ABSTRACT
Sinapic acid (SA), canolol (CAO) and canolol dimer (CAO dimer) are the main phenolic compounds in rapeseed oil. However, their possible efficacy against glycation remains unclear. This study aims to explore the impacts of these substances on the formation of advanced glycation end products (AGEs) based on chemical and cellular models in vitro. Based on fluorescence spectroscopy results, three chemical models of BSA-fructose, BSA-methylglyoxal (MGO), and arginine (Arg)-MGO showed that SA/CAO/CAO dimer could effectively reduce AGE formation but with different abilities. After SA/CAO/CAO dimer incubation, effective protection against BSA protein glycation was observed and three different MGO adducts were formed. In MGO-induced HUVEC cell models, only CAO and CAO dimer significantly inhibited oxidative stress and cell apoptosis, accompanied by the regulation of the Nrf2-HO-1 pathway. During the inhibition, 20 and 12 lipid mediators were reversed in the CAO and CAO dimer groups compared to the MGO group.
Subject(s)
Glycation End Products, Advanced , Magnesium Oxide , Vinyl Compounds , Glycation End Products, Advanced/chemistry , Rapeseed Oil , Phenols/chemistry , Pyruvaldehyde/chemistryABSTRACT
α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 µg/g in the seeds of Alpinia katsumadai to 7032.75 µg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 µg/g, MGO being up to 55.50 µg/g, and DA to 18.75 µg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.
Subject(s)
Deoxyglucose , Drugs, Chinese Herbal , Glyoxal , Pyruvaldehyde , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Pyruvaldehyde/analysis , Chromatography, High Pressure Liquid , Deoxyglucose/analogs & derivatives , Deoxyglucose/analysis , Glyoxal/analysis , Diacetyl/analysis , Molecular Structure , Fruit/chemistry , Plants, Medicinal/chemistry , Seeds/chemistryABSTRACT
The species and contents of É-dicarbonyls in commercial black tea were examined, along with the effects of the manufacturing process and drying temperature on the formation of É-dicarbonyls. Ten É-dicarbonyls were quantified in commercial and in-process black tea samples by using UPLC-MS/MS and their derived quinoxalines. The É-dicarbonyls content in commercial black tea decreased significantly (p < 0.05) in the following order: 3-deoxyglucosone > glucosone > 3-deoxypentosone = threosone > galactosone ≥ methylglyoxal = glyoxal ≥ 3-deoxygalactosone = 3-deoxythreosone = diacetyl. Except for 3-deoxyglucosone and 3-deoxygalactosone, a further eight É-dicarbonyls were identified in all manufacturing steps of black tea. Except for the drying step, the rolling and fermenting played important roles in the formation of É-dicarbonyls. The total contents of É-dicarbonyls in black tea infusion ranged from 16.48 to 75.32 µg/g based on our detected ten É-dicarbonyls.
Subject(s)
Camellia sinensis , Tea , Maillard Reaction , Chromatography, Liquid , Tandem Mass Spectrometry , Glyoxal/analysisABSTRACT
Reactive carbonyl species (RCS) are generated during thermal food processing, and their accumulation in the body increases the risk of various chronic diseases. Herein, the RCS-scavenging ability of theanine, a unique nonproteinogenic amino acid, was evaluated in terms of the scavenging rate, reaction kinetics, and reaction pathway using LC-MS/MS. Three major products of theanine conjugated with acrolein (ACR) and glyoxal (GO) were prepared and identified using nuclear magnetic resonance. Thereafter, the simultaneous reactions of four types of RCS (namely, ACR, crotonaldehyde, methylglyoxal, and GO) with theanine were discussed in RCS-theanine and RCS-tea models. Under different reaction ratios, theanine could nonspecifically scavenge the four coexisting RCS by forming adducts with them. The amount of theanine-RCS adducts in green and black tea was more than that of catechin (epigallocatechin gallate, epigallocatechin, epicatechin gallate, and epicatechin)-RCS adducts despite the lower content of theanine than catechins. Thus, theanine, as a food additive and dietary supplement, could demonstrate new bioactivity as a promising RCS scavenger in food processing.
ABSTRACT
Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.
Subject(s)
Citrus , Pomegranate , Aged , Humans , Capsules , Glycation End Products, Advanced , Magnesium Oxide , PyruvaldehydeABSTRACT
Engineered nickel oxide nanoparticle (NiO-NP) can inflict significant damages on exposed plants, even though very little is known about the modus operandi. The present study investigated effects of NiO-NP on the crucial stress alleviation mechanism Ascorbate-Glutathione Cycle (Asa-GSH cycle) in the model plant Allium cepa. Cellular contents of reduced glutathione (GSH) and oxidised glutathione (GSSG), was disturbed upon NiO-NP exposure. The ratio of GSH to GSSG changed from 20:1 in NC to 4:1 in roots exposed to 125 mg L-1 NiO-NP. Even the lowest treatments of NiO-NP (10 mg L-1) increased ascorbic acid (2.9-folds) and cysteine contents (1.6-folds). Enzymes like glutathione reductase, ascorbate peroxidase, glutathione peroxidase and glutathione-S-transferase also showed altered activities in the affected tissues. Further, intracellular methylglyoxal, a harbinger of ROS (Reactive oxygen species), increased significantly (~ 26 to 65-fold) across different concentrations NiO-NP. Intracellular H2O2 (hydrogen peroxide) and ROS levels increased with NiO-NP doses, as did electrolytic leakage from damaged cells. The present work indicated that multiple pathways were compromised in NiO-NP affected plants and this information can bolster our general understanding of the actual mechanism of its toxicity on living cells, and help formulate strategies to thwart ecological pollution. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01314-8.
ABSTRACT
Symplocos sp. contains various phytochemicals and is used as a folk remedy for treatment of diseases such as enteritis, malaria, and leprosy. In this study, we discovered that 70% ethanol extracts of Symplocos sawafutagi Nagam. and S. tanakana Nakai leaves have antioxidant and anti-diabetic effects. The components in the extracts were profiled using high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry; quercetin-3-O-(6''-O-galloyl)-ß-d-galactopyranoside (6) and tellimagrandin II (7) were the main phenolic compounds. They acted as strong antioxidants with excellent radical scavenging activity and as inhibitors of non-enzymatic advanced glycation end-products (AGEs) formation. Mass fragmentation analysis demonstrated that compounds 6 and 7 could form mono- or di-methylglyoxal adducts via reaction with methylglyoxal, which is a reactive carbonyl intermediate and an important precursor of AGEs. In addition, compound 7 effectively inhibited the binding between AGE2 and receptor for AGEs as well as the activity of α-glucosidase. Enzyme kinetic study revealed that compound 7 acts as a competitive inhibitor of α-glucosidase, through interaction with the active site of the enzyme. Therefore, compounds 6 and 7, the major constituents of S. sawafutagi and S. tanakana leaves, are promising for developing drugs for preventing or treating diseases caused by aging and excessive sugar consumption.
Subject(s)
Antioxidants , alpha-Glucosidases , Antioxidants/chemistry , Pyruvaldehyde/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Glycation End Products, Advanced/chemistry , Phytochemicals/analysisABSTRACT
The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to be important therapeutic targets in prediabetes, diabetes, and in the early prevention of hyperglycemic complications. Peppermint leaf is commonly used as herbal tea, rich in polyphenols. Eriocitrin, its predominant component, in a double-blind, randomized controlled study reversed the prediabetic condition in patients. However, the antiglycation activity of this plant material and its polyphenols has not been characterized to date. Therefore, the aim of this study was to evaluate the ability of a peppermint leaf dry extract and its polyphenols to inhibit non-enzymatic protein glycation in a model with bovine serum albumin (BSA) and MGO as a glycation agent. Peppermint polyphenols were also evaluated for their potential to trap MGO in vitro, and the resulting adducts were analyzed by UHPLC-ESI-MS. To relate chemical composition to glycation inhibitory activity, the obtained peppermint extract was subjected to qualitative and quantitative analysis. The capability of peppermint leaf polyphenols to inhibit glycation (27.3-77.2%) and form adducts with MGO was confirmed. In the case of flavone aglycones, mono- and di-adducts with MGO were observed, while eriodictyol and eriocitrin effectively produced only mono-adducts. Rosmarinic acid and luteolin-7-O-glycosides did not reveal this action. IC50 of the peppermint leaf dry extract was calculated at 2 mg/mL, equivalent to a concentration of 1.8 µM/mL of polyphenols, including ~1.4 µM/mL of flavonoids and ~0.4 µM/mL of phenolic acids. The contribution of the four major components to the anti-AGE activity of the extract was estimated at 86%, including eriocitrin 35.4%, rosmarinic acid 25.6%, luteolin-7-O-rutinoside 16.9%, luteolin-7-O-ß-glucuronoside 8.1%, and others 14%. The effect of peppermint dry extract and polyphenols in inhibiting MGO-induced glycation in vitro was comparable to that of metformin used as a positive control.
Subject(s)
Polyphenols , Pyruvaldehyde , Humans , Polyphenols/chemistry , Pyruvaldehyde/chemistry , Mentha piperita/chemistry , Luteolin/analysis , Magnesium Oxide , Plant Extracts/chemistry , Plant Leaves/chemistry , Glycation End Products, Advanced/chemistry , Rosmarinic AcidABSTRACT
Ascophyllum nodosum extract (ANE) is considered as an effective source of biostimulants that have the potential of ameliorating the negative impact of different abiotic stresses in plants. Considering the growth-promoting ability and other regulatory roles of ANE, the present investigation was executed to evaluate the role of ANE in conferring arsenic (As) tolerance in rice (Oryza sativa L. cv. BRRI dhan89). Rice seedlings (35-d-old) were exposed to two doses of sodium arsenate (As1 - 50 mg As kg-1 soil; As2 - 100 mg As kg-1 soil) at 25 days after transplanting through irrigation, whereas only water was applied to the control. Foliar application of 0.1% ANE was also supplemented under control as well as As-stressed conditions at 7 days intervals for 5 times. Arsenic-induced oxidative stress was evident through a sharp increase in lipid peroxidation, hydrogen peroxide, methylglyoxal, and electrolyte leakage in the As-treated plants. As a consequence, plant growth and biomass, leaf relative water content, as well as yield attributes were reduced noticeably. On the other hand, ANE supplemented plants accumulated enhanced levels of ascorbate and glutathione, their redox balance, and the activities of antioxidant and glyoxalase enzymes viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, catalase, glutathione peroxidase, and activities of glyoxalase I and glyoxalase II, respectively. Furthermore, relative water content, plant growth, yield attributes and yield were increased in the As-treated rice plants with ANE supplementation. The results reflected that foliar spray with ANE alleviated As-induced oxidative stress in rice plants by modulating the antioxidative defense and glyoxalase system.
Subject(s)
Arsenic , Ascophyllum , Lactoylglutathione Lyase , Oryza , Oryza/metabolism , Reactive Oxygen Species/metabolism , Arsenic/metabolism , Ascophyllum/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Oxidation-Reduction , Lactoylglutathione Lyase/metabolism , Dietary Supplements , Water/metabolismABSTRACT
BACKGROUND: Cadmium (Cd) is a highly toxic element for plant growth. In plants, hydrogen sulfide (H2S) and methylglyoxal (MG) have emerged as vital signaling molecules that regulate plant growth processes under Cd stress. However, the effects of sodium hydrosulfide (NaHS, a donor of H2S) and MG on Cd uptake, physiological responses, and gene expression patterns of Salix to Cd toxicity have been poorly understood. Here, Salix matsudana Koidz. seedlings were planted in plastic pot with applications of MG (108 mg kg- 1) and NaHS (50 mg kg- 1) under Cd (150 mg kg- 1) stress. RESULTS: Cd treatment significantly increased the reactive oxygen species (ROS) levels and malondialdehyde (MDA) content, but decreased the growth parameters in S. matsudana. However, NaHS and MG supplementation significantly decreased Cd concentration, ROS levels, and MDA content, and finally enhanced the growth parameters. Cd stress accelerated the activities of antioxidative enzymes and the relative expression levels of stress-related genes, which were further improved by NaHS and MG supplementation. However, the activities of monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) were sharply decreased under Cd stress. Conversely, NaHS and MG applications restored the MDHAR and DHAR activities compared with Cd-treated seedlings. Furthermore, Cd stress decreased the ratios of GSH/GSSG and AsA/DHA but considerably increased the H2S and MG levels and glyoxalase I-II system in S. matsudana, while the applications of MG and NaHS restored the redox status of AsA and GSH and further improved glyoxalase II activity. In addition, compared with AsA, GSH showed a more sensitive response to exogenous applications of MG and NaHS and plays more important role in the detoxification of Cd. CONCLUSIONS: The present study illustrated the crucial roles of H2S and MG in reducing ROS-mediated oxidative damage to S. matsudana and revealed the vital role of GSH metabolism in regulating Cd-induced stress.
Subject(s)
Hydrogen Sulfide , Salix , Cadmium/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Pyruvaldehyde/metabolism , Salix/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Oxidative Stress , Glutathione/metabolism , Seedlings/metabolismABSTRACT
Introduction: Progression to type 1 diabetes has emerged as a complex process with metabolic alterations proposed to be a significant driver of disease. Monitoring products of altered metabolism is a promising tool for determining the risk of type 1 diabetes progression and to supplement existing predictive biomarkers. Methylglyoxal (MG) is a reactive product produced from protein, lipid, and sugar metabolism, providing a more comprehensive measure of metabolic changes compared to hyperglycemia alone. MG forms covalent adducts on nucleic and amino acids, termed MG-advanced glycation end products (AGEs) that associate with type 1 diabetes. Methods: We tested their ability to predict risk of disease and discriminate which individuals with autoimmunity will progress to type 1 diabetes. We measured serum MG-AGEs from 141 individuals without type 1 diabetes and 271 individuals with type 1 diabetes enrolled in the Fr1da cohort. Individuals with type 1 diabetes were at stages 1, 2, and 3. Results: We examined the association of MG-AGEs with type 1 diabetes. MG-AGEs did not correlate with HbA1c or differ between stages 1, 2, and 3 type 1 diabetes. Yet, RNA MG-AGEs were significantly associated with the rate of progression to stage 3 type 1 diabetes, with lower serum levels increasing risk of progression. Discussion: MG-AGEs were able to discriminate which individuals with autoantibodies would progress at a faster rate to stage 3 type 1 diabetes providing a potential new clinical biomarker for determining rate of disease progression and pointing to contributing metabolic pathways.
Subject(s)
Diabetes Mellitus, Type 1 , Humans , Pyruvaldehyde , Glycation End Products, Advanced/metabolism , Biomarkers , Dietary SupplementsABSTRACT
SCOPE: Methylglyoxal (MG)-derived advanced glycation end products (AGEs) directly bind to the receptor for advanced glycation end products (RAGE), subsequently exacerbating obesity and obesity-induced cognitive decline. Indian gooseberry (Phyllanthus emblica L.) fruit has antiobesity properties. However, the underlying mechanism by which Indian gooseberry fruit prevents obesity-induced cognitive decline remains unclear. METHODS AND RESULTS: This study aims to investigate the preventive effect of a water extract of Indian gooseberry fruit (WEIG) and its bioactive compound gallic acid (GA) on the obesity-induced cognitive decline through MG suppression and gut microbiota modulation in high-fat diet (HFD)-fed rats. Trapping MG, WEIG, and GA significantly ameliorate fat accumulation in adipose tissue and learning and memory deficits. Mechanistically, WEIG and GA administration effectively reduces brain MG and AGE levels and subsequently reduces insulin resistance, inflammatory cytokines, MDA production, and Alzheimer's disease-related proteins, but increases both antioxidant enzyme activities and anti-inflammatory cytokine with inhibiting RAGE, MAPK, and NF-κB levels in HFD-fed rats. Additionally, WEIG and GA supplementation increases the relative abundances of Bacteroidetes, Gammaproteobacteria, and Parasutterella, which negatively correlate with MG, inflammatory cytokine, and Alzheimer's disease-related protein expressions. CONCLUSION: This novel finding provides a possible mechanism by which WEIG prevents obesity-induced cognitive decline through the gut-brain axis.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Phyllanthus emblica , Ribes , Rats , Animals , Mice , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , Fruit , Obesity/metabolism , Cytokines , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Mice, Inbred C57BLABSTRACT
Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ÌC on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ÌC and 37 ÌC temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Humans , Saccharomyces cerevisiae/metabolism , Pyruvaldehyde/metabolism , Zebrafish/metabolism , Membrane Proteins/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mammals/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolismABSTRACT
Methylglyoxal (MGO) is a genotoxic α-dicarbonyl compound. Recently, it was found to be formed in glycerol preparations during storage through auto-oxidation. A simple fluorimetric determination of the carcinogenic degradation product of glycerol, MGO, was developed and validated. The proposed method is based on the derivatization of MGO with 4-carbomethoxybenzaldehyde (CMBA) and ammonium acetate to yield a fluorescent imidazole derivative that can be measured at 415 nm after excitation at 322 nm. The optimized conditions were determined to be 0.2 M CMBA, 1.0 M ammonium acetate and a reaction time of 40 min at 90°C using ethanol as diluting solvent. The linear range was 10.0-200.0 ng/ml. Detection and quantification limits were 2.22 and 6.72 ng/ml, respectively. The proposed method was validated according to International Council for Harmonisation (ICH) guidelines and compared with the reported method and no significant difference was found. It was successfully applied for the determination of MGO in six different glycerol-containing pharmaceutical preparations and dietary supplements.
Subject(s)
Glycerol , Pyruvaldehyde , Spectrometry, Fluorescence/methods , Magnesium Oxide , Dietary Supplements , Pharmaceutical PreparationsABSTRACT
The excessive dietary intake of simple sugars and abnormal metabolism in certain diseases contribute to the increased production of α-dicarbonyls (α-DCs), such as methylglyoxal (MGO) and glyoxal (GO), the main precursors of the formation of advanced glycation end products (AGEs). AGEs play a vital role, for example, in the development of cardiovascular diseases and diabetes. Aspalathus linearis (Burman f.) R. Dahlgren (known as rooibos tea) exhibits a wide range of activities beneficial for cardio-metabolic health. Thus, the present study aims to investigate unfermented and fermented rooibos extracts and their constituents for the ability to trap MGO and GO. The individual compounds identified in extracts were tested for the capability to inhibit AGEs (with MGO or GO as a glycation agent). Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) was used to investigate α-DCs' trapping capacities. To evaluate the antiglycation activity, fluorescence measurement was used. The extract from the unfermented rooibos showed a higher ability to capture MGO/GO and inhibit AGE formation than did the extract from fermented rooibos, and this effect was attributed to a higher content of dihydrochalcones. The compounds detected in the extracts, such as aspalathin, nothofagin, vitexin, isovitexin, and eriodictyol, as well as structurally related phloretin and phloroglucinol (formed by the biotransformation of certain flavonoids), trapped MGO, and some also trapped GO. AGE formation was inhibited the most by isovitexin. However, it was the high content of aspalathin and its higher efficiency than that of metformin that determined the antiglycation and trapping properties of green rooibos. Therefore, A. linearis, in addition to other health benefits, could potentially be used as an α-DC trapping agent and AGE inhibitor.
Subject(s)
Aspalathus , Aspalathus/chemistry , Flavonoids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycation End Products, AdvancedABSTRACT
Diabetes mellitus (DM) is a global health concern that is associated with several micro- and macrovascular complications. We evaluated several important medicinal plant constituents, including polyphenols and flavonoids, for α-glucosidase inhibition, AGEs' inhibitory activities using oxidative and no-oxidative assays, the inhibition of protein cross link formation, 15-lipoxydenase inhibition and molecular docking. The molecular docking studies showed high binding energies of flavonoids for transcriptional regulars 1IK3, 3TOP and 4F5S. In the α-glucosidase inhibition assay, a significant inhibition was noted for quercitrin (IC50 7.6 µg/mL) and gallic acid (IC50 8.2 µg/mL). In the AGEs inhibition assays, quercetin showed significant results in both non-oxidative and (IC50 0.04 mg/mL) and oxidative assays (IC50 0.051 mg/mL). Furthermore, quercitrin showed inhibitory activity in the non-oxidative (IC50 0.05 mg/mL) and oxidative assays (IC50 0.34 mg/mL). A significant inhibition of protein cross link formation was observed by SDS-PAGE analysis. Quercitrin (65%) and quercetin (62%) showed significant inhibition of 15-lipoxygenase. It was thus concluded that flavonoids and other polyphenols present in plant extracts can be effective in management of diabetes and allied co-morbidities.
Subject(s)
Diabetes Mellitus , Hypoglycemic Agents , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Arachidonate 15-Lipoxygenase , Flavonoids/pharmacology , Gallic Acid/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Quercetin/pharmacology , alpha-Glucosidases/metabolismABSTRACT
Plants essentially require manganese (Mn) for their normal metabolic functioning. However, excess Mn in the cellular environment is detrimental to plant growth, development, and physio-biochemical functions. Taurine (TAU) is an amino acid with potent antioxidant and anti-inflammatory properties in animals and humans. However, no previous study has investigated the potential of TAU in plant metal stress tolerance. The current study provides some novel insights into the effect of TAU in modulating the defense system of Trifolium alexandrinum plants under Mn toxicity. Manganese toxicity resulted in higher oxidative stress and membrane damage through increased superoxide radical, hydrogen peroxide, malondialdehyde, and methylglyoxal generation alongside enhanced lipoxygenase (LOX) activity. Mn toxicity also resulted in limited uptake of potassium (K+), phosphorus (P), calcium (Ca2+), and increased the accumulation of Mn in both leaf and roots. However, TAU circumvented the Mn-induced oxidative stress by upregulating the activities of antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) and levels of ascorbic acid, proline, anthocyanins, phenolics, flavonoids and glutathione (GSH). Taurine conspicuously improved the growth, photosynthetic pigments, hydrogen sulphide (H2S), and nitric oxide (NO) levels of Mn stressed plants. Taurine also improved the uptake of K+, Ca2+, P and reduced the Mn content in stressed plants. Overall, exogenous taurine might be a suitable strategy to combat Mn stress in T. alexandrinum plants but applications at field levels for various crops and metal toxicities and economic suitability need to be addressed before final recommendations.
Subject(s)
Hydrogen Sulfide , Trifolium , Amino Acids/metabolism , Anthocyanins , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Ascorbic Acid/pharmacology , Calcium/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Sulfide/metabolism , Lipoxygenases/metabolism , Malondialdehyde/metabolism , Manganese/toxicity , Nitric Oxide/metabolism , Nutrients , Oxidative Stress , Phosphorus/metabolism , Photosynthesis , Potassium , Proline/metabolism , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology , Superoxide Dismutase/metabolism , Superoxides , Taurine/pharmacology , Transferases/metabolism , Transferases/pharmacology , Trifolium/metabolismABSTRACT
Cajanus cajan (L.) Millsp., known as pigeon pea, is one of the major grain legume crops of the tropical world. It recognizes as an ethnomedicine to possess various functions, such as helping in healing wound and cancer therapy. We investigated whether 95% ethanol extracts from C. cajan root (EECR) protect against methylglyoxal (MGO)-induced insulin resistance (IR) and hyperlipidemia in male Wistar rats and explored its possible mechanisms. The hypoglycemic potential of EECR was evaluated using α-amylase, α-glucosidase activities, and advanced glycation end products (AGEs) formation. For in vivo study, the rats were divided into six groups and orally supplemented with MGO except for Group 1 (controls). Group 2 was supplemented with MGO only, Group 3: MGO + metformin, Group 4: MGO + Low dose-EECR (L-EECR; 10 mg/kg bw), Group 5: MGO + Middle dose-EECR (M-EECR; 50 mg/kg bw), and Group 6: MGO + High dose-EECR (H-EECR; 100 mg/kg bw). EECR possessed good inhibition of α-glucosidase, α-amylase activities, and AGEs formation (IC50 = 0.12, 0.32, and 0.50 mg/mL), respectively. MGO significantly increased serum levels of blood glucose (GLU), glycosylated hemoglobin, homeostasis model assessment of IR, AGEs, lipid biochemical values, and atherogenic index, whereas EECR decreased these levels in a dose-dependent manner. EECR can also act as an insulin sensitizer, which significantly decreased (47%, P < 0.05) the blood GLU levels after intraperitoneal injection of insulin in the insulin tolerance tests. The hypoglycemic and antihyperlipidemic mechanisms of EECR are likely through several possible pathways including the inhibition of carbohydrate-hydrolyzing enzymes (α-glucosidase and α-amylase) and the enhancement of MGO-trapping effects on inhibition of AGEs formation.
Subject(s)
Cajanus , Diabetes Mellitus, Experimental , Animals , Cajanus/metabolism , Diabetes Mellitus, Experimental/drug therapy , Glycation End Products, Advanced/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Insulin , Magnesium Oxide , Male , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology , Rats , Rats, Wistar , alpha-Amylases , alpha-GlucosidasesABSTRACT
Dental caries is caused by the buildup of acidic end products that result from the metabolism of dental plaque microbes. Natural products that are widely available could be used as an alternative or adjunctive anti-caries therapy. Sometimes, when two products are used together, they yield a more powerful antimicrobial effect than the anticipated additive effect. These synergistic combinations are often better treatment options because individual agents may not have sufficient antimicrobial action to be effective when used alone. Cranberries contain phenolic compounds like proanthocyanidins (PAC) that disrupt biofilm formation. Manuka honey has high concentrations of the agent methylglyoxal (MGO), which is cariostatic. Because these agents have varied modes of antimicrobial action, they show potential for possible synergistic effects when paired. Various cranberry extracts were tested pairwise with manuka honey or MGO by well-diffusion assays and 96-well checkerboard assays in the presence of Streptococcus mutans to test for synergy. Synergy was demonstrated in cranberry extracts Type R and RE when paired with manuka honey and MGO. The synergistic combinations found in this research thus can be considered candidates for the formulation of a dentifrice that could be used to inhibit the formation of dental plaque and thereby avoid the development of caries. IMPORTANCE The emergence of bacteria resistant to antimicrobial agents has led to a shortage of options when choosing effective treatment agents. Further, some antibiotics used at therapeutic doses can produce undesired side effects. An alternative to traditional antibiotics, natural antimicrobial agents can be used in combination to obtain synergistic outcomes without subjecting the patient to toxic or irritating doses of individual agents. Streptococcus mutans growth and biofilm formation are major contributors to the formation of dental caries. In this study, a synergistic combination of Manuka honey and cranberry extracts gives evidence that it can be used as an alternative or adjunctive anti-caries therapy.
Subject(s)
Anti-Infective Agents , Dental Caries , Dental Plaque , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Cariostatic Agents/pharmacology , Dental Caries/drug therapy , Dental Caries/prevention & control , Dental Plaque/drug therapy , Humans , Magnesium Oxide/pharmacology , Plant Extracts/pharmacology , Streptococcus mutansABSTRACT
Reactive oxygen and carbonyl species promote oxidative and carbonyl stress, and the development of diabetes, metabolic syndrome, cardiovascular diseases, and others. The traditional herb Cistus × incanus is known for its antioxidant properties; therefore, the current study aimed to assess how the chemical composition of a C. incanus water infusion corresponds with its antioxidative and antiglycative effects in vitro. The composition of infusions prepared from commercial products was analyzed with UHPLC-ESI-qTOF-MS. Total phenolics, flavonoids, and non-flavonoid polyphenols were determined. Antioxidant activity of infusions and selected polyphenols was investigated using DPPH, ABTS, and FRAP. Fluorometric measurements and methylglyoxal capture were performed to investigate the antiglycation activity. PCA and PLS-DA models were applied to explore the correlation between chemical and antioxidant results. The principal flavonoids in C. incanus were flavonols. In vitro tests revealed that a stronger antioxidant effect was demonstrated by plant material from Turkey rich in flavonoids, followed by Albania and Greece. Flavonols and ellagic acid displayed stronger antiradical and reducing power than EA-derived urolithins. Hyperoside was the most potent inhibitor of glycation. The results indicate that flavonoids are primarily responsible for rock rose antioxidant and antiglycation properties. PLS-DA modeling can be used to identify the origin of plant material with sensitivity and specificity exceeding 86%.