Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Physiol Behav ; 126: 1-7, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24361575

ABSTRACT

Predator odors are non-intrusive natural stressors of high ethological relevance. The objective of this study was to investigate the processing of a chronic, life-threatening stimulus during repeated prolonged presentation to Brandt's voles. One hundred and twenty voles were tested by repeated presentation of cat feces in a defensive withdrawal apparatus. Voles exposed to feces for short periods showed more avoidance, more concealment in the hide box, less contact time with the odor source, more freezing behavior, less grooming, more jumping, and more vigilant rearing than did non-exposed voles, and those exposed for longer periods. Serum levels of adrenocorticotropic hormone and corticosterone increased significantly when animals were repeatedly exposed to cat feces for short periods. The behavioral and endocrine responses habituated during prolonged presentation of cat feces. ΔfosB mRNA expression level was highest in voles exposed to cat feces for 6 and 12 consecutive days, and subsequently declined in animals exposed to cat feces for 24 days. We therefore conclude that the behavioral and endocrine responses to repeated exposure to cat feces undergo a process of habituation, while ΔfosB changes in the medial hypothalamic region exhibit sensitization. We propose that habituation and sensitization are complementary rather than contradictory processes that occur in the same individual upon repeated presentation of the same stressor.


Subject(s)
Arvicolinae/physiology , Arvicolinae/psychology , Defense Mechanisms , Stress, Psychological , Adrenocorticotropic Hormone/blood , Animals , Cats , Corticosterone/blood , Feces , Gene Expression Regulation/physiology , Hypothalamus/metabolism , Odorants , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Stress, Psychological/blood , Stress, Psychological/pathology , Stress, Psychological/psychology
2.
Physiol Behav ; 123: 193-9, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24184409

ABSTRACT

Predator odors are non-intrusive natural stressors of high ethological relevance. Animals are daily challenged with stressors of varying intensity and it is essential for their survival to respond to a wide range of threats. Behavioral and hormonal responses and changes in the level of medial hypothalamic c-fos mRNA were examined in Brandt's voles (Lasiopodomys brandtii) exposed to the feces of a domestic cat (Felis catus) stored for different periods. One hundred voles were tested in the defensive withdrawal apparatus. The voles showed an aversion to freshly collected cat feces, indicated by high levels of flight-related behaviors, increased freezing behavior, and more vigilant rearing compared to old feces. The serum levels of adrenocorticotropic hormone and corticosterone significantly increased when the voles were exposed to fresh cat feces. The level of c-fos mRNA in the medial hypothalamic region was highest in the individuals exposed to fresh cat feces. All of these behavioral, endocrine and c-fos-mRNA responses were lower when voles were subjected to older cat feces. We conclude that these responses depend on volatile chemical constituents of cat feces rather than their physical characteristics and that this accounts for the lower responses to feces stored for longer periods.


Subject(s)
Arvicolinae/physiology , Arvicolinae/psychology , Defense Mechanisms , Feces , Adrenocorticotropic Hormone/metabolism , Analysis of Variance , Animals , Cats , Corticosterone/metabolism , Female , Hypothalamus/metabolism , Male , Odorants , Proto-Oncogene Proteins c-fos/genetics , RNA, Messenger/metabolism , Rats
3.
Neuroscience ; 258: 355-63, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24286756

ABSTRACT

The rat retrotrapezoid nucleus (RTN) contains neurons that have a well-defined phenotype characterized by the presence of vesicular glutamate transporter 2 (VGLUT2) mRNA and a paired-like homeobox 2b (Phox2b)-immunoreactive (ir) nucleus and the absence of tyrosine hydroxylase (TH). These neurons are important to chemoreception. In the present study, we tested the hypothesis that the chemically-coded RTN neurons (ccRTN) (Phox2b(+)/TH(-)) are activated during an acute episode of running exercise. Since most RTN neurons are excited by the activation of perifornical and lateral hypothalamus (PeF/LH), a region that regulates breathing during exercise, we also tested the hypothesis that PeF/LH projections to RTN neurons contribute to their activation during acute exercise. In adult male Wistar rats that underwent an acute episode of treadmill exercise, there was a significant increase in c-Fos immunoreactive (c-Fos-ir) in PeF/LH neurons and RTN neurons that were Phox2b(+)TH(-) (p<0.05) compared to rats that did not exercise. Also the retrograde tracer Fluoro-Gold that was injected into RTN was detected in c-Fos-ir PeF/LH (p<0.05). In summary, the ccRTN neurons (Phox2b(+)TH(-)) are excited by running exercise. Thus, ccRTN neurons may contribute to both the chemical drive to breath and the feed-forward control of breathing associated with exercise.


Subject(s)
Homeodomain Proteins/metabolism , Hypothalamus/physiology , Locomotion/physiology , Medulla Oblongata/physiology , Neurons/physiology , Physical Exertion/physiology , Transcription Factors/metabolism , Animals , Blood Gas Analysis , Lactic Acid/blood , Male , Neural Pathways/physiology , Neuronal Tract-Tracers , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Stilbamidines
4.
Curr Top Dev Biol ; 106: 49-88, 2013.
Article in English | MEDLINE | ID: mdl-24290347

ABSTRACT

The medial hypothalamus is composed of nuclei of the tuberal hypothalamus, the paraventricular nucleus of the anterior hypothalamus, and the neurohypophysis. Its arrangement, around the third ventricle of the brain, above the adenohypophysis, and in direct contact with the vasculature, means that it serves as an interface with circulating systems, providing a key conduit through which the brain can sample, and control, peripheral body systems. Through these interfaces, and interactions with other parts of the brain, the medial hypothalamus centrally governs diverse homeostatic processes, including energy and fluid balance, stress responses, growth, and reproductive behaviors. Here, we summarize recent studies that reveal how the diverse cell types within the medial hypothalamus are assembled in an integrated manner to enable its later function. In particular, we discuss how the temporally protracted operation of signaling pathways and transcription factors governs the appearance and regionalization of the hypothalamic primordium from the prosencephalic territory, the specification and differentiation of progenitors into neurons in organized nuclei, and the establishment of interfaces. Through analyses of mouse, chick, and zebrafish, a picture emerges of an evolutionarily conserved and highly coordinated developmental program. Early indications suggest that deregulation of this program may underlie complex human pathological conditions and dysfunctional behaviors, including stress and eating disorders.


Subject(s)
Hypothalamus, Middle/physiology , Hypothalamus/physiology , Pituitary Gland, Posterior/physiology , Signal Transduction/physiology , Animals , Gene Expression Regulation, Developmental , Humans , Hypothalamus/growth & development , Hypothalamus/metabolism , Hypothalamus, Middle/growth & development , Hypothalamus, Middle/metabolism , Models, Biological , Neurogenesis/genetics , Neurogenesis/physiology , Pituitary Gland, Posterior/growth & development , Pituitary Gland, Posterior/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL