Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Phytomedicine ; 128: 155451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513378

ABSTRACT

BACKGROUND: Phytochemicals are natural compounds derived from plants, and are now at the forefront of anti-cancer research. Macrophage immunotherapy plays a crucial role in the treatment of colorectal cancer (CRC). In the context of colorectal cancer, which remains highly prevalent and difficult to treat, it is of research value to explore the potential mechanisms and efficacy of phytochemicals targeting macrophages for CRC treatment. PURPOSE: The aim of this study was to gain insight into the role of phytochemical-macrophage interactions in regulating CRC and to provide a theoretical basis for the development of new therapeutic strategies in the future. STUDY DESIGN: This review discusses the potential immune mechanisms of phytochemicals for the treatment of CRC by summarizing research of phytochemicals targeting macrophages. METHODS: We reviewed the PubMed, EMBASE, Web of Science and CNKI databases from their initial establishment to July 2023 to classify and summaries phytochemicals according to their mechanism of action in targeting macrophages. RESULTS: The results of the literature review suggest that phytochemicals interfere with CRC development by affecting macrophages through four main mechanisms. Firstly, they modulate the production of cytotoxic substances, such as NO and ROS, by macrophages to exert anticancer effects. Secondly, phytochemicals polarize macrophages towards the M1 phenotype, inhibit M2 polarisation and enhance the anti-tumour immune responses. Thirdly, they enhance the secretion of macrophage-derived cytokines and alter the tumour microenvironment, thereby inhibiting tumor growth. Finally, they activate the immune response by targeting macrophages, triggering the recruitment of other immune cells, thereby enhancing the immune killing effect and exerting anti-tumor effects. These findings highlight phytochemicals as potential therapeutic strategies to intervene in colorectal cancer development by modulating macrophage activity, providing a strong theoretical basis for future clinical applications. CONCLUSION: Phytochemicals exhibit potential anti-tumour effects by modulating macrophage activity and intervening in the colorectal cancer microenvironment by multiple mechanisms.


Subject(s)
Colorectal Neoplasms , Macrophages , Phytochemicals , Colorectal Neoplasms/drug therapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Macrophages/drug effects , Humans , Animals , Disease Progression , Antineoplastic Agents, Phytogenic/pharmacology , Tumor Microenvironment/drug effects , Reactive Oxygen Species/metabolism
2.
Brain Behav ; 14(2): e3373, 2024 02.
Article in English | MEDLINE | ID: mdl-38346718

ABSTRACT

OBJECTIVE: Vitamin D deficiency is a risk factor for Parkinson's disease (PD) and vitamin D supplementation robustly alleviates neurodegeneration in PD models. However, the mechanisms underlying this effect require further clarification. Current evidence suggests that harnessing regulatory T cells (Treg) may mitigate neuronal degeneration. In this study, we investigated the therapeutic effects of vitamin D receptor activation by calcitriol on PD, specifically focusing on its role in Treg. METHODS: Hemiparkinsonian mice model was established through the injection of 6-OHDA into the striatum. Mice were pretreated with calcitriol before 6-OHDA injection. The motor performance, dopaminergic neuronal survival, contents of dopamine, and dopamine metabolites were evaluated. The pro-inflammatory cytokines levels, T-cell infiltration, mRNA expression of indicated microglial M1/M2 phenotypic markers, and microglial marker in the midbrain were detected. Populations of Treg in the splenic tissues were assessed using a flow cytometry assay. PC61 monoclonal antibody was applied to deplete Treg in vivo. RESULTS: We show that calcitriol supplementation notably improved motor performance and reduced dopaminergic degeneration in the 6-OHDA-induced PD model. Mechanistically, calcitriol promoted anti-inflammatory/neuroprotective Treg and inhibited pro-inflammatory/neurodestructive effector T-cell generation in this model. This process significantly inhibited T-cell infiltration in the midbrain, restrained microglial activation, microglial M1 polarization, and decreased pro-inflammatory cytokines release. This more favorable inflammatory microenvironment rescued dopaminergic degeneration. To further verify that the anti-inflammatory effects of calcitriol are associated with Treg expansion, we applied an antibody-mediated Treg depletion assay. As predicted, the anti-inflammatory effects of calcitriol in the PD model were diminished following Treg depletion. CONCLUSION: These findings suggest that calcitriol's anti-inflammatory and neuroprotective effects in PD are associated with its potential to boost Treg expansion.


Subject(s)
Microglia , Parkinson Disease , Mice , Animals , Dopamine/metabolism , Calcitriol/pharmacology , T-Lymphocytes, Regulatory/metabolism , Oxidopamine/metabolism , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Anti-Inflammatory Agents/pharmacology , Dopaminergic Neurons , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal
3.
Ageing Res Rev ; 93: 102160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065225

ABSTRACT

Central nervous system (CNS) diseases have become one of the leading causes of death in the global population. The pathogenesis of CNS diseases is complicated, so it is important to find the patterns of the disease to improve the treatment strategy. Microglia are considered to be a double-edged sword, playing both harmful and beneficial roles in CNS diseases. Therefore, it is crucial to understand the progression of the disease and the changes in the polar phenotype of microglia to provide guidance in the treatment of CNS diseases. Microglia activation may evolve into different phenotypes: M1 and M2 types. We focused on the roles that M1 and M2 microglia play in regulating intercellular dialogues, pathological reactions and specific diseases in CNS diseases. Importantly, we summarized the strategies used to modulate the polarization phenotype of microglia, including traditional pharmacological modulation, biological therapies, and physical strategies. This review will contribute to the development of potential strategies to modulate microglia polarization phenotypes and provide new alternative therapies for CNS diseases.


Subject(s)
Central Nervous System Diseases , Microglia , Humans , Microglia/pathology , Central Nervous System Diseases/therapy , Central Nervous System Diseases/pathology , Phenotype
4.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958514

ABSTRACT

The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.


Subject(s)
Fatty Acids, Omega-3 , Liver Diseases , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Macrophages/metabolism , Inflammation/metabolism , Docosahexaenoic Acids/metabolism , Anti-Inflammatory Agents/therapeutic use , Liver Diseases/metabolism , Phenotype , Inflammation Mediators/metabolism
5.
Front Aging ; 4: 1231706, 2023.
Article in English | MEDLINE | ID: mdl-37744008

ABSTRACT

The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.

6.
Bioact Mater ; 28: 243-254, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37292231

ABSTRACT

Diabetic wound is a great threat to patient's health and lives. The refractory diabetic wound shows spatial inflammation patterns, in which the early-wound pattern depicts a deprived acute inflammatory response, and the long-term non-healing wound pattern delineates an excessive and persistent inflammation due to the delayed immune cell infiltration in a positive feedback loop. In this work, we give points to some strategies to normalize the dysregulated immune process based on the spatial inflammation pattern differences in diabetic wound healing. First of all, inhibiting inflammatory response to avoid subsequent persistent and excessive immune infiltration for the early diabetic wound is proposed. However, diabetic wounds are unperceptive trauma that makes patients miss the best treatment time. Therefore, we also introduce two strategies for the long-term non-healing diabetic wound. One strategy is about changing chronic wounds to acute ones, which aims to rejuvenate M1 macrophages in diabetic wounds and make spontaneous M2 polarization possible. To activate the controllable proinflammatory response, western medicine delivers proinflammatory molecules while traditional Chinese medicine develops "wound-pus promoting granulation tissue growth theory". Another strategy to solve long-term non-healing wounds is seeking switches that target M1/M2 transition directly. These investigations draw a map that delineates strategies for enhancing diabetic wound healing from the perspective of spatial inflammation patterns systematically.

7.
Zhen Ci Yan Jiu ; 48(5): 415-22, 2023 May 25.
Article in Chinese | MEDLINE | ID: mdl-37247853

ABSTRACT

OBJECTIVE: To observe the effect of herbal cake-partitioned moxibustion (Moxi) on the expressions of inflammatory factors and M1/M2 polarization in colonic mucosal macrophages in Crohn's disease (CD) rats, so as to explore its underlying mechanisms in the treatment of CD. METHODS: Forty male SD rats were randomly divided into normal, model, Moxi and medication groups (n=10). The CD model was established by enema of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) solution (5%TNBS∶50% alcohol=2∶1, 3 mL/kg), once every 7 days, 4 times altogether. For rats of the Moxi group, cake-partitioned moxibustion was given to "Tianshu" (ST25) and "Qihai" (CV6), two moxa-cones for each acupoint every time, once daily for 10 days. For rats of the medication group, intragastric perfusion of mesalazine solution was given twice daily for 10 days. After the treatment, the colonic mucosa tissue was sampled, and the macrophages were isolated, purified and cultured. The pathological changes of colon tissues were observed by H.E. staining. The ultrastructure of colon tissue was observed by transmission electron microscopy. The expression levels of α7nAChR, NF-κB p65 and TNF-α in colon mucosal macrophages were detected by Western blot. The number of M1 and M2 macrophages in colon mucosa was detected by flow cytometry and immunofluorescence assay. RESULTS: Compared with the normal group, the colon tissue of rats presented huge ulceration and inflammatory manifestations, the junction of colon epithelial cells was loose, the structure of organelles was damaged; the expression level of α7nAChR in macrophages of colon mucosa was significantly decreased (P<0.01), while the expression levels of NF-κB p65 and TNF-α, and the number of M1 and M2 macrophages were increased (P<0.01, P<0.05) in the model group. In comparison with the model group, the morphology and structure of colon mucosa tissues of rats in Moxi and medication groups were improved; the expression level of α7nAChR, the number of M2 macrophage in colon mucosa were significantly increased (P<0.01, P<0.05), while the expression levels of NF-κB p65 and TNF-α, and the number of M1 macrophage were significantly decreased (P<0.01, P<0.05) in both the Moxi and medication groups. CONCLUSION: Herbal cake-partitioned moxibustion may inhibit NF-κB activation by up-regulating the expression level of α7nAChR to promote the polarization of macrophages from M1 to M2 type, and reduce the proportion of M1 macrophages, inhibit the expression of TNF-α in colonic mucosa of CD rats, so as to relieve the intestinal inflammation.


Subject(s)
Crohn Disease , Moxibustion , Rats , Male , Animals , Crohn Disease/genetics , Crohn Disease/therapy , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Rats, Sprague-Dawley , NF-kappa B/genetics , NF-kappa B/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Colon/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
8.
Chin J Integr Med ; 29(11): 1007-1017, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36607587

ABSTRACT

OBJECTIVE: To explore the mechanism of effects of total saponin fraction from Dioscorea Nipponica Makino (TSDN) on M1/M2 polarization of monocytes/macrophages and arachidonic acid (AA) pathway in rats with gouty arthritis (GA). METHODS: Seventy-two Sprague Dawley rats were randomly divided into 4 groups (n=18 in each): normal, model, TSDN at 160 mg/kg, and celecoxib at 43.3 mg/kg. Monosodium urate crystal (MSU) was injected into the rats' ankle joints to induce an experimental GA model. Blood and tissue samples were collected on the 3rd, 5th, and 8th days of drug administration. Histopathological changes in the synovium of joints were observed via hematoxylin and eosin (HE) staining. The expression levels of arachidonic acid (AA) signaling pathway were assessed via real-time polymerase chain reaction (qPCR) and Western blot. Flow cytometry was used to determine the proportion of M1 and M2 macrophages in the peripheral blood. An enzyme-linked immunosorbent assay (ELISA) was used to detect interleukine (IL)-1 ß, tumor necrosis factor-alpha (TNF-α), IL-4, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4). RESULTS: HE staining showed that TSDN improved the synovial tissue. qPCR and Western blot showed that on the 3rd, 5th and 8th days of drug administration, TSDN reduced the mRNA and protein expressions of cyclooxygenase (COX)2, microsomal prostaglandin E synthase-1 derived eicosanoids (mPGES-1), 5-lipoxygenase (5-LOX), recombinant human mothers against decapentaplegic homolog 3 (Smad3), nucleotide-binding oligomerization domain-like receptor protein 3 (NALP3), and inducible nitric oxide synthase (iNOS) in rats' ankle synovial tissues (P<0.01). TSDN decreased COX1 mRNA and protein expression on 3rd and 5th day of drug administration and raised it on the 8th day (both P<0.01). It lowered CD68 protein expression on days 3 (P<0.01), as well as mRNA and protein expression on days 5 and 8 (P<0.01). On the 3rd, 5th, and 8th days of drug administration, TSDN elevated the mRNA and protein expression of Arg1 and CD163 (P<0.01). Flow cytometry results showed that TSDN decreased the percentage of M1 macrophages while increasing the percentage of M2 in peripheral blood (P<0.05 or P<0.01). ELISA results showed that on the 3rd, 5th, and 8th days of drug administration, TSDN decreased serum levels of IL-1 ß, TNF-α, and LTB4 (P<0.01), as well as PGE2 levels on days 3rd and 8th days (P<0.05 or P<0.01); on day 8 of administration, TSDN increased IL-4 serum levels and enhanced IL-10 contents on days 5 and 8 (P<0.05 or P<0.01). CONCLUSION: The anti-inflammatory effect of TSDN on rats with GA may be achieved by influencing M1/M2 polarization through AA signaling pathway.


Subject(s)
Arthritis, Gouty , Dioscorea , Saponins , Rats , Humans , Animals , Arthritis, Gouty/drug therapy , Monocytes/metabolism , Monocytes/pathology , Interleukin-10/metabolism , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Dioscorea/chemistry , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Interleukin-4/metabolism , Leukotriene B4/metabolism , Leukotriene B4/pharmacology , Rats, Sprague-Dawley , Macrophages , Signal Transduction , RNA, Messenger/metabolism
9.
Chin J Integr Med ; 29(1): 44-51, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35829955

ABSTRACT

OBJECTIVE: To investigate and reveal the underlying mechanism of the effect of total saponins from Dioscoreae nipponica Makino (TSDN) on the arachidonic acid pathway in monosodium urate (MSU) crystal-induced M1-polarized macrophages. METHODS: M1 polarization of RAW264.7 cells were induced by 1 µ g/mL lipopolysaccharide (LPS). The methylthiazolyldiphenyl-tetrazolium bromide method was then used to screen the concentration of TSDN. MSU (500 µ g/mL) was used to induce the gouty arthritis model. Afterwards, 10 µ g/L TSDN and 8 µ mol/L celecoxib, which was used as a positive control, were added to the above LPS and MSU-induced cells for 24 h. The mRNA and protein expressions of cyclooxygenase (COX) 2, 5-lipoxygenase (5-LOX), microsomal prostaglandin E synthase derived eicosanoids (mPGES)-1, leukotriene B (LTB)4, cytochrome P450 (CYP) 4A, and prostaglandin E2 (PGE2) were tested by real-time polymerase chain reaction and Western blotting, respectively. The enzyme-linked immunosorbent assay was used to test the contents of M1 markers, including inducible nitric oxid synthase (NOS) 2, CD80, and CD86. RESULTS: TSDN inhibited the proliferation of M1 macrophages and decreased both the mRNA and protein expressions of COX2, 5-LOX, CYP4A, LTB4, and PGE2 (P<0.01) while increased the mRNA and protein expression of mPGES-1 (P<0.05 or P<0.01). TSDN could also significantly decrease the contents of NOS2, CD80, and CD86 (P<0.01). CONCLUSION: TSDN has an anti-inflammation effect on gouty arthritis in an in vitro model by regulating arachidonic acid signaling pathway.


Subject(s)
Arthritis, Gouty , Dioscorea , Saponins , Uric Acid/metabolism , Arachidonic Acid/adverse effects , Arachidonic Acid/metabolism , Lipopolysaccharides , Saponins/pharmacology , Macrophages , Signal Transduction , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
J Biomed Sci ; 29(1): 70, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109724

ABSTRACT

BACKGROUND: Seaweed polysaccharides have been recommended as anticancer supplements and for boosting human health; however, their benefits in the treatment of triple-negative breast cancers (TNBCs) and improving immune surveillance remain unclear. Olaparib is a first-in-class poly (ADP-ribose) polymerase inhibitor. Oligo-Fucoidan, a low-molecular-weight sulfated polysaccharide purified from brown seaweed (Laminaria japonica), exhibits significant bioactivities that may aid in disease management. METHODS: Macrophage polarity, clonogenic assays, cancer stemness properties, cancer cell trajectory, glucose metabolism, the TNBC 4T1 cells and a 4T1 syngeneic mouse model were used to inspect the therapeutic effects of olaparib and Oligo-Fucoidan supplementation on TNBC aggressiveness and microenvironment. RESULTS: Olaparib treatment increased sub-G1 cell death and G2/M arrest in TNBC cells, and these effects were enhanced when Oligo-Fucoidan was added to treat the TNBC cells. The levels of Rad51 and programmed death-ligand 1 (PD-L1) and the activation of epidermal growth factor receptor (EGFR) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) facilitate drug resistance and TNBC metastasis. However, the combination of olaparib and Oligo-Fucoidan synergistically reduced Rad51 and PD-L1 levels, as well as the activity of EGFR and AMPK; consistently, TNBC cytotoxicity and stemness were inhibited. Oligo-Fucoidan plus olaparib better inhibited the formation of TNBC stem cell mammospheroids with decreased subpopulations of CD44high/CD24low and EpCAMhigh cells than monotherapy. Importantly, Oligo-Fucoidan plus olaparib repressed the oncogenic interleukin-6 (IL-6)/p-EGFR/PD-L1 pathway, glucose uptake and lactate production. Oligo-Fucoidan induced immunoactive and antitumoral M1 macrophages and attenuated the side effects of olaparib, such as the promotion on immunosuppressive and protumoral M2 macrophages. Furthermore, olaparib plus Oligo-Fucoidan dramatically suppressed M2 macrophage invasiveness and repolarized M2 to the M0-like (F4/80high) and M1-like (CD80high and CD86high) phenotypes. In addition, olaparib- and Oligo-Fucoidan-pretreated TNBC cells resulted in the polarization of M0 macrophages into CD80(+) M1 but not CD163(+) M2 macrophages. Importantly, olaparib supplemented with oral administration of Oligo-Fucoidan in mice inhibited postsurgical TNBC recurrence and metastasis with increased cytotoxic T cells in the lymphatic system and decreased regulatory T cells and M2 macrophages in tumors. CONCLUSION: Olaparib supplemented with natural compound Oligo-Fucoidan is a novel therapeutic strategy for reprogramming cancer stemness, metabolism and the microenvironment to prevent local postsurgical recurrence and distant metastasis. The combination therapy may advance therapeutic efficacy that prevent metastasis, chemoresistance and mortality in TNBC patients.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , AMP-Activated Protein Kinases , Adenosine/pharmacology , Adenosine Diphosphate/pharmacology , Adenosine Diphosphate/therapeutic use , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , B7-H1 Antigen , Cell Line, Tumor , Dietary Supplements , Epithelial Cell Adhesion Molecule , ErbB Receptors , G2 Phase Cell Cycle Checkpoints , Glucose , Humans , Interleukin-6 , Lactates/pharmacology , Lactates/therapeutic use , Mice , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Polysaccharides/therapeutic use , Ribose/pharmacology , Ribose/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
11.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2533-2540, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35531701

ABSTRACT

Neuropathic pain is one of the common complications of diabetes. Tetrahydropalmatine(THP) is a main active component of Corydalis Rhizoma with excellent anti-inflammatory and pain-alleviating properties. This study aims to investigate the therapeutic effect of THP on diabetic neuropathic pain(DNP) and the underlying mechanism. High-fat and high-sugar diet(4 weeks) and streptozotocin(STZ, 35 mg·kg~(-1), single intraperitoneal injection) were employed to induce type-2 DNP in rats. Moreover, lipopolysaccharide(LPS) was used to induce the activation of BV2 microglia in vitro to establish an inflammatory cellular model. Fasting blood glucose(FBG) was measured by a blood glucose meter. Mechanical withdrawal threshold(MWT) was assessed with von Frey filaments, and thermal withdrawal latency(TWL) with hot plate apparatus. The protein expression levels of OX42, inducible nitric oxide synthase(iNOS), CD206, p38, and p-p38 were determined by Western blot, the fluorescence expression levels of OX42 and p-p38 in the dorsal horn of the rat spinal cord by immunofluorescence, the mRNA content of p38 and OX42 in rat spinal cord tissue by qRT-PCR, and levels of nitric oxide(NO), interleukin-1ß(IL-1ß), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and serum fasting insulin(FINS) by enzyme-linked immunosorbent assay(ELISA). RESULTS:: showed that the mo-del group demonstrated significant decrease in MWT and TWL, with pain symptoms. THP significantly improved the MWT and TWL of DNP rats, inhibited the activation of microglia and p38 MAPK signaling pathway in rat spinal cord, and ameliorated its inflammatory response. Meanwhile, THP promoted the change of LPS-induced BV2 microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, suppressed the activation of the p38 MAPK signaling pathway, decreased the expression levels of inflammatory factors NO, IL-1ß, IL-6, and TNF-α, and increased the expression level of anti-inflammatory factor IL-10. The findings suggested that THP can significantly ameliorate the pain symptoms of DNP rats possibly by inhibiting the inflammatory response caused by M1 polarization of microglia via the p38 MAPK pathway.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Neuralgia , Animals , Berberine Alkaloids , Blood Glucose/metabolism , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/genetics , Interleukin-10 , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Microglia , Neuralgia/drug therapy , Neuralgia/genetics , Neuralgia/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord/metabolism , Streptozocin/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Biol Trace Elem Res ; 200(7): 3315-3325, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34482496

ABSTRACT

Selenium (Se) is an essential trace element found in the body. Se deficiency and M1/M2 imbalance are closely related to inflammation. Heat stress can decrease immune function and cause inflammation. In order to investigate whether Se deficiency can aggravate pneumonia caused by heat stress and the role of M1/M2 imbalance in the occurrence of pneumonia, 100 AA broilers were divided into two groups and fed the conventional diet (0.2 mg/kg Se) and the Se-deficient diet (0.03 mg/kg Se). After 40 days of feeding, the normal feeding group was randomly divided into a control group and a heat stress group. At the same time, the Se-deficient diet feeding group was randomly divided into a low Se group and a low Se heat stress group, with 25 chickens in each group. The model was established by exposure at 40℃. Six hours later, broilers were euthanized, and their lung tissues were collected. Hematoxylin and eosin staining, immunofluorescence, quantitative real-time PCR, and western blotting were used to detect lung histopathological changes and the expression of M1/M2 markers, nuclear receptor-κB (NF-κB) pathway genes, and heat shock proteins. Meanwhile, the activity and content of oxidative stress-related indices were also detected. We found that the expression of interleukin-1ß, interleukin-6, interleukin-12, and tumor necrosis factor-α was upregulated and the expression of interleukin-2, interleukin-10, and interferon-γ was downregulated. Immunofluorescence showed that the expression of CD16 was increased, the expression of CD163 was weakened, and the M1/M2 imbalance was present. In addition, the NF-κB pathway was activated by the increased expressions of heat shock proteins and oxidative stress. There was an increase in malondialdehyde, nitric oxide, and inducible nitric oxide synthase content, while the activity of total antioxidant capacity, glutathione peroxidase, catalase, and superoxide dismutase decreased, and the expression of NF-κB and cyclooxygenase-2 increased. These results suggest that low Se induces M1/M2 imbalance through oxidative stress activation of the NF-κB pathway and aggravates lung tissue inflammation caused by heat stress. This study offers a theoretical basis for exploring the pathogenesis of various kinds of inflammation induced by Se deficiency from the perspective of M1/M2 and provides a reference for the prevention of such diseases.


Subject(s)
Heat Stress Disorders , Pneumonia , Selenium , Animals , Chickens/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response , Inflammation/metabolism , NF-kappa B/metabolism , Oxidative Stress , Selenium/pharmacology
13.
Article in Chinese | WPRIM | ID: wpr-928133

ABSTRACT

Neuropathic pain is one of the common complications of diabetes. Tetrahydropalmatine(THP) is a main active component of Corydalis Rhizoma with excellent anti-inflammatory and pain-alleviating properties. This study aims to investigate the therapeutic effect of THP on diabetic neuropathic pain(DNP) and the underlying mechanism. High-fat and high-sugar diet(4 weeks) and streptozotocin(STZ, 35 mg·kg~(-1), single intraperitoneal injection) were employed to induce type-2 DNP in rats. Moreover, lipopolysaccharide(LPS) was used to induce the activation of BV2 microglia in vitro to establish an inflammatory cellular model. Fasting blood glucose(FBG) was measured by a blood glucose meter. Mechanical withdrawal threshold(MWT) was assessed with von Frey filaments, and thermal withdrawal latency(TWL) with hot plate apparatus. The protein expression levels of OX42, inducible nitric oxide synthase(iNOS), CD206, p38, and p-p38 were determined by Western blot, the fluorescence expression levels of OX42 and p-p38 in the dorsal horn of the rat spinal cord by immunofluorescence, the mRNA content of p38 and OX42 in rat spinal cord tissue by qRT-PCR, and levels of nitric oxide(NO), interleukin-1β(IL-1β), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and serum fasting insulin(FINS) by enzyme-linked immunosorbent assay(ELISA). RESULTS:: showed that the mo-del group demonstrated significant decrease in MWT and TWL, with pain symptoms. THP significantly improved the MWT and TWL of DNP rats, inhibited the activation of microglia and p38 MAPK signaling pathway in rat spinal cord, and ameliorated its inflammatory response. Meanwhile, THP promoted the change of LPS-induced BV2 microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, suppressed the activation of the p38 MAPK signaling pathway, decreased the expression levels of inflammatory factors NO, IL-1β, IL-6, and TNF-α, and increased the expression level of anti-inflammatory factor IL-10. The findings suggested that THP can significantly ameliorate the pain symptoms of DNP rats possibly by inhibiting the inflammatory response caused by M1 polarization of microglia via the p38 MAPK pathway.


Subject(s)
Animals , Rats , Berberine Alkaloids , Blood Glucose/metabolism , Diabetes Mellitus , Diabetic Neuropathies/genetics , Interleukin-10 , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Microglia , Neuralgia/metabolism , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord/metabolism , Streptozocin/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Biomed Pharmacother ; 139: 111648, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33945915

ABSTRACT

BACKGROUND: Rutaecarpine (Rut) is a plant alkaloid abundant in Euodia ruticarpa which is a Chinese herbal medicine used for treating various cancers. However, the Rut administration effect on prostate cancer in vivo remains unclear. AIM: In the present study we established an allogenic TRAMP-C1 prostate cancer mouse model to evaluate the Rut administration effect and mechanism in vivo. METHODS: To unravel the Rut administration effect on prostate cancer in vivo, C57BL/6J male mice (8 weeks old) were randomly grouped (n = 9), subcutaneously loaded with TRAMP-C1 prostate cancer cells and immediately given daily by gavage with Rut dissolved in soybean oil at 7 mg (low dose), 35 mg (medium dose), and 70 mg/kg b.w./day (high dose) for successive 39 days. RESULTS: Rut administration significantly and dose-dependently reduced both tumor volume and solid prostate cancer weight in allogenic TRAMP-C1 male mice. Rut administration markedly increased (TNF-α+IFN-γ) (Th1-)/IL-10 (Th2-) cytokine secretion ratios by splenocytes and TNF-α (M1-)/IL-10 (M2-) cytokine secretion ratios by macrophages as compared to those of dietary control group, suggesting that Rut administration in vivo regulates the immune balance toward Th1- and M1-polarized characteristics. Decreased CD19+, CD4+ and CD8+ lymphocytes in the peripheral blood of allogenic TRAMP-C1 mice were significantly elevated by Rut administration. Tumor weights positively correlated with TNF-α secretions by splenocytes, suggesting that there is a tumor cachexia in the tumor-bearing mice. Tumor weights negatively correlated with IgG (Th1-antibody) levels in the sera, suggesting that Th1-polarized immune balance may inhibit prostate cancer cell growth. CONCLUSIONS: Our results evidenced that Rut administration suppresses prostate cancer cell growth in mice subcutaneously loaded with TRAMP-C1 cells and correlated the anti-cancer effects with Th1-polarized immune balance in vivo.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Indole Alkaloids/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Quinazolines/pharmacology , Animals , Antigens, CD/immunology , Body Weight , Cachexia/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Cytokines/metabolism , Dose-Response Relationship, Drug , Lymphocyte Count , Macrophages, Peritoneal/immunology , Male , Mice , Mice, Inbred C57BL , Organ Size , Spleen/cytology , Spleen/metabolism , Th1-Th2 Balance , Tumor Necrosis Factor-alpha/metabolism
15.
Nutrients ; 12(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575571

ABSTRACT

Microglia, the innate immune cells of the CNS, respond to brain injury by activating and modifying their morphology. Our study arises from the great interest that has been focused on blueberry (BB) for the antioxidant and pharmacological properties displayed by its components. We analyzed the influence of hydroalcoholic BB extract in resting or lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. BB exerted a protective effect against LPS-induced cytotoxicity, as indicated by cell viability. BB was also able to influence the actin cytoskeleton organization, to recover the control phenotype after LPS insult, and also to reduce LPS-driven migration. We evaluated the activity of Rho and Rac1 GTPases, which regulate both actin cytoskeletal organization and migratory capacity. LPS caused an increase in Rac1 activity, which was counteracted by BB extract. Furthermore, we demonstrated that, in the presence of BB, mRNA expression of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α decreased, as did the immunofluorescence signal of iNOS, whereas that of Arg-1 was increased. Taken together, our results show that, during the inflammatory response, BB extract shifts the M1 polarization towards the M2 phenotype through an actin cytoskeletal rearrangement. Based on that, we might consider BB as a nutraceutical with anti-inflammatory activities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Blueberry Plants , Lipopolysaccharides/pharmacology , Microglia/drug effects , Plant Extracts/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured/drug effects , Mice , Microscopy, Fluorescence
16.
J Ethnopharmacol ; 256: 112706, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32109547

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Capparis spinose (C. spinosa) belonging to Capparaeae, originates from dry areas in the west or central Asia and Mediterranean basin. For thousands of years, C. spinosa has been reported to be used as a therapeutic traditional medicine to relieve various ailments including rheumatism, pain and inflammatory diseases. AIM OF THE STUDY: There are several studies mentioning that systemic inflammation results in learning and memory impairments through the activation of microglia. The objective of this study was to investigate the effect of C. spinosa on both in vivo and in vitro models of neuroinflammation and cognitive impairment using lipopolysaccharide (LPS). MATERIALS AND METHODS: In vivo: 40 male rats were used in the present study. Cognitive impairment was induced using LPS (1 mg/kg/d; i.p.) for 4 weeks. Treatment with C. spinosa (100 and 300 mg/kg/d; p.o.) was performed 1 h before LPS administration. At the end of the experiment, rats were undergone for behavioral and biochemical analysis. In vitro: Primary microglia isolated from mouse was used in the present study. The cells were pretreated with C. spinosa extract (10-300 µg/ml) and then stimulated with LPS (1 µg/ml). The expression levels of inflammatory and anti-inflammatory cytokines were elucidated using Real-Time PCR and ELISA methods. RESULTS: The escape latency in the Morris water maze test in the LPS group was significantly greater than the control group (p < 0.001), while, in extract-treated groups, it was less than the LPS group (p < 0.001). Additionally, we found that the levels of IL-1ß, TNF-α, and iNOS/Arg-1 ratio was also significantly lower in extract-treated groups than the LPS group (p < 0.001). The results revealed that C. spinosa extract significantly reduced the levels of TNF-α, iNOS, COX-2, IL-1ß, IL-6, NO and PGE2, and the ratios of iNOS/Arg-1 and NO/urea, following the LPS-induced inflammation in microglia (p < 0.001). CONCLUSIONS: Our finding provides evidence that C. spinosa has a neuroprotective effect, and might be considered as an effective therapeutic agent for the treatment of neurodegenerative diseases that are accompanied by microglial activation, such as AD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Capparis/chemistry , Cognitive Dysfunction/drug therapy , Inflammation/drug therapy , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Cognitive Dysfunction/metabolism , Cytokines/metabolism , Ethanol/chemistry , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation/chemically induced , Lipopolysaccharides/pharmacology , Male , Maze Learning/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Plant Extracts/chemistry , Rats , Rats, Wistar
17.
Zhen Ci Yan Jiu ; 43(12): 767-72, 2018 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-30585453

ABSTRACT

OBJECTIVE: To explore the effect of electroacupuncture (EA) on the expression of synovial AMP-activated protein kinase (AMPK) protein α, arginase-1 mRNA, nitric oxide synthase 2 (NOS 2) mRNA, NOD-like receptor protein 3 (NLRP 3) mRNA, and interleukin-1 ß (IL-1 ß) mRNA in acute gouty arthritis (AGA) rats, so as to explore its mechanisms underlying improvement of AGA via M 1/M 2 macrophage polarization. METHODS: Male Wistar rats were randomly divided into normal control, model, medication (colchicine) and EA groups (n=15 rats in each group). The AGA model was established by injection of sodium urate crystal (MSU) suspension (0.2 mL) into the articular cavity of the left knee. The rats of the normal control group received articular injection of normal saline (0.2 mL) of the left knee, and those of the medication group were treated by gavage of the colchicine (0.3 mg•kg-1•d-1) once daily for 7 days. EA (2 Hz/10 Hz, 1.0 mA) was applied to "Zusanli"(ST 36) and "Sanyinjiao" (SP 6) of the left hind limb for 10 min, once daily for 7 days. The inflammatory conditions of the synovial membrane tissue of the left knee joint were observed by H.E. staining. The expression levels of phosphorylated AMPKα (p-AMPKα) protein, and arginase-1 (a maker of M 2 macrophages) mRNA, NOS 2 (a maker of M 1 macrophages) mRNA, NLRP 3 mRNA, and IL-1 ß mRNA in the knee joint synovial tissue were detected by Western blot and quantitative real-time PCR, respectively. RESULTS: Compared with the normal group, the inflammatory cell infiltration of the synovial tissue was more severe, the expression of p-AMPKα protein was significantly decreased (P<0.01), and the expression levels of arginase-1, NOS 2, IL-1 ß and NLRP 3 mRNAs were considerably increased in the model group (P<0.01). The expression levels of p-AMPKα protein and arginase-1 mRNA were significantly up-regulated, and those of NOS 2, IL-1 ß and NLRP 3 mRNAs obviously down-regulated in both EA and medication groups relevant to the model group (P<0.01, P<0.05), suggesting an increase of M 2 macrophage and a decrease of M 1 macrophage activity after EA. No significant differences were found between the EA and medication groups in up-regulating p-AMPKα expression and in down-regulating NOS 2, IL-1 ß and NLRP 3 mRNA expression (P>0.05), except higher up-regulation of arginase-1 mRNA in the medication group (P<0.05).. CONCLUSION: EA intervention can up-regulate the expression of arginase-1 mRNA and p-AMPKα protein, and down-regulate the expression of NOS 2, IL-1 ß and NLRP 3 mRNAs in synovial tissues in AGA rats, which may contribute to its anti-inflammatory effect by promoting conversion of macrophages from M 1 pro-inflammatory phenotype to M 2 anti-inflammatory phenotype.


Subject(s)
Arthritis, Gouty , Electroacupuncture , Acupuncture Points , Animals , Arthritis, Gouty/therapy , Interleukin-1beta , Macrophages , Male , Rats , Rats, Wistar
18.
Mult Scler Relat Disord ; 25: 5-13, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30014878

ABSTRACT

Teminalia chebula (TC) has been traditionally used in the Iranian traditional medicine (ITM) and Ayurvedic medicine primarily for neurologic disorders and inflammation. Mainly, its fruits have been applied for CNS disorders. The effects of Terminalia chebula as herbal medicine with anti-inflammatory and anti-oxidant properties were aimed on lipopolysaccharide (LPS)-induced microglial inflammation. Cytotoxicity of TC extract (0-80) µg/ml on microglial cells was evaluated using the MTT assay. Also, the protective effect of TC extract concentrations with specified amount of LPS-induced mice microglial cells was studied. The concentrations of TNF-α (Tumor Necrosis Factor-α), IL-1ß (Interleukin-1ß), IL-6 and PGE-2 (Prostaglandin-E2) were evaluated using ELISA. Gene expression of TNF-α, IL-1ß, IL-6, COX-2 (Cyclooxygenase-2), iNOS and arginase-1 was also evaluated using the Real-Time PCR method. Nitrite oxide and urea were measured using biochemical methods. The studied concentrations of TC extract did not affect the viability of microglial cells but significantly protected the viability after treatment with LPS. The concentrations and expression levels of pro-inflammatory factors (TNF-α, IL-1ß, IL-6, PGE-2, COX-2) were significantly decreased after TC extract treatment in LPS-induced microglial cells with dose dependent manner. The extract also significantly decreased the levels of nitric oxide, increased urea and down regulated the expression of nitric oxide synthesis while arginase-1 expression was enhanced. Our results suggest that TC extract reduces inflammation in microglial cells and can be used as a potential anti-inflammatory agent in central nervous system inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Polarity/drug effects , Hydrolyzable Tannins/pharmacology , Microglia/drug effects , Plant Extracts/pharmacology , Terminalia/chemistry , Animals , Arginase/genetics , Arginase/metabolism , Brain/cytology , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dose-Response Relationship, Drug , Flavonoids/pharmacology , Hydroxybenzoates/pharmacology , Lipopolysaccharides/toxicity , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RNA, Messenger/metabolism
19.
Acupuncture Research ; (6): 767-772, 2018.
Article in Chinese | WPRIM | ID: wpr-844372

ABSTRACT

OBJECTIVE: To explore the effect of electroacupuncture (EA) on the expression of synovial AMP-activated protein kinase (AMPK) protein α, arginase-1 mRNA, nitric oxide synthase 2 (NOS 2) mRNA, NOD-like receptor protein 3 (NLRP 3) mRNA, and interleukin-1 β (IL-1 β) mRNA in acute gouty arthritis (AGA) rats, so as to explore its mechanisms underlying improvement of AGA via M 1/M 2 macrophage polarization. METHODS: Male Wistar rats were randomly divided into normal control, model, medication (colchicine) and EA groups (n=15 rats in each group). The AGA model was established by injection of sodium urate crystal (MSU) suspension (0.2 mL) into the articular cavity of the left knee. The rats of the normal control group received articular injection of normal saline (0.2 mL) of the left knee, and those of the medication group were treated by gavage of the colchicine (0.3 mg•kg-1•d-1) once daily for 7 days. EA (2 Hz/10 Hz, 1.0 mA) was applied to "Zusanli"(ST 36) and "Sanyinjiao" (SP 6) of the left hind limb for 10 min, once daily for 7 days. The inflammatory conditions of the synovial membrane tissue of the left knee joint were observed by H.E. staining. The expression levels of phosphorylated AMPKα (p-AMPKα) protein, and arginase-1 (a maker of M 2 macrophages) mRNA, NOS 2 (a maker of M 1 macrophages) mRNA, NLRP 3 mRNA, and IL-1 β mRNA in the knee joint synovial tissue were detected by Western blot and quantitative real-time PCR, respectively. RESULTS: Compared with the normal group, the inflammatory cell infiltration of the synovial tissue was more severe, the expression of p-AMPKα protein was significantly decreased (P0.05), except higher up-regulation of arginase-1 mRNA in the medication group (P<0.05).. CONCLUSION: EA intervention can up-regulate the expression of arginase-1 mRNA and p-AMPKα protein, and down-regulate the expression of NOS 2, IL-1 β and NLRP 3 mRNAs in synovial tissues in AGA rats, which may contribute to its anti-inflammatory effect by promoting conversion of macrophages from M 1 pro-inflammatory phenotype to M 2 anti-inflammatory phenotype.

20.
J Leukoc Biol ; 102(3): 857-869, 2017 09.
Article in English | MEDLINE | ID: mdl-28768708

ABSTRACT

Mϕs are a heterogeneous population of cells and include classically activated Mϕs (M1) and alternatively activated Mϕs (M2). Mϕs can change from M1 to M2 and vice versa in response to environmental stimuli. Serum amyloid P (SAP) is a constitutive plasma protein that polarizes Mϕs to an M2 phenotype, and part of this effect is mediated through FcγRI receptors. In an effort to find ways to alter Mϕs phenotypes, we screened for compounds that can block the SAP-FcγRI interaction. From a screen of 3000 compounds, we found 12 compounds that reduced the ability of fluorescently labeled human SAP to bind cells expressing human FcγRI. Based on cell surface marker expression, 8 of the compounds inhibited the effect of SAP on skewing human Mϕs to an M2 phenotype and in the presence of SAP polarized Mϕs to an M1 phenotype. In diseases, such as tuberculosis, M1s are more effective at killing bacteria than M2s. SAP potentiated the numbers of the mycobacterial strains Mycobacterium smegmatis and Mycobacterium tuberculosis in Mϕs. When added along with SAP, 2 of the compounds reduced intracellular Mycobacterium numbers. Together, these results indicate that the blocking of SAP effects on Mϕs can skew these cells toward an M1 phenotype, and this may be useful in treating diseases, such as tuberculosis.


Subject(s)
Antitubercular Agents , Macrophages/metabolism , Macrophages/microbiology , Mycobacterium smegmatis/growth & development , Mycobacterium tuberculosis/growth & development , Serum Amyloid P-Component/metabolism , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Drug Evaluation, Preclinical , Humans , Receptors, IgG/metabolism , Tuberculosis/drug therapy , Tuberculosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL