-secreted TNF-α- and IFN-γ-induced myocyte death in the EAM model mice through the inhibition of the JAK-STAT1/4 signalling pathway. RESULTS: These results indicate that BAI intervention in mice resulted in mild inflammatory infiltrates. BAI inhibited JAK-STAT1 signalling in macrophages both in vivo and in vitro, which attenuated macrophage polarisation to the M1 type and reduced TNF-α secretion. Additionally, BAI significantly inhibited the differentiation of CD4+T cells to Th1 cells and IFN-γ secretion both in vivo and in vitro by modulating the JAK-STAT1/4 signalling pathway. This ultimately led to decreased TNF-α and IFN-γ levels in cardiac tissues and reduced myocardial cell apoptosis. CONCLUSION: This study demonstrates that BAI alleviates M1/Th1-secreted TNF-α- and IFN-γ-induced cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway.


Subject(s)
Apoptosis , Disease Models, Animal , Flavanones , Interferon-gamma , Janus Kinases , Myocarditis , Myocytes, Cardiac , STAT1 Transcription Factor , Signal Transduction , Tumor Necrosis Factor-alpha , Animals , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Myocytes, Cardiac/drug effects , Janus Kinases/metabolism , Mice , Flavanones/pharmacology , Male , Interferon-gamma/metabolism , Apoptosis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Myocarditis/drug therapy , STAT4 Transcription Factor/metabolism , Autoimmune Diseases/drug therapy , Mice, Inbred BALB C , Macrophages/drug effects , Macrophages/metabolism , Scutellaria baicalensis/chemistry , Th1 Cells/drug effects , Cell Differentiation/drug effects
9.
Phytomedicine ; 128: 155451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513378

ABSTRACT

BACKGROUND: Phytochemicals are natural compounds derived from plants, and are now at the forefront of anti-cancer research. Macrophage immunotherapy plays a crucial role in the treatment of colorectal cancer (CRC). In the context of colorectal cancer, which remains highly prevalent and difficult to treat, it is of research value to explore the potential mechanisms and efficacy of phytochemicals targeting macrophages for CRC treatment. PURPOSE: The aim of this study was to gain insight into the role of phytochemical-macrophage interactions in regulating CRC and to provide a theoretical basis for the development of new therapeutic strategies in the future. STUDY DESIGN: This review discusses the potential immune mechanisms of phytochemicals for the treatment of CRC by summarizing research of phytochemicals targeting macrophages. METHODS: We reviewed the PubMed, EMBASE, Web of Science and CNKI databases from their initial establishment to July 2023 to classify and summaries phytochemicals according to their mechanism of action in targeting macrophages. RESULTS: The results of the literature review suggest that phytochemicals interfere with CRC development by affecting macrophages through four main mechanisms. Firstly, they modulate the production of cytotoxic substances, such as NO and ROS, by macrophages to exert anticancer effects. Secondly, phytochemicals polarize macrophages towards the M1 phenotype, inhibit M2 polarisation and enhance the anti-tumour immune responses. Thirdly, they enhance the secretion of macrophage-derived cytokines and alter the tumour microenvironment, thereby inhibiting tumor growth. Finally, they activate the immune response by targeting macrophages, triggering the recruitment of other immune cells, thereby enhancing the immune killing effect and exerting anti-tumor effects. These findings highlight phytochemicals as potential therapeutic strategies to intervene in colorectal cancer development by modulating macrophage activity, providing a strong theoretical basis for future clinical applications. CONCLUSION: Phytochemicals exhibit potential anti-tumour effects by modulating macrophage activity and intervening in the colorectal cancer microenvironment by multiple mechanisms.


Subject(s)
Colorectal Neoplasms , Macrophages , Phytochemicals , Colorectal Neoplasms/drug therapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Macrophages/drug effects , Humans , Animals , Disease Progression , Antineoplastic Agents, Phytogenic/pharmacology , Tumor Microenvironment/drug effects , Reactive Oxygen Species/metabolism
10.
Phytomedicine ; 128: 155417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518642

ABSTRACT

BACKGROUND: The role of the glioblastoma (GBM) microenvironment is pivotal in the development of gliomas. Discovering drugs that can traverse the blood-brain barrier and modulate the tumor microenvironment is crucial for the treatment of GBM. Dioscin, a steroidal saponin derived from various kinds of plants and herbs known to penetrate the blood-brain barrier, has shown its powerful anti-tumor activity. However, little is known about its effects on GBM microenvironment. METHODS: Bioinformatics analysis was conducted to assess the link between GBM patients and their prognosis. Multiple techniques, including RNA sequencing, immunofluorescence staining, Western blot analysis, RNA-immunoprecipitation (RIP) assays, and Chromatin immunoprecipitation (CHIP) analysis were employed to elucidate the mechanism through which Dioscin modulates the immune microenvironment. RESULTS: Dioscin significantly impaired the polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages in vitro and in vivo. A strong correlation between high expression of RBM47 in GBM and a detrimental prognosis for patients was demonstrated. RNA-sequencing analysis revealed an association between RBM47 and the immune response. The inhibition of RBM47 significantly impaired the recruitment and polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages. Moreover, RBM47 could stabilize the mRNA of inflammatory genes and enhance the expression of these genes by activating the NF-κB pathway. In addition, NF-κB acts as a transcription factor that enhances the transcriptional activity of RBM47. Notably, we found that Dioscin could significantly inhibit the activation of NF-κB and then downregulate the expression of RBM47 and inflammatory genes protein. CONCLUSION: Our study reveals that the positive feedback loop between RBM47 and NF-κB could promote immunosuppressive microenvironment in GBM. Dioscin effectively inhibits M2 polarization in GBM by disrupting the positive feedback loop between RBM47 and NF-κB, indicating its potential therapeutic effects in GBM treatment.


Subject(s)
Diosgenin , Glioma , NF-kappa B , Animals , Humans , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Feedback, Physiological/drug effects , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioma/drug therapy , Glioma/metabolism , Macrophages/drug effects , Macrophages/metabolism , NF-kappa B/metabolism , RNA-Binding Proteins/metabolism , Tumor Microenvironment/drug effects
11.
Rev. int. med. cienc. act. fis. deporte ; 24(95): 1-14, mar.-2024. tab, graf
Article in English | IBECS | ID: ibc-ADZ-319

ABSTRACT

Objective:By analyzing and summarizing the relationship between anaerobic capacity, technical changes of 100m breaststroke en route and speed changes of short distance breaststroke athletes, the interrelationship and internal pathways between the three are revealed to provide reference for improving athletic performance of short distance breaststroke athletes and provide theoretical basis for anaerobic capacity training.Method:Fifteen male short-distance breaststroke athletes (age 19.67±2.61 years, height 178.4±7.04 cm, weight 71.6±7.79 kg) were selected to perform anaerobic power cycling and 100 m breaststroke tests on the upper and lower extremities. The correlations and intrinsic linkage pathways between the three were explored by calculating Pearson correlation coefficients and using a mediating effects model.Result:Significant differences existed in speed, stroke rate, cycle time per stroke, and swim efficiency index in the 100 m breaststroke all-out test. There were significant correlations between the rate of anaerobic power decrease in the upper limb and the changes in stroke amplitude, cycle time per stroke, and speed. There were significant correlations between the change in mean stroke rate, the change in cycle time per stroke, the change in swim efficiency index and the change in speed. Anaerobic power indirectly influenced the speed variation during the en-route swim, which was mediated by the technical variation in cycle time per stroke.Conclusion:The upper limb anaerobic fatigue resistance of short distance breaststroke athletes is a key factor affecting the technique and speed stability of the 100m breaststroke en route, and the rate of decline in upper limb anaerobic power leads to a decrease in speed by affecting the change in time per stroke cycle. (AU)


Subject(s)
Humans , Exercise , Athletes , Walking Speed , Respiratory Rate , Swimming
12.
J Cancer ; 15(8): 2318-2328, 2024.
Article in English | MEDLINE | ID: mdl-38495493

ABSTRACT

Aim of the study: To investigate the anti-tumor effects of Lasiokaurin on breast cancer and explore its underlying molecular mechanism. Materials and methods: In this study, MTT assay, plate colony formation assays, soft agar assay, and EdU assay were employed to evaluate the anti-proliferation effects of LAS. Apoptosis and cell cycle distribution were detected by flow cytometry. The molecular mechanism was predicted by performing RNA sequencing and verified by using immunoblotting assays. Breast cancer organiods derived from patient-derived xenografts model and MDA-MB-231 xenograft mouse model were established to assess the effect of LAS. Results: Our study showed that LAS treatment significantly suppressed cell viability of 5 breast cancer cell lines, with the IC50 value of approximately 1-5 µM. LAS also inhibitied the clonogenic ability and DNA synthesis of breast cancer cells, Moreover, LAS induced apoptosis and G2/M cell cycle arrest in SK-BR-3 and MDA-MB-231 cells. Notably, transcriptomic analysis predicted the mechanistic involvement of PLK1 in LAS-suppressed breast cancer progression. Our experiment data further verified that LAS reduced PLK1 mRNA and protein expression in breast cancer, accompanied by downregulating CDC25C and AKT phosphorylation. Ultimately, we confirmed that LAS inhibit breast cancer growth via inhibiting PLK1 pathway in vivo. Conclusions: Collectively, our findings revealed that LAS inhibits breast cancer progression via regulating PLK1 pathway, which provids scientific evidence for the use of traditional Chinese medicine in cancer therapy.

13.
Int Immunopharmacol ; 131: 111852, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38492338

ABSTRACT

BACKGROUND: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments. METHODS: For in vivo experiments, C57BL/6J mice were fed modified Lieber-DeCarli liquid diets supplemented with or without ethanol and sodium butyrate (NaB). After 6 weeks of treatment, mice were euthanized and associated indicators were analyzed. For in vitro experiments, lipopolysaccharide (LPS)-induced inflammatory murine RAW264.7 cells were treated with NaB or miR-155 inhibitor/mimic to verify the anti-inflammatory effect and underlying mechanism. RESULTS: The administration of NaB alleviated pathological damage and associated inflammation, including LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß levels in ALD mice. NaB intervention restored the imbalance of macrophage polarization by inhibiting inducible nitric oxide synthase (iNOS) and elevating arginase-1 (Arg-1). Moreover, NaB reduced histone deacetylase-1 (HDAC1), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and miR-155 expression in ALD mice, but also increased peroxisome proliferator-activated receptor-γ (PPAR-γ). Thus, MiR-155 was identified as a strong regulator of ALD. To further penetrate the role of miR-155, LPS-stimulated RAW264.7 cells co-cultured with NaB were treated with the specific inhibitor or mimic. Intriguingly, miR-155 was capable of negatively regulated inflammation with NaB intervention by targeting SOCS1, SHIP1, and IRAK-M genes. CONCLUSION: Butyrate suppresses the inflammation in mice with ALD by regulating macrophage polarization via the HDAC1/miR-155 axis, which may potentially contribute to the novel therapeutic treatment for the disease.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases, Alcoholic , MicroRNAs , Mice , Animals , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Liver Diseases, Alcoholic/pathology , Inflammation/metabolism , Macrophages , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Butyric Acid/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , MicroRNAs/metabolism
14.
Biomed Pharmacother ; 173: 116425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490155

ABSTRACT

Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.


Subject(s)
Depression , Ferroptosis , Glucosides , Luteolin , Mice , Animals , Depression/drug therapy , Depression/metabolism , Microglia/metabolism , Hippocampus , Behavior, Animal , Inflammation/drug therapy , Inflammation/metabolism , Stress, Psychological/drug therapy , Disease Models, Animal
15.
Cell Mol Life Sci ; 81(1): 144, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494579

ABSTRACT

Photodynamic therapy (PDT) represents an emerging strategy to treat various malignancies, including colorectal cancer (CC), the third most common cancer type. This work presents an engineered M13 phage retargeted towards CC cells through pentavalent display of a disulfide-constrained peptide nonamer. The M13CC nanovector was conjugated with the photosensitizer Rose Bengal (RB), and the photodynamic anticancer effects of the resulting M13CC-RB bioconjugate were investigated on CC cells. We show that upon irradiation M13CC-RB is able to impair CC cell viability, and that this effect depends on i) photosensitizer concentration and ii) targeting efficiency towards CC cell lines, proving the specificity of the vector compared to unmodified M13 phage. We also demonstrate that M13CC-RB enhances generation and intracellular accumulation of reactive oxygen species (ROS) triggering CC cell death. To further investigate the anticancer potential of M13CC-RB, we performed PDT experiments on 3D CC spheroids, proving, for the first time, the ability of engineered M13 phage conjugates to deeply penetrate multicellular spheroids. Moreover, significant photodynamic effects, including spheroid disruption and cytotoxicity, were readily triggered at picomolar concentrations of the phage vector. Taken together, our results promote engineered M13 phages as promising nanovector platform for targeted photosensitization, paving the way to novel adjuvant approaches to fight CC malignancies.


Subject(s)
Bacteriophages , Colonic Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Cell Death , Rose Bengal/pharmacology , Rose Bengal/chemistry , Colonic Neoplasms/therapy
16.
Phytomedicine ; 127: 155440, 2024 May.
Article in English | MEDLINE | ID: mdl-38452691

ABSTRACT

BACKGROUND: The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE: This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS: The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS: The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION: The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.


Subject(s)
Bufanolides , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , G2 Phase Cell Cycle Checkpoints , Head and Neck Neoplasms/drug therapy , Cell Line, Tumor
17.
Chem Biol Drug Des ; 103(3): e14472, 2024 03.
Article in English | MEDLINE | ID: mdl-38458967

ABSTRACT

Brucine is a weak alkaline indole alkaloid with wide pharmacological activities and has been identified to protect against rheumatoid arthritis (RA) process. Circular RNAs (circRNAs) are also reported to be involved in the pathogenesis of RA. Here, we aimed to probe the role and mechanism of Brucine and circ_0139658 in RA progression. The fibroblast-like synoviocytes of RA (RA-FLSs) were isolated for functional analysis. Cell proliferation, apoptosis, invasion, migration, as well as inflammatory response were evaluated by CCK-8 assay, EdU assay, flow cytometry, transwell assay, and ELISA analysis, respectively. qRT-PCR and western blotting analyses were utilized to measure the levels of genes and proteins. The binding between miR-653-5p and circ_0139658 or Yin Yang 1 (YY1), was verified using dual-luciferase reporter and RNA pull-down assays. Brucine suppressed the proliferation, migration, and invasion of RA-FLSs, and alleviated inflammation by reducing the release of pro-inflammatory factors and macrophage M1 polarization. RA-FLSs showed increased circ_0139658 and YY1 levels and decreased miR-653-5p levels. Circ_0139658 is directly bound to miR-653-5p to regulate YY1 expression. Brucine treatment suppressed circ_0139658 and YY1 expression but increased YY1 expression in RA-FLSs. Functionally, circ_0139658 overexpression reversed the suppressing effects of Brucine on RA-FLS dysfunction and inflammation. Moreover, circ_0139658 silencing alleviated the dysfunction and inflammation in RA-FLSs, which were reverted by YY1 overexpression. Brucine suppressed the proliferation, migration, invasion, and inflammation in RA-FLSs by decreasing YY1 via circ_0139658/miR-653-5p axis.


Subject(s)
Arthritis, Rheumatoid , MicroRNAs , Strychnine/analogs & derivatives , Synoviocytes , Humans , Synoviocytes/metabolism , Synoviocytes/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Fibroblasts/metabolism , Cell Proliferation , Cells, Cultured , Apoptosis , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
18.
Expert Rev Anticancer Ther ; 24(3-4): 183-192, 2024.
Article in English | MEDLINE | ID: mdl-38526910

ABSTRACT

OBJECTIVES: We hypothesize that digital droplet polymerase chain reaction (ddPCR) would optimize the treatment strategies in epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) relapsed patients. In this study, we compared the efficacy of third-generation TKIs with various T790M statuses via ddPCR and next-generation sequencing (NGS). METHODS: NGS was performed on blood samples of patients progressed from previous EGFR-TKIs for resistance mechanism. T790M-negative patients received further liquid biopsy using ddPCR for T790M detection. RESULTS: A cohort of 40 patients were enrolled, with 30.0% (12/40) T790M-positive via NGS (Group A). In another 28 T790M-negative patients by NGS, 11 (39.3%) were T790M-positive (Group B) and 17 (60.7%) were T790M-negative (Group C) via ddPCR. A relatively longer progression-free survival (PFS) was observed in group A (NR) and group B (10.0 months, 95% CI 7.040-12.889) than in group C (7.0 months, 95% CI 0.000-15.219), with no significant difference across all three groups (p = 0.196), or between group B and C (p = 0.412). EGFR-sensitive mutation correlated with inferior PFS (p = 0.041) and ORR (p = 0.326), and a significantly lower DCR (p = 0.033) in T790M-negative patients via NGS (n = 28). CONCLUSION: This study indicates that ddPCR may contribute as a supplement to NGS in liquid biopsies for T790M detection in EGFR-TKIs relapsed patients and help to optimize the treatment strategies, especially for those without coexistence of EGFR-sensitive mutation. TRIAL REGISTRATION: www.clinicaltrials.gov identifier is NCT05458726.

19.
Phytother Res ; 38(5): 2215-2233, 2024 May.
Article in English | MEDLINE | ID: mdl-38411031

ABSTRACT

Osteosarcoma is a common malignant bone tumour characterised by an aggressive metastatic potential. The tumour microenvironment, particularly the M2-polarised macrophages, is crucial for tumour progression. Cucurbitacin B (CuB), a triterpenoid derivative, is recognised for its anti-inflammatory and antitumour properties. This study investigates CuB and its effect on M2 macrophage differentiation and osteosarcoma progression, aiming to contribute to new treatment strategies. In vitro, THP-1 monocytes were stimulated with PMA, IL-13 and IL-4 to induce differentiation into M2 macrophages. Additionally, the influence of CuB on the proliferation, migration and invasion of osteosarcoma cells in the context of M2 macrophages was scrutinised. Crucial signalling pathways, especially the PI3K/AKT pathway, affected by CuB were identified and validated. In vivo, the osteosarcoma model was employed to gauge the effects of CuB on tumour weight, lung metastasis, angiogenesis, cell proliferation and M2 macrophage markers. The results showed that CuB inhibited M2 macrophage differentiation, leading to reduced proliferation, migration and invasion of osteosarcoma cells. CuB manifested an inhibitory effect on the PI3K/AKT pathway during the differentiation of M2 macrophages. In mouse models, CuB markedly reduced the tumour weight and the number of lung metastases. It also reduced the expression of angiogenesis and cell proliferation markers in tumour tissues, decreased the quantity of M2 macrophages and their associated markers and pathway proteins. In conclusion, CuB impedes osteosarcoma progression by inhibiting M2 macrophage differentiation via the PI3K/AKT pathway, presenting the potential for therapeutic advancements in osteosarcoma treatment.


Subject(s)
Macrophages , Osteosarcoma , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Triterpenes , Animals , Humans , Mice , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Progression , Macrophages/drug effects , Mice, Inbred BALB C , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , THP-1 Cells , Triterpenes/pharmacology , Tumor Microenvironment/drug effects
20.
J Pediatr Surg ; 59(6): 1190-1198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413260

ABSTRACT

BACKGROUND: In 2014, we developed a QI-directed Morbidity and Mortality (M&M) Conference, prioritizing discussion of individual and system failures, as well as development of action items to prevent failure recurrence. However, due to a reliance on individual electronic documents to store M&M data, our ability to assess trends in failures and action item implementation was hindered. To address this issue, in 2019, we created a secure electronic health record (EHR)-integrated web application (web app) to store M&M data. STUDY DESIGN: In this study, we assessed the impact of our web app on efficient review and tracking of M&M data, including system failure occurrence and closure of action items. Additionally, in 2021, it was discovered that a backlog of action items existed. To address this issue, we implemented a QI initiative to reduce the backlog, and used the web app to compare action item closure over time. RESULTS: Use of the web app dramatically improved review of M&M data. During the study period, there was a 67.0% reduction in the occurrence of the most common system failures. Additionally, our QI initiative resulted in a 97.7% reduction in the duration of time to complete a single action item and a 61.1% increase in the on-time closure rate for action items. CONCLUSIONS: Integration of a web app into a QI-directed M&M Conference enhanced our ability to track system level failures and action item closure over time. Using this web app, we demonstrated that our M&M Conference achieved its intended goal of improving the quality of patient care. LEVEL OF EVIDENCE: IV.


Subject(s)
Electronic Health Records , Quality Improvement , Humans , Morbidity , Internet , Congresses as Topic
SELECTION OF CITATIONS
SEARCH DETAIL