Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Biosci Trends ; 18(2): 153-164, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38599881

ABSTRACT

NAD(P)H-quinone oxidoreductase 1 (NQO1) is an essential redox enzyme responsible for redox balance and energy metabolism. Despite of its importance, the brain contains high capacity of polyunsaturated fatty acids and maintains low levels of NQO1 expression. In this study, we examined how levels of NQO1 expression affects cell survival in response to toxic insults causing mitochondrial dysfunction and ferroptosis, and whether NQO1 has a potential as a biomarker in different stressed conditions. Following treatment with rotenone, overexpressed NQO1 in SH-SY5Y cells improved cell survival by reducing mitochondrial reductive stress via increased NAD+ supply without mitochondrial biogenesis. However, NQO1 overexpression boosted lipid peroxidation following treatment with RSL3 and erastin. A lipid droplet staining assay showed increased lipid droplets in cells overexpressing NQO1. In contrast, NQO1 knockdown protected cells against ferroptosis by increasing GPX4, xCT, and the GSH/GSSG system. Also, NQO1 knockdown showed lower iron contents and lipid droplets than non-transfectants and cells overexpressing NQO1, even though it could not attenuate cell death when exposed to rotenone. In summary, our study suggests that different NQO1 levels may have advantages and disadvantages depending on the surrounding environments. Thus, regulating NQO1 expression could be a potential supplementary tool when treating neuronal diseases.


Subject(s)
Ferroptosis , Mitochondria , NAD(P)H Dehydrogenase (Quinone) , Rotenone , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Ferroptosis/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Rotenone/toxicity , Rotenone/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Lipid Peroxidation/drug effects , Piperazines/pharmacology , Carbolines
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1064-1072, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621913

ABSTRACT

This article explored the mechanism by which ginsenoside Re reduces hypoxia/reoxygenation(H/R) injury in H9c2 cells by regulating mitochondrial biogenesis through nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/peroxisome prolife-rator-activated receptor gamma coactivator-1α(PGC-1α) pathway. In this study, H9c2 cells were cultured in hypoxia for 4 hours and then reoxygenated for 2 hours to construct a cardiomyocyte H/R injury model. After ginsenoside Re pre-administration intervention, cell activity, superoxide dismutase(SOD) activity, malondialdehyde(MDA) content, intracellular reactive oxygen species(Cyto-ROS), and intramitochondrial reactive oxygen species(Mito-ROS) levels were detected to evaluate the protective effect of ginsenoside Re on H/R injury of H9c2 cells by resisting oxidative stress. Secondly, fluorescent probes were used to detect changes in mitochondrial membrane potential(ΔΨ_m) and mitochondrial membrane permeability open pore(mPTP), and immunofluorescence was used to detect the expression level of TOM20 to study the protective effect of ginsenoside Re on mitochondria. Western blot was further used to detect the protein expression levels of caspase-3, cleaved caspase-3, Cyto C, Nrf2, HO-1, and PGC-1α to explore the specific mechanism by which ginsenoside Re protected mitochondria against oxidative stress and reduced H/R injury. Compared with the model group, ginse-noside Re effectively reduced the H/R injury oxidative stress response of H9c2 cells, increased SOD activity, reduced MDA content, and decreased Cyto-ROS and Mito-ROS levels in cells. Ginsenoside Re showed a good protective effect on mitochondria by increasing ΔΨ_m, reducing mPTP, and increasing TOM20 expression. Further studies showed that ginsenoside Re promoted the expression of Nrf2, HO-1, and PGC-1α proteins, and reduced the activation of the apoptosis-related regulatory factor caspase-3 to cleaved caspase-3 and the expression of Cyto C protein. In summary, ginsenoside Re can significantly reduce I/R injury in H9c2 cells. The specific mechanism is related to the promotion of mitochondrial biogenesis through the Nrf2/HO-1/PGC-1α pathway, thereby increasing the number of mitochondria, improving mitochondrial function, enhancing the ability of cells to resist oxidative stress, and alleviating cell apoptosis.


Subject(s)
Ginsenosides , NF-E2-Related Factor 2 , Organelle Biogenesis , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Signal Transduction , Oxidative Stress , Hypoxia , Myocytes, Cardiac , Apoptosis , Superoxide Dismutase/metabolism
3.
Biol Trace Elem Res ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305829

ABSTRACT

High-fructose corn syrup (HFCS) has been a subject of intense debate due to its association with cardiovascular risks. This study investigates the potential protective effects of selenium (Se) supplementation against cardiac damage induced by HFCS. Thirty-two male Wistar albino rats were divided into four equal groups: control, CS (20%-HFCS), CS with Se (20%-HFCS, 0.3 mg/kg-Se), and Se (0.3 mg/kg-Se) only. After a 6-week period, heart and aorta tissues were collected for histopathological, immunohistochemical, biochemical, and genetic analyses. HFCS consumption led to severe cardiac pathologies, increased oxidative stress, and altered gene expressions associated with inflammation, apoptosis, and antioxidant defenses. In the CS group, pronounced oxidative stress within the cardiac tissue was concomitant with elevated Bcl-2-associated X protein (Bax) expression and diminished expressions of B-cell-lymphoma-2 (Bcl-2), nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), and silenced information regulator 1 (SIRT1). Se supplementation mitigated these effects, showing protective properties. Immunohistochemical analysis supported these findings, demonstrating decreased expressions of caspase-3, tumor necrosis factor-alpha (TNF-α), IL-1ß, and vascular endothelial growth factor (VEGF) in the CS + Se group compared to the CS group. The study suggests that Se supplementation exerts anti-inflammatory, antioxidant, and antiapoptotic effects, potentially attenuating HFCS-induced cardiovascular toxicity. These findings highlight the importance of dietary considerations and selenium supplementation in mitigating cardiovascular risks associated with HFCS consumption.

4.
J Stroke Cerebrovasc Dis ; : 107636, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38346661

ABSTRACT

PURPOSE: To explore possible mechanism(s) underlying beneficial effects of acupuncture treatment for alleviating focal cerebral infarction-induced neuronal injury, mitochondrial biogenesis, energy metabolism, oxidative stress and dendrite regeneration were evaluated in rats with experimentally induced cerebral ischemia and dendron reperfusion. MATERIALS AND METHODS: Rats were randomly assigned to three groups (sham-operated, operated group without acupuncture, operated group with acupuncture). RT-PCR and Western blotting were used to assess variations of hippocampal cell mitochondrial DNA (mtDNA) copy number and mRNA and protein expression levels associated with key mitochondrial biogenesis proteins, namely peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiration factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). To evaluate mitochondrial oxidative phosphorylation and respiratory function in ischemic tissues, oxidative phosphorylation protein complex expression levels were assessed via Western blot analysis, mitochondrial membrane potential (MMP) was assessed via confocal microscopy and flow cytometry and adenosine triphosphate (ATP) concentration was assessed using an enzymatic fluorescence-based assay. Immunofluorescence staining was used to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Additionally, oxidative stress levels were assessed based on superoxide dismutase (SOD) activity, lipid oxidation levels (malondialdehyde, MDA) and glutathione (GSH) levels. Meanwhile, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl staining, transmission electron microscopy observation and neuro behavioral status were used to determine cerebral infarction volume and extent of brain injury. RESULTS: Acupuncture treatment effectively stimulated mRNA-level and protein-level expression associated with PGC-1α, NRF-1 and TFAM and increased levels of electron transport chain complexes I, IV and V, thereby increasing the ATP concentration, maintaining mitochondrial membrane potential, and promoting dendron regeneration levels. Meanwhile, in hippocampal neurons SOD activity and the glutathione/glutathione disulfide (GSH/GSSG) ratio increased and MDA level decreased. CONCLUSION: Acupuncture treatment after ischemic injury promoted mitochondrial biogenesis, as reflected by beneficially increased mitochondrial oxidative phosphorylation complex protein levels and brain tissue energy supply, while preventing oxidative stress injury. These results should guide future explorations to elucidate acupuncture-based mechanisms for alleviating neuronal injury triggered by acute cerebral ischemia.

5.
J Microbiol Biotechnol ; 34(3): 495-505, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38247215

ABSTRACT

Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 µM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.


Subject(s)
Lithospermum , Mice , Animals , Organelle Biogenesis , Mice, Obese , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Palmitic Acid , Obesity/metabolism , Diet, High-Fat/adverse effects
6.
Physiol Behav ; 273: 114401, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37939828

ABSTRACT

AIM: The present study aimed to investigate the effect of the intracerebroventricular (icv) administration of spexin on the hypothalamus-pituitary-thyroid (HPT) axis (TRH, TSH, T4 and T3 hormones) and energy expenditure (PGC-1α and UCP1 genes) in white adipose (WAT) and brown adipose tissues (BAT) in rats. Furthermore, the study aimed to determine the effects of spexin on food-water consumption and body weight of rats. MATERIAL AND METHOD: The study was conducted with 40 male rats that were divided into 4 groups: Control, Sham, Spexin 30 and Spexin 100 (n = 10). Spexin (1 µl/hour) was administered to rats other than those in the control group for 7 days with osmotic minipumps intracerebroventricularly, artificial cerebrospinal fluid (vehicle) was administered to the Sham group, and 30 nMol and 100 nMol spexin was infused to the Spexin 30 and Spexin 100 groups, respectively. Food-water consumption and body weight of the rats were monitored during the experiments. After the seven-day infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined with ELISA on rat blood samples. Also, TRH gene expression levels from the hypothalamus tissues and PGC-1α and UCP1 expression levels from WAT and BAT were determined by real-time PCR. FINDINGS: It was determined that icv spexin infusion reduced daily food consumption and body weight without leading to a significant change in water consumption (p < 0.05). Icv spexin infusion significantly decreased serum TSH, and increased fT4 and fT3 levels when compared to control and sham groups (p < 0.05). Moreover, icv spexin infusion increased the TRH expressions in the hypothalamus tissues and PGC-1α UCP1 in the WAT and BAT (p < 0.05). CONCLUSION: Icv Spexin infusion may have effects on food consumption and body weight as well as, thyroid hormones and energy metabolism.


Subject(s)
Thyroid Gland , Thyroxine , Rats , Male , Animals , Thyroid Gland/metabolism , Triiodothyronine , Adipocytes, Brown , Organelle Biogenesis , Hypothalamus/metabolism , Body Weight , Thyrotropin/metabolism , Thyrotropin/pharmacology
7.
Chin J Nat Med ; 21(11): 830-841, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38035938

ABSTRACT

In the context of non-alcoholic fatty liver disease (NAFLD), characterized by dysregulated lipid metabolism in hepatocytes, the quest for safe and effective therapeutics targeting lipid metabolism has gained paramount importance. Sanhuang Xiexin Tang (SXT) and Baihu Tang (BHT) have emerged as prominent candidates for treating metabolic disorders. SXT combined with BHT plus Cangzhu (SBC) has been used clinically for Weihuochisheng obese patients. This retrospective analysis focused on assessing the anti-obesity effects of SBC in Weihuochisheng obese patients. We observed significant reductions in body weight and hepatic lipid content among obese patients following SBC treatment. To gain further insights, we investigated the effects and underlying mechanisms of SBC in HFD-fed mice. The results demonstrated that SBC treatment mitigated body weight gain and hepatic lipid accumulation in HFD-fed mice. Pharmacological network analysis suggested that SBC may affect lipid metabolism, mitochondria, inflammation, and apoptosis-a hypothesis supported by the hepatic transcriptomic analysis in HFD-fed mice treated with SBC. Notably, SBC treatment was associated with enhanced hepatic mitochondrial biogenesis and the inhibition of the c-Jun N-terminal kinase (JNK)/nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK)/NF-κB pathways. In conclusion, SBC treatment alleviates NAFLD in both obese patients and mouse models by improving lipid metabolism, potentially through enhancing mitochondrial biogenesis. These effects, in turn, ameliorate inflammation in hepatocytes.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , NF-kappa B/metabolism , Organelle Biogenesis , Retrospective Studies , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Liver , Inflammation/drug therapy , Inflammation/metabolism , Body Weight , Lipid Metabolism , Lipids , Diet, High-Fat/adverse effects
8.
Photobiomodul Photomed Laser Surg ; 41(8): 389-401, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37527194

ABSTRACT

Objective: This study evaluated photobiomodulation therapy (PBMT) effects on the factors involved in mitochondrial biogenesis, on the mitochondrial respiratory complexes, and on the transient receptor potential canonical channels (such as TRPC-1 and TRPC-6) in in vitro (mdx muscle cells) and in vivo studies (gastrocnemius muscle) from mdx mice, the dystrophin-deficient model of Duchenne muscular dystrophy (DMD). Background: There is no successful treatment for DMD, therefore demanding search for new therapies that can improve the muscle role, the quality of life, and the survival of dystrophic patients. Methods: The dystrophic primary muscle cells received PBMT at 0.6 J and 5 J, and the dystrophic gastrocnemius muscle received PBMT at 0.6 J. Results: The dystrophic muscle cells treated with PBMT (0.6 J and 5 J) showed no cytotoxicity and significantly lower levels in hydrogen peroxide (H2O2) production. We also demonstrated, for the first time, the capacity of PBMT, at a low dose (0.6 J), in reducing the TRPC-6 content and in raising the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) content in the dystrophic gastrocnemius muscle. Conclusions: PBMT modulates H2O2 production, TRPC-6, and PGC-1α content in the dystrophic muscle. These results suggest that laser therapy could act as an auxiliary therapy in the treatment of dystrophic patients.


Subject(s)
Hydrogen Peroxide , Low-Level Light Therapy , Animals , Mice , Hydrogen Peroxide/pharmacology , Mice, Inbred mdx , Muscle, Skeletal , Quality of Life
9.
Front Neurosci ; 17: 1197208, 2023.
Article in English | MEDLINE | ID: mdl-37397466

ABSTRACT

Mitochondrial dysfunction plays a key role in the aging process, and aging is a strong risk factor for neurodegenerative diseases or brain injury characterized by impairment of mitochondrial function. Among these, ischemic stroke is one of the leading causes of death and permanent disability worldwide. Pharmacological approaches for its prevention and therapy are limited. Although non-pharmacological interventions such as physical exercise, which promotes brain mitochondrial biogenesis, have been shown to exert preventive effects against ischemic stroke, regular feasibility is complex in older people, and nutraceutical strategies could be valuable alternatives. We show here that dietary supplementation with a balanced essential amino acid mixture (BCAAem) increased mitochondrial biogenesis and the endogenous antioxidant response in the hippocampus of middle-aged mice to an extent comparable to those elicited by treadmill exercise training, suggesting BCAAem as an effective exercise mimetic on brain mitochondrial health and disease prevention. In vitro BCAAem treatment directly exerted mitochondrial biogenic effects and induced antioxidant enzyme expression in primary mouse cortical neurons. Further, exposure to BCAAem protected cortical neurons from the ischemic damage induced by an in vitro model of cerebral ischemia (oxygen-glucose deprivation, OGD). BCAAem-mediated protection against OGD was abolished in the presence of rapamycin, Torin-1, or L-NAME, indicating the requirement of both mTOR and eNOS signaling pathways in the BCAAem effects. We propose BCAAem supplementation as an alternative to physical exercise to prevent brain mitochondrial derangements leading to neurodegeneration and as a nutraceutical intervention aiding recovery after cerebral ischemia in conjunction with conventional drugs.

11.
Front Pharmacol ; 14: 1137609, 2023.
Article in English | MEDLINE | ID: mdl-37234709

ABSTRACT

Introduction: Mitochondrial quality control (MQC) is an important mechanism of neural repair after cerebral ischemia (CI). Recent studies have shown that caveolin-1 (Cav-1) is an important signaling molecule in the process of CI injury, but its mechanism of regulating MQC after CI is still unclear. Buyang Huanwu Decoction (BHD) is a classic traditional Chinese medicine formula that is often used to treat CI. Unfortunately, its mechanism of action is still obscure. Methods: In this study, we tested the hypothesis that BHD can regulate MQC through Cav-1 and exert an anti-cerebral ischemia injury effect. We used Cav-1 knockout mice and their homologous wild-type mice, replicated middle cerebral artery occlusion (MCAO) model and BHD intervention. Neurobehavioral scores and pathological detection were used to evaluate neurological function and neuron damage, transmission electron microscopy and enzymology detection of mitochondrial damage. Finally, western blot and RT-qPCR expression of MQC-related molecules were tested. Results: After CI, mice showed neurologic impairment, neuronal damage, and significant destruction of mitochondrial morphology and function, and MQC was imbalanced. Cav-1 deletion aggravated the damage to neurological function, neurons, mitochondrial morphology and mitochondrial function after CI, aggravated the imbalance of mitochondrial dynamics, and inhibited mitophagy and biosynthesis. BHD can maintain MQC homeostasis after CI through Cav-1 and improve CI injury. Discussion: Cav-1 can affect CI injury by regulating MQC, and this mechanism may be another target of BHD for anti-cerebral ischemia injury.

12.
Adv Sci (Weinh) ; 10(22): e2300758, 2023 08.
Article in English | MEDLINE | ID: mdl-37202595

ABSTRACT

Mitochondrial dysfunction of neurons is the core pathogenesis of incurable Parkinson's disease (PD). It is crucial to ameliorate the mitochondrial dysfunction of neurons for boosting the therapy of PD. Herein, the remarkable promotion of mitochondrial biogenesis to ameliorate mitochondrial dysfunction of neurons and improve the treatment of PD by using mitochondria-targeted biomimetic nanoparticles, which are Cu2- x Se-based nanoparticles functionalized with curcumin and wrapped with DSPE-PEG2000 -TPP-modified macrophage membrane (denoted as CSCCT NPs), is reported. These nanoparticles can efficiently target mitochondria of damaged neurons in an inflammatory environment, and mediate the signaling pathway of NAD+ /SIRT1/PGC-1α/PPARγ/NRF1/TFAM to alleviate 1-methyl-4-phenylpyridinium (MPP+ )-induced neuronal toxicity. They can reduce the mitochondrial reactive oxygen species, restore mitochondrial membrane potential (MMP), protect the integrity of mitochondrial respiratory chain, and ameliorate mitochondrial dysfunction via promoting mitochondrial biogenesis, which synergistically improve the motor disorders and anxiety behavior of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. This study demonstrates that targeting mitochondrial biogenesis to ameliorate mitochondrial dysfunction has a great potential in the treatment of PD and mitochondria-related diseases.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/therapy , Organelle Biogenesis , Biomimetics , Mitochondria/metabolism , Neurons/metabolism , 1-Methyl-4-phenylpyridinium/metabolism
13.
J Pharm Pharmacol ; 75(7): 969-984, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37163766

ABSTRACT

OBJECTIVES: Alterations in cardiovascular and skeletal muscle function are hallmarks of ageing that lead to exercise intolerance. We aimed to examine whether the treatment with Euterpe oleracea Mart. seed extract (ASE) associated with exercise training improves aerobic exercise performance by promoting healthy ageing in the elderly. METHODS: Male Wistar rats were divided into five groups: Young (3 months), Old (18 months), Old+ASE (ASE 200 mg/kg/day), Old+Training (exercise training 30 min/day; 5 days/week) and Old+Training+ASE, for 4 weeks. KEY FINDINGS: ASE treatment increased the exercise time and the running distance concerning the initial maximal treadmill stress test (MTST) in the Old+Training+ASE group. Exercise training or ASE treatment restored the aorta oxidative damage and antioxidant defence. It reduced the acetylcholine (ACh)-induced vasodilation in the aorta of old animals to the same values as the young and improved hypertension. Only the association of both strategies restored the ACh-induced vasodilation in mesentery arteries. Remarkably, exercise training associated with ASE increased the antioxidant defence, nitrite levels and expression of the mitochondrial SIRT-1, PGC1α in soleus muscle homogenates. CONCLUSIONS: ASE treatment associated with exercise training contributes to better exercise performance and tolerance in ageing by improving vascular function, oxidative stress and activating the muscle SIRT-1/PGC-1α pathway.


Subject(s)
Euterpe , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Rats, Wistar , Plant Extracts/pharmacology , Plant Extracts/metabolism , Oxidative Stress , Muscle, Skeletal , Physical Functional Performance
14.
J Ethnopharmacol ; 313: 116554, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37137453

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Buxue decoction (DBD) is a classic herbal decoction consisting of Astragali Radix (AR) and Angelica Sinensis Radix (ASR) with a 5:1 wt ratio, which can supplement 'blood' and 'qi' (vital energy) for the treatment of clinical diseases. According to Traditional Chinese Medicine (TCM) theory, dementia is induced by Blood deficiency and Qi weakness, which causes a decline in cognition. However, the underlying mechanisms of DBD improving cognition deficits in neurodegenerative disease are no clear. AIM OF THE STUDY: This study aims at revealing the underlying mechanisms of DBD plays a protective role in the cognitive deficits and pathology process of Alzheimer's disease (AD). MATERIALS AND METHODS: The APP/PS1 (Mo/HuAPP695swe/PS1-dE9) double transgenic mice were adopted as an experimental model of AD. Qualitative and quantitative analysis of 3 compounds in DBT was analyzed by HPLC. Morris water maze test, Golgi staining and electrophysiology assays were used to evaluate the effects of DBD on cognitive function and synaptic plasticity in APP/PS1 mice. Western blot, immunofluorescence and Thioflavin S staining were used for the pathological evaluation of AD. Monitoring the level of ATP, mitochondrial membrane potential, SOD and MDA to evaluate the mitochondrial function, and with the usage of qPCR and CHIP for the changes of histone post-translational modification. RESULTS: In the current study, we found that DBD could effectively attenuate memory impairments and enhance long-term potentiation (LTP) with concurrent increased expression of memory-associated proteins. DBD markedly decreased Aß accumulation in APP/PS1 mice by decreasing the phosphorylation of APP at the Thr668 level but not APP, PS1 or BACE1. Further studies demonstrated that DBD restored mitochondrial biogenesis deficits and mitochondrial dysfunction. Finally, the restored mitochondrial biogenesis and cognitive deficits are under HADC2-mediated histone H4 lysine 12 (H4K12) acetylation at the peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) and N-methyl-D-aspartate receptor type 2B (GluN2B) promoters. CONCLUSIONS: These findings reveal that DBD could ameliorate mitochondrial biogenesis and cognitive deficits by improving H4K12 acetylation. DBD might be a promising complementary drug candidate for AD treatment.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Histones/metabolism , Lysine/metabolism , Lysine/therapeutic use , Amyloid Precursor Protein Secretases , Acetylation , Organelle Biogenesis , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/therapeutic use , Alzheimer Disease/drug therapy , Mice, Transgenic , Cognition , Protein Processing, Post-Translational , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal
15.
Front Cell Neurosci ; 17: 1135227, 2023.
Article in English | MEDLINE | ID: mdl-37091920

ABSTRACT

Introduction: This study aimed to identify the effect of electroacupuncture (EA) treatment on post-stroke depression (PSD) and explore whether cannabinoid receptor 1 (CB1R)-mediated mitochondrial biogenesis accounts for the treatment effect of EA. Methods: The PSD mouse model was induced by a consecutive 14-day chronic unpredictable stress operation after 7 days of recovery from the bilateral common carotid artery occlusion surgery. Either EA treatment or sham stimulation was performed for 14 consecutive days from Day 7 after the BCCAO operation. Subjects' PSD-like behaviors were tested via open field test, sucrose preference test, novelty suppressed feeding test, tail suspension test, and forced swim test, and subjects' cognitive function was examined using Y-maze and novelty object recognition test. In addition, the levels of CB1R, mitochondrial biogenesis-related proteins (nuclear transcription factor 1, NRF1; mitochondrial transcription factor A, TFAM), proteins related to mitochondrial function (Cytochrome C, Cyto C; AIF, COX IV), and mitochondrial DNA were measured. To elucidate the role of CB1R in EA treatment, CB1R antagonists AM251 and CB1R-shRNA were given to mice before EA treatment. Likewise, subjects' depressive-like behaviors, cognitive function, mitochondrial function, and mitochondrial biogenesis were examined after the PSD procedure. Results: It has been showed that EA successfully ameliorated depressive-like behaviors, improved cognitive dysfunctions, and upregulated CB1R, NRF1 and TFAM expressions. However, the supplementation of AM251 and CB1R-shRNA blocked the antidepressant-like effects generated by EA, and EA failed to improve cognitive dysfunction, upregulate CB1R protein expression, and increase mitochondrial function and biogenesis. Conclusion: Altogether, these results indicated that EA ameliorated PSD-like behaviors in mice, improved cognitive dysfunctions after PSD, and promoted mitochondrial biogenesis by activating CB1R, a novel mechanism underlying EA's antidepressant-like effects in treating PSD.

16.
J Ethnopharmacol ; 308: 116276, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36806340

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: A key event in the pathogenesis of acute-on-chronic liver failure (ACLF) is the imbalance in the systemic immune response; immunosuppression in patients with ACLF contributes to poor prognosis. The Yi-Qi-Jian-Pi formula (YQJPF) may improve T lymphocyte immune function in patients with ACLF. AIM OF THE STUDY: To investigate the immune mechanism of YQJPF in vivo and in vitro. MATERIALS AND METHODS: An ACLF rat model was established by injection of CCl4, lipopolysaccharide, and D-galactosamine. We examined the effect of different doses of YQJPF (6.43, 12.87, 25.74 g/kg) on liver injury and immune function in the ACLF rat model. Magnetic-activated cell sorting was used to sort the CD8+ T lymphocytes in the spleen for lymphocyte function detection. In primary CD8+ T lymphocytes and Jurkat cell lines, the expression of mitochondrial function and biogenesis and autophagy related markers were detected using molecular biological methods and flow cytometry analysis. RESULTS: YQJPF improved the peripheral blood lymphocyte count and proportion of CD8+ T lymphocytes in ACLF rats, increased pro-inflammatory factors (IL-2, IFN-λ, and TNF-α), and reduced anti-inflammatory factors (IL-10 and TGF ß1). YQJPF also improved metabolism and mitochondrial homeostasis in CD8+ T lymphocytes, alleviated lymphocyte immune dysfunction by promoting autophagy, upregulated mitochondrial biogenesis by promoting PGC-1α, NRF-1, and TFAM expression, and regulated the relationship between autophagy and mitochondrial biogenesis via PGC-1α. CONCLUSIONS: Our results suggest that YQJPF could improve immune function in a rat model of ACLF, possibly via affecting the homeostasis of lymphatic mitochondria in CD8+ T lymphocytes. YQJPF may enhance lymphocyte mitochondrial biosynthesis and promote lymphocyte autophagy. PGC-1α is a possible upstream regulatory target of YQJPF.


Subject(s)
Acute-On-Chronic Liver Failure , Rats , Animals , Acute-On-Chronic Liver Failure/pathology , Organelle Biogenesis , CD8-Positive T-Lymphocytes , Autophagy , Immunity
17.
J Ethnopharmacol ; 308: 116282, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36806343

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: QiShenYiQi is a Chinese herbal formula composed of Astragalus membranaceus Fisch. ex Bunge, root; Slauia miltiorrhiza Bunge, root and rhizome; Panax notoginseng (Burkill) F.H.Chen, root; and Dalbergia odorifera T.C.Chen, heartwood of trunk and root with a proportion of 10:5:1:0.067. Its dripping pills were approved by the National Medical Products Administration (NMPA) in 2003 and could be used in the clinical treatment of ischemic heart diseases. Ferroptosis is an important pathological mechanism in the process of myocardial ischemia (MI). Whether QSYQ can improve ferroptosis induced by myocardial ischemia is still unclear. AIM OF THE STUDY: In this study, the potential mechanisms of QSYQ against ferroptosis in MI-induced injury were investigated. MATERIALS AND METHODS: The main components of QSYQ were analyzed by HPLC-Q-TOF-MS/MS. MI model was established by ligation of the left anterior descending coronary artery and then treated with QSYQ dropping pills for 14 days. The cardiac function of mice was evaluated by echocardiography. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were used to detect the pathological changes in heart tissue. Serum biochemical indexes were analyzed by biochemical kit. Transmission electron microscope (TEM) was used to observe the mitochondria ultrastructure and mitochondrial ROS was detected by immunofluorescence. Then, photoacoustic imaging was used to observe the redox status of the mice' hearts. Finally, the mitochondrial dynamics and biogenesis related proteins and the proteins of ferroptosis were analyzed by western blotting. RT-PCR was used to detect the mRNA expression changes of ferroptosis. RESULTS: A total of 20 principal components of QSYQ were characterized by HPLC-Q-TOF-MS/MS. QSYQ significantly improved cardiac function and myocardial injury in MI mice. Furthermore, the lipid peroxidation change levels (MDA, 4-HNE, and GSH) in serum were attenuated and myocardial iron content was reduced after QSYQ treatment. On this basis, QSYQ also improved the expression changes of ferroptosis related mRNA and proteins. In addition, QSYQ promoted mitochondrial biogenesis (PGC-1α, Nrf1, and TFAM) and mitochondrial fusion (MFN-2 and OPA1) and inhibited mitochondrial excessive fission (Phosphorylation of Drp1 at ser616) in vitro and in vivo, indicating that the cardioprotection of QSYQ might be related to promoting mitochondrial biogenesis and dynamic homeostasis. CONCLUSION: In summary, QSYQ could alleviate MI-induced ferroptosis by improving mitochondrial biogenesis and dynamic homeostasis.


Subject(s)
Drugs, Chinese Herbal , Ferroptosis , Myocardial Ischemia , Rats , Mice , Animals , Mitochondrial Dynamics , Tandem Mass Spectrometry , Rats, Sprague-Dawley , Drugs, Chinese Herbal/pharmacology , Myocardial Ischemia/drug therapy , Homeostasis
18.
Food Res Int ; 163: 112198, 2023 01.
Article in English | MEDLINE | ID: mdl-36596137

ABSTRACT

Lotus (Nelumbo nucifera Gaertn.) is an aquatic perennial crop planted worldwide and its leaf (also called "He-Ye") has therapeutic effects on obesity. However, whether the underlying mechanism leads to increased energy expenditure by activation of brown adipocytes has not been clarified. Here, murine C3H10T1/2 mesenchymal stem cells (MSCs) were employed to investigate the effects of ethanol extracts from lotus leaf (LLE) on brown adipocytes formation and the underlying molecular mechanisms. The results showed LLE was rich in polyphenols (383.7 mg/g) and flavonoids (178.3 mg/g), with quercetin 3-O-glucuronide (Q3G) the most abundant (128.2 µg/mg). In LLE-treated C3H10T1/2 MSCs, the expressions of lipolytic factors (e.g., ATGL, HSL, and ABHD5) and brown regulators (e.g., Sirt1, PGC-1α, Cidea, and UCP1) were significantly upregulated compared to that in the untreated MSCs. Furthermore, LLE promoted mitochondrial biogenesis and fatty acid ß-oxidation, as evidenced by increases in the expression of Tfam, Cox7A, CoxIV, Cox2, Pparα, and Adrb3. Likewise, enhanced browning and mitochondrial biogenesis were also observed in Q3G-stimulated cells. Importantly, LLE and Q3G induced phosphorylation of AMPK accompanied by a remarkable increase in the brown fat marker UCP1, while pretreatment with Compound C (an AMPK inhibitor) reversed these changes. Moreover, stimulating LLE or Q3G-treated cells with CL316243 (a beta3-AR agonist) increased p-AMPKα/AMPKα ratio and UCP1 protein expression, indicating ß3-AR/AMPK signaling may involve in this process. Collectively, these observations suggested that LLE, especially the component Q3G, stimulates thermogenesis by activating brown adipocytes, which may involve the ß3-AR/AMPK signaling pathway.


Subject(s)
Adipose Tissue, Brown , Mesenchymal Stem Cells , Animals , Mice , Adipose Tissue, Brown/metabolism , AMP-Activated Protein Kinases/metabolism , Phenotype , Mesenchymal Stem Cells/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
19.
J Biomol Struct Dyn ; 41(20): 11101-11121, 2023 12.
Article in English | MEDLINE | ID: mdl-36546728

ABSTRACT

Medicinal plants possess therapeutic potential for reducing reactive oxygen species (ROS)-mediated cellular damage. Hydroxytyrosol is one of the most potent antioxidants that served as control in the current study, including other synthetic antioxidants to computationally identify the antioxidant properties of Silymarin. The sequences of the receptors IκB kinase (IKK), Kelch-like ECH-associated protein 1 (Keap-1) and mitochondrial transcription factor A (Tfam) were retrieved from UniProtKB and homology modeling was performed using Swiss-Model server. Thereof the molecular docking and dynamic simulation studies were performed using Schrödinger's software version 11.5. From the current study, it was reported that on comparison of the binding energy of silymarin, hydroxytyrosol, α-tocopherol, ascorbic acid, butylated hydroxy anisole (BHA) and butylated hydroxytoluene (BHT), Silymarin exhibited better affinities with IKK receptor followed by Hydroxytyrosol suggesting it as the best or comparable of all other known antioxidants that could potentially suppress inflammation and other diseases. Also, Silymarin exhibited poorest binding affinity with Tfam promoting mitochondrial biogenesis, thereby scavenging ROS. However, with Keap-1, Silymarin is ranked 4th in the list, whereas hydroxytyrosol exhibited highest binding affinity to release oxidative stress. The stability of docked complexes made us conclude that Silymarin has comparable antioxidant properties to hydroxytyrosol, better anti-inflammatory potential and mitochondrial biogenesis enhancing properties to ultimately reduce oxidative stress. Now it can be tested further for in vitro or in vivo studies as potential drug against oxidative insult.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antioxidants , Silymarin , Antioxidants/pharmacology , Antioxidants/chemistry , Silymarin/pharmacology , Silymarin/chemistry , Silymarin/therapeutic use , Silybum marianum/chemistry , Silybum marianum/metabolism , Reactive Oxygen Species , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology
20.
Front Nutr ; 10: 1335187, 2023.
Article in English | MEDLINE | ID: mdl-38288063

ABSTRACT

Introduction: Iron is an essential micronutrient that plays a crucial role in various biological processes. Previous studies have shown that iron supplementation is related to exercise performance and endurance capacity improvements. However, the underlying mechanisms responsible for these effects are not well understood. Recent studies have suggested the beneficial impact of iron supplementation on mitochondrial function and its ability to rescue mitochondrial function under adverse stress in vitro and rodents. Based on current knowledge, our study aimed to investigate whether the changes in exercise performance resulting from iron supplementation are associated with its effect on mitochondrial function. Methods: In this study, we orally administered an iron-based supplement to rats for 30 consecutive days at a dosage of 0.66 mg iron/kg body weight and vitamin B6 at a dosage of 0.46 mg/kg. Results: Our findings reveal that long-term iron supplementation, in combination with vitamin B6, led to less body weight gained and increased VO2 max in rats. Besides, the treatment substantially increased Complex I- and Complex II-driven ATP production in intact mitochondria isolated from gastrocnemius and cerebellum. However, the treatment did not change basal and succinate-induced ROS production in mitochondria from the cerebellum and skeletal muscle. Furthermore, the iron intervention significantly upregulated several skeletal muscle mitochondrial biogenesis and metabolism-related biomarkers, including PGC-1α, SIRT1, NRF-2, SDHA, HSL, MTOR, and LON-P. However, it did not affect the muscular protein expression of SIRT3, FNDC5, LDH, FIS1, MFN1, eNOS, and nNOS. Interestingly, the iron intervention did not exert similar effects on the hippocampus of rats. Discussion: In conclusion, our study demonstrates that long-term iron supplementation, in combination with vitamin B6, increases VO2 max, possibly through its positive role in regulating skeletal muscle-specific mitochondrial biogenesis and energy production in rats.

SELECTION OF CITATIONS
SEARCH DETAIL