Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Chin J Integr Med ; 30(1): 34-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37076638

ABSTRACT

OBJECTIVE: To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway. METHODS: Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside. RESULTS: Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05). CONCLUSION: Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Chaperone BiP , HeLa Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Cell Line, Tumor
2.
J Headache Pain ; 24(1): 122, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37667199

ABSTRACT

BACKGROUND: Migraine, a complex brain disorder, is regarded as a possible clinical manifestation of brain energy dysfunction. The trigeminovascular system is considered the basis for the pathogenesis of migraine, hence we depicted the proteomics profiling of key regions in this system, then focusing on protein alterations related to mitochondrial function. The aim of this study is to illustrate the role of mitochondria in migraine. METHODS: A mouse model of chronic migraine (CM) was established by repeated nitroglycerin (NTG) stimulation and evaluated by von-Frey filaments, a hot plate and a light-dark box. Differentially expressed proteins (DEPs) in some subcortical brain regions of the trigeminovascular system were screened through liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyse the specificity of key signaling pathways in different brain regions. And then mitochondrial function, structure and dynamics were determined by qPCR, ELISA, and transmission electron microscope (TEM). Finally, the effect of mitochondrial intervention-Urolithin A (UA) on CM was investigated. RESULTS: Repeated NTG injection triggered photophobia, periorbital and hind paw allodynia in mice. The proteomics profiling of CM model showed that 529, 109, 163, 152 and 419 DEPs were identified in the thalamus, hypothalamus, periaqueductal grey (PAG), trigeminal ganglion (TG) and trigeminocervical complex (TCC), respectively. The most significant changes in the brain region-specific pathways pointed to thalamic mitochondrial impairment. NTG induced mitochondrial structural disruption, dysfunction and homeostatic dysregulation, which could be partially attenuated by UA intervention. CONCLUSION: Our findings highlight the involvement of mitochondrial damage in the thalamus in central sensitization of CM, which provides evidence of possible metabolic mechanisms in migraine pathophysiology.


Subject(s)
Migraine Disorders , Proteomics , Animals , Mice , Chromatography, Liquid , Tandem Mass Spectrometry , Thalamus , Disease Models, Animal , Nitroglycerin/toxicity
3.
Chin J Integr Med ; 29(10): 932-940, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37434031

ABSTRACT

OBJECTIVE: To explore the protective effect of bloodletting acupuncture at twelve Jing-well points on hand (BAJP) on acute hypobaric hypoxia (AHH)-induced brain injury in rats and its possible mechanisms. METHODS: Seventy-five Sprague Dawley rats were divided into 5 groups by a random number table (n=15), including control, model, BAJP, BAJP+3-methyladenine (3-MA), and bloodletting acupuncture at non-acupoint (BANA, tail tip blooding) groups. After 7-day pre-treatment, AHH models were established using hypobaric oxygen chambers. The levels of S100B, glial fibrillary acidic protein (GFAP), superoxide dismutase (SOD), and malondialdehyde (MDA) in serum were measured by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling method were used to assess hippocampal histopathology and apoptosis. Transmission electron microscopy assay was used to observe mitochondrial damage and autophagosomes in hippocampal tissues. Flow cytometry was used to detect mitochondrial membrane potential (MMP). The mitochondrial respiratory chain complexes I, III and IV activities and ATPase in hippocampal tissue were evaluated, respectively. Western blot analysis was used to detect the protein expressions of Beclin1, autophagy protein 5 (ATG5), microtubule-associated protein 1 light chain 3 beta (LC3B), phosphatase and tensin homolog induced kinase 1 (PINK1), and Parkin in hippocampal tissues. The mRNA expressions of Beclin1, ATG5 and LC3-II were analyzed by quantitative real-time polymerase chain reaction. RESULTS: BAJP treatment reduced hippocampal tissue injury and inhibited hippocampal cell apoptosis in AHH rats. BAJP reduced oxidative stress by decreasing S100B, GFAP and MDA levels and increasing SOD level in the serum of AHH rats (P<0.05 or P<0.01). Then, BAJP increased MMP, the mitochondrial respiratory chain complexes I, III and IV activities, and the mitochondrial ATPase activity in AHH rats (all P<0.01). BAJP improved mitochondrial swelling and increased the autophagosome number in hippocampal tissue of AHH rats. Moreover, BAJP treatment increased the protein and mRNA expressions of Beclin1 and ATG5 and LC3-II/LC3-I ratio in AHH rats (all P<0.01) and activated the PINK1/Parkin pathway (P<0.01). Finally, 3-MA attenuated the therapeutic effect of BAJP on AHH rats (P<0.05 or P<0.01). CONCLUSION: BAJP was an effective treatment for AHH-induced brain injury, and the mechanism might be through reducing hippocampal tissue injury via increasing the PINK1/Parkin pathway and enhancement of mitochondrial autophagy.

4.
Mater Today Bio ; 21: 100702, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37408696

ABSTRACT

Rheumatoid arthritis (RA) is a common chronic inflammatory disease characterized by the proliferation of fibroblast-like synoviocytes (FLS), pannus development, cartilage, and bone degradation, and, eventually, loss of joint function. Fibroblast activating protein (FAP) is a particular product of activated FLS and is highly prevalent in RA-derived fibroblast-like synoviocytes (RA-FLS). In this study, zinc ferrite nanoparticles (ZF-NPs) were engineered to target FAP+ (FAP positive) FLS. ZF-NPswere discovered to better target FAP+ FLS due to the surface alteration of FAP peptide and to enhance RA-FLS apoptosis by activating the endoplasmic reticulum stress (ERS) system via the PERK-ATF4-CHOP, IRE1-XBP1 pathway, and mitochondrial damage of RA-FLS. Treatment with ZF-NPs under the influence of an alternating magnetic field (AMF) can significantly amplify ERS and mitochondrial damage via the magnetocaloric effect. It was also observed in adjuvant-induced arthritis (AIA) mice that FAP-targeted ZF-NPs (FAP-ZF-NPs) could significantly suppress synovitis in vivo, inhibit synovial tissue angiogenesis, protect articular cartilage, and reduce M1 macrophage infiltration in synovium in AIA mice. Furthermore, treatment of AIA mice with FAP-ZF-NPs was found to be more promising in the presence of an AMF. These findings demonstrate the potential utility of FAP-ZF-NPs in the treatment of RA.

5.
Aquat Toxicol ; 261: 106616, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37348385

ABSTRACT

Oxytetracycline (OTC), a commonly used tetracycline antibiotic in aquaculture, has been found to cause significant damage to the liver of largemouth bass (Micropterus salmoides). This study revealed that OTC can lead to severe histopathological damage, structural changes at the cellular level, and increased levels of reactive oxygen species (ROS) in M. salmoides. Meanwhile, OTC impairs the activities of antioxidant enzyme (such as T-SOD, CAT, GST, GR) by suppressing the activation of MAPK/Nrf2 pathway. OTC disrupts mitochondrial dynamics and mitophagy through via PINK1/Parkin pathway. The accumulation of damaged mitochondria, combined with the inhibition of the antioxidant enzyme system, contributes to elevated ROS levels and oxidative liver damage in M. salmoides. Further investigations demonstrated that an enzyme-treated soy protein (ETSP) dietary supplement can help maintain mitochondrial dynamic balance by inhibiting the PINK1/Parkin pathway and activate the MAPK/Nrf2 pathway to counteract oxidative damage. In summary, these findings highlight that exposure to OTC disrupts mitochondrial dynamics and inhibits the antioxidant enzyme system, ultimately exacerbating oxidative liver damage in M. salmoides. We propose the use of a dietary supplement as a preventive measure against OTC-related side effects, providing valuable insights into the mechanisms of antibiotic toxicity in aquatic environments.


Subject(s)
Bass , Oxytetracycline , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Bass/metabolism , Oxytetracycline/toxicity , Mitochondrial Dynamics , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Water Pollutants, Chemical/toxicity , Oxidative Stress , Liver , Anti-Bacterial Agents/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology , Protein Kinases/metabolism , Protein Kinases/pharmacology
6.
Chin J Integr Med ; 29(2): 170-178, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36484920

ABSTRACT

OBJECTIVE: To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat. METHODS: Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling. RESULTS: BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH. CONCLUSION: BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.


Subject(s)
Acupuncture Therapy , Bloodletting , Animals , Rats , Altitude , Apoptosis , Autophagy , Hypoxia/metabolism , Membrane Proteins/metabolism , Membrane Proteins/pharmacology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/pharmacology , Oxidative Stress , Rats, Sprague-Dawley
7.
Article in Chinese | WPRIM | ID: wpr-978456

ABSTRACT

ObjectiveBy observing the effect of modified Zhenwutang on the expression of superoxide dismutase 1(SOD1), malondialdehyde(MDA), advanced oxidation protein product(AOPP), nuclear factor kappa-B(NF-κB) p65,p-p65,IL-1β, TNF-α in serum and renal tissue of adenine-induced chronic renal failure rats and the pathology of heart and kidney tissue, the possible mechanism of modified Zhenwutang delaying the progression of chronic renal failure complicated with heart disease was discussed. MethodFifty SPF male SD rats were divided into normal group 10 and model group 40 according to the random number table method. After one week of adaptive feeding, the experimental chronic renal failure complicated with cardiovascular disease rat model was established by intragastric administration of adenine 150 mg·kg-1·d-1. After the model was completed, 3 rats in the normal group and the model group were randomly selected to detect whether the model was successful. After successful modeling, the rats in the model group were divided into model group , modified Zhenwutang low-dose group , modified Zhenwutang medium-dose group, modified Zhenwutang high-dose group and Benazepril hydrochloride group according to the random number table method, with 6 rats in each group. Drugs were administered once a day for 4 weeks. At the end of the 17th week of the experiment, 24-hour urinary total protein(24 h-UTP) and urine creatinine(UCr)were detected. At the end of the 17th week, the rats in each group were anesthetized and the abdominal aorta was taken. After centrifugation, the supernatant was taken to detect triglyceride(TG), total cholesterol(TC), serum calcium(Ca), serum potassium, serum phosphate, serum creatinine(Scr), blood urea nitrogen(BUN); the expression levels of serum AOPP, IL-1β and TNF-α were detected by enzyme linked immunosorbent assay(ELISA). The pathological changes of heart and kidney tissues were observed by hematoxylin-eosin(HE)/Masson method. The ultrastructural changes of proximal renal tubules were observed by transmission electron microscopy . The kidney tissue expressions of SOD1, MDA, AOPP, NF-κB p65,p-p65,IL-1β and TNF-α were observed by immunohistochemistry. The kidney tissue expression levels of SOD1, NF-κB p65, IL-1β and TNF-α mRNA were observed by real-time polymerase chain reaction(Real-time PCR). The kidney tissue expression levels of SOD1, MDA, NF-κB p65 and p-p65 were detected by Western blot. Result①Compared with the normal group, the experimental rats in the model group showed an increase in 24-hour UTP (P<0.01)and a decrease in UCr(P<0.01). The experimental rats in the model group showed an increase in Cr, BUN, TG, TC, serum phosphate, and serum potassium(P<0.01).The levels of AOPP, IL-1β and TNF-α in serum of rats in the model group were significantly increased(P<0.01). In the model group, the glomerular balloon space was significantly widened, the renal interstitium was significantly widened with a large number of inflammatory cell infiltration, a large number of renal tubular lumens were blocked by brown deposits, and there were a large number of collagen fiber deposition in the renal interstitium. The collagen fibers around the renal vessels, outside the capsule wall of the renal capsule wall, glomerular basement membrane and renal tubular basement membrane were significantly increased, and the cardiac muscle fibers were significantly thickened. There was a small amount of inflammatory cell infiltration around the blood vessels, and a large number of collagen fibers around the cardiac vessels and between the myocardial cells. In the model group, high-density diamond-shaped needle-like crystals were observed in the proximal renal tubular epithelial cells of rats, with increased lysosomes, mitochondrial proliferation, mitochondrial cristae and dense mitochondrial outer membrane. The left ventricular diastolic wall thickness and systolic wall thickness of the experimental rats in the model group was increased in proximal renal tubular epithelial cells and their nuclei.In the model group, the expression of MDA, AOPP, NF-κB p65,p-p65 IL-1β and TNF-α in proximal renal tubular epithelial cells was significantly increased(P<0.01), the expression of p-p65 in the nucleus of proximal renal tubular epithelial cells was significantly increased(P<0.01), and the expression of SOD1 in proximal renal tubular epithelial cells was significantly decreased(P<0.01). The kidney tissue expression of NF-κB p65, IL-1β and TNF-α mRNA in the model group was increased(P<0.01), and the expression of SOD1 mRNA was decreased(P<0.01). The kidney tissue expression of SOD1 protein in the model group was significantly decreased(P<0.01). The kidney tissue expression of MDA, NF-κB p65 and p-p65 protein was increased (P<0.01). ② Compared with the model group, after the intervention of modified Zhenwutang, 24 h-UTP was decreased (P<0.01)and UCr was increased(P<0.01). Cr, BUN, TG, TC, serum phosphate, serum potassium was decreased (P<0.01). Serum AOPP, IL-1β and TNF-α levels were decreased(P<0.01). Cardiac and Renal pathological damage was reduced; mitochondrial damage in proximal renal tubules was reduced; the expression of MDA, AOPP, NF-κB p65, IL-1β, TNF-α in proximal renal tubular epithelial cells was decreased (P<0.01), the expression of p-p65 in the nucleus of proximal renal tubular epithelial cells was significantly decreased (P<0.01), and the expression of SOD1 in proximal renal tubular epithelial cells was significantly increased (P<0.01). The kidney tissue expression of NF-κB p65, IL-1β, TNF-α mRNA was decreased (P<0.01), and the expression of SOD1 mRNA was increased(P<0.01). The kidney tissue expression of SOD1 protein was significantly increased (P<0.01), and the expression of MDA, NF-κB p65 and p-p65 protein was decreased (P<0.01). The Chinese medicine group showed a significant dose-effect trend. ConclusionModified Zhenwutang may reduce the production of oxidative stress and mitochondrial damage in proximal renal tubular epithelial cells, thereby reducing oxidative stress products and inhibiting the release of inflammatory factors caused by the activation of NF-κB signaling pathway, reducing the damage to heart and kidney tissues and functions, and delaying the progression of chronic renal failure complicated with heart disease, and the traditional Chinese medicine group has a dose-effect trend.

8.
Article in English | WPRIM | ID: wpr-971338

ABSTRACT

OBJECTIVE@#To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat.@*METHODS@#Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling.@*RESULTS@#BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH.@*CONCLUSION@#BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.


Subject(s)
Animals , Rats , Acupuncture Therapy , Altitude , Apoptosis , Autophagy , Bloodletting , Hypoxia/metabolism , Membrane Proteins/pharmacology , Mitochondrial Proteins/pharmacology , Oxidative Stress , Rats, Sprague-Dawley
9.
Nutrients ; 14(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364943

ABSTRACT

Catechins are key functional components in tea and have many health benefits, including relieving diabetes. Glucose is necessary for maintaining life. However, when the glucose in the serum exceeds the threshold, it will lead to hyperglycemia. Hyperglycemia is mainly caused by insufficient insulin secretion or insulin resistance. Persistent hyperglycemia can cause various disorders, including retinopathy, nephropathy, neurodegenerative diseases, cardiovascular disease, and diabetes. In this paper, we summarize the research on the underlying mechanisms of catechins in regulating diabetes and elaborate on the mechanisms of catechins in alleviating hyperglycemia by improving insulin resistance, alleviating oxidative stress, regulating mitochondrial function, alleviating endoplasmic reticulum stress, producing anti-inflammatory effects, reducing blood sugar source, and regulating intestinal function. This review will provide scientific direction for future research on catechin alleviating diabetes.


Subject(s)
Catechin , Diabetes Mellitus , Hyperglycemia , Insulin Resistance , Humans , Catechin/pharmacology , Catechin/therapeutic use , Glucose , Tea
10.
Aging Dis ; 13(5): 1471-1487, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36186127

ABSTRACT

Excessive sodium fluoride (NaF) intake interferes with reproductive function in humans and animals; however, strategies to prevent these effects are still underexplored. Here, we showed that in vivo and in vitro supplementation of folic acid (FA) efficaciously improved the quality of NaF-exposed oocytes. FA supplementation not only increased ovulation of oocytes from NaF-treated mice but also enhanced oocyte meiotic competency and fertilization ability by restoring the spindle/chromosome structure. Moreover, FA supplementation could exert a beneficial effect on NaF- exposed oocytes by restoring mitochondrial function, eliminating reactive oxygen species accumulation to suppress apoptosis. We also found that FA supplementation restored the defective phenotypes in oocytes through a Sirt1/Sod2-dependent mechanism. Inhibition of Sirt1 with EX527 abolished the FA-mediated improvement in NaF-exposed oocyte quality. Collectively, our data indicated that FA supplementation is a feasible approach to protect oocytes from NaF-related deterioration.

11.
Front Pharmacol ; 13: 900842, 2022.
Article in English | MEDLINE | ID: mdl-35754486

ABSTRACT

Background: Most Aconitum species in traditional Chinese medicine have the effect of dispelling wind, dehumidifying, warming the meridian, and relieving pain. Aconitine is the characteristic chemical component with the function of anti-inflammation, analgesic, and heart-strengthening effects. However, improper use will produce cardiotoxicity and neurotoxicity. Currently, the mechanisms of cardiotoxicity caused by aconitine are wheels within wheels without being fully disclosed. The systematic review and meta-analysis were therefore conducted to summarize the available evidence of myocardial toxicity caused by aconitine. Methods: We searched PubMed, Embase, Web of Science, National Knowledge Infrastructure, WANFANG, and VIP information database for relevant preclinical studies. All the data were analyzed by RevMan version 5.3. Results: Thirty-two studies met the final inclusion criteria, including both in vivo and in vitro study types. After aconitine treatment, the heart rate of animals was obviously abnormal, and the morphology and function of myocardial cells were significantly changed. Aconitine can induce changes in the electrophysiological activity of cardiac myocytes by regulating Na+, Ca2+, and K+ currents. Meanwhile, the mechanisms of cardiotoxicity of aconitine may be related to triggering mitochondrial dysfunction by inducing mitochondrial apoptosis and autophagy. It should not be ignored that the overactivation of NLRP3 inflammasome also exacerbates aconitine's cardiotoxicity. Conclusion: The altered ion channels and mitochondrial function, as well as the signaling pathways interacting with NLRP3, may deserve further study for aconitine-induced cardiotoxicity.

12.
Mol Biol Rep ; 49(7): 5897-5909, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35543827

ABSTRACT

BACKGROUND: Coix seed oil (CSO) has a wide range of anticancer effects. However, the mechanism of action against pancreatic cancer (PC) and regulation of mitochondria in vitro is still unclear. MATERIALS AND RESULTS: This research investigated the possible mechanism of CSO induction of PC cell apoptosis and regulating mitochondrial functional damage. Proliferation of PC cells, mitochondrial membrane potential (MMP), qualitative and quantitative analysis of PC cell apoptosis, openness of mitochondrial permeability transition pore, related protein expression, generation of reactive oxygen species (ROS), and gene expression were determined by cell counting kit-8, JC-1 staining, acridine orange and ethidium bromide staining, flow cytometry, calcein-AM/cobalt staining, western blotting, dichlorofluorescein diacetate probe, and quantitative real-time reverse transcription-polymerase chain reaction, respectively. We confirmed that PTEN protein was involved in CSO-induced PANC-1 cell apoptosis and mitochondrial functional damage. CSO induced depolarization of MMP, increased opening of the mitochondrial permeability transition pore, increased ROS production, and further increased mitochondrial damage. Additionally, CSO downregulated expression of p-AKT and p-PI3K proteins; upregulated protein expression of cleaved caspase-9, Bax, cleaved caspase-3 and cytochrome c; and downregulated expression of Bcl-2 by upregulating the PTEN gene. The corresponding protein expression was consistent with the gene expression level. Furthermore, the loss of function of PTEN protein reduces the ability of CSO to induce apoptosis of PANC-1 cells and damage to mitochondrial function. CONCLUSIONS: CSO induces apoptosis of PANC-1 PC cells by modulating mitochondrial functional impairment and related apoptotic molecules via PTEN, which may be closely related to the PI3K/AKT signaling pathway.


Subject(s)
Coix , Pancreatic Neoplasms , Apoptosis , Coix/metabolism , Humans , Mitochondrial Permeability Transition Pore , PTEN Phosphohydrolase/metabolism , Pancreatic Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Plant Oils/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Pancreatic Neoplasms
13.
Chin J Integr Med ; 28(3): 272-280, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35230607

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the elderly and it accounts for nearly 80% of all dementias. The pathogenesis of AD is complicated and enigmatic thus far. The mitochondrial cascade hypothesis assumes that mitochondrial damage may mediate, drive, or contribute to a variety of AD pathologies and may be the main factor in late-onset AD. Currently, there are no widely recognized drugs able to attenuate mitochondrial damage in AD. Notably, increasing evidence supports the efficacy of acupuncture for improving the mitochondrial structure and protecting mitochondrial functions in AD. This review reports the mechanisms by which acupuncture regulates mitochondrial dynamics, energy metabolism, calcium homeostasis and apoptosis. In conclusion, these findings suggest that AD mitochondrial dysfunction represents a reasonable therapeutic target and acupuncture could play a significant role in preventing and treating AD.


Subject(s)
Acupuncture Therapy , Alzheimer Disease , Aged , Alzheimer Disease/drug therapy , Apoptosis , Humans , Mitochondria/metabolism
14.
Redox Rep ; 27(1): 32-44, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35130817

ABSTRACT

Objectives: Lycium barbarum polysaccharide (LBP) is a natural polysaccharide extracted from Lycium barbarum that has anti-inflammatory, anti-apoptotic and anti-aging effects, and plays a role in the prevention and treatment of various diseases. In this study, we investigated the therapeutic effect of LBP on particulate matter 2.5 (PM2.5)-induced skin damage.Methods: Cell viability was analyzed by MTT and LDH assays. Apoptosis was analyzed by Annexin V-FITC/PI staining. Oxidative stress/damage were assessed by intracellular ROS levels, MDA content and SOD activity. The intracellular protein expression was analyzed by Western blot. Mitochondrial damage was assayed by mitochondrial membrane potential with JC-1 probe. LC3-GFP adenovirus was transfected into HaCaT cells to analyze intracellular autophagosome levels.Results: In PM2.5-treated HaCaT cells, LBP pretreatment reduced PM2.5-induced cytotoxicity, ameliorated cell morphology and reduced cell apoptosis. LBP also inhibited the expression levels of GRP78 and CHOP, reduced the conversion of LC3I to LC3II, inhibited Bax protein and activated Bcl-2 protein. Furthermore, LBP inhibited PM2.5-induced mitochondrial autophagy (mitophagy) and mitochondrial damage. PM2.5-induced autophagy was regulated by endoplasmic reticulum (ER) stress.Conclusion: LBP protects skin cells from PM2.5-induced cytotoxicity by regulating the oxidative stress-ER stress-autophagy-apoptosis signaling axis, revealing that LBP has a great potential for the skin protection.


Subject(s)
HaCaT Cells , Particulate Matter , Apoptosis , Autophagy , Drugs, Chinese Herbal , Humans , Oxidative Stress , Particulate Matter/toxicity
15.
J Ethnopharmacol ; 288: 114988, 2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35032588

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dengzhan Xixin injection (DX), a preparation of extracts from traditional Chinese medicine Erigeron breviscapus (Vaniot) Hand.-Mazz., has been widely used in clinical treatment of cerebral ischemia sequelae in China for a long history. However, its underlying mechanisms remain unclear. AIM OF THE STUDY: The objective of this present study aimed to investigate the therapeutic effects of DX on cerebral ischemia/reperfusion (I/R) injury in a rat model. Meanwhile, its underlying molecular mechanisms on mitochondrial protection were further interpreted. MATERIALS AND METHODS: The major components of DX were detected by high-performance liquid chromatography analysis. The model of cerebral I/R injury was established by middle cerebral artery occlusion (MCAO) in SD rats. We firstly performed neurobehavioral score, the regional cerebral blood flow (rCBF) assay, and TTC, HE and Nissl staining for evaluating the effects of DX on I/R injury. And then, the cortical levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were determined by commercial kits. Whereafter, real time-PCR and transmission electron microscopy were employed to investigate the relative copy number of mitochondrial DNA (mtDNA) and neuronal ultrastructure changes, respectively. Further, the potential interactions of major components in DX with mitophagy/apoptosis-related proteins were predicted by Schrodinger molecular docking. The expression of mitophagy-related proteins LC3, p62, TOM20, PINK1 and Parkin was estimated by western blot and immunofluorescence analyses. Furthermore, TUNEL staining and western blot were used to detect the apoptotic phenomenon and the protein expression of Bax, Bcl-2, Cytochrome c (Cyto-c) and cleaved Caspase-3. RESULTS: DX mainly contains scutellarin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, caffeic acid and 5-O-caffeoylquinic acid. Compared with the model group, DX could remarkably relieve ischemia-provoked neurological deficit, rCBF deficiency and cerebral infarction. Pathological changes and neuronal loss in a MCAO model of rats were memorably ameliorated by DX administration. Meanwhile, DX reduced the surged ROS and MDA, while increased the level of SOD. Notably, DX treatment conversed the collapse of ATP and MMP, along with decreased in the relative copy number of mtDNA, contributing to the maintaining of mitochondrial ultrastructure via the increased number of autophagy lysosomes. The representative ingredients in DX had a potential bind with the active sites of mitophagy/apoptosis-related proteins. DX stimulated the protein expression of LC3, PINK1 and Parkin, while reduced the levels of p62 and TOM20. In addition, DX confined TUNEL-positive cell rate with the decreased expressions of Bax, Cyto-c and cleaved Caspase-3 as well as the increased Bcl-2 level. CONCLUSIONS: We demonstrated that the protection of DX against brain ischemia could attribute to alleviating mitochondrial damage by upregulating mitophagy and inhibiting mitochondria-mediated apoptosis.


Subject(s)
Brain Ischemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Erigeron/chemistry , Reperfusion Injury/drug therapy , Animals , Apoptosis/drug effects , Autophagy/drug effects , Infarction, Middle Cerebral Artery , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , Molecular Docking Simulation , Rats , Rats, Sprague-Dawley
16.
Front Cardiovasc Med ; 9: 1038523, 2022.
Article in English | MEDLINE | ID: mdl-36704451

ABSTRACT

Introduction: Modified Linggui Zhugan Decoction (MLZD) is a Traditional Chinese Medicine prescription developed from Linggui Zhugan Decoction (LZD) that has been used for the clinical treatment of ischemic cardiovascular diseases. However, the cardioprotective mechanism of MLZD against post-myocardial infarction (MI) ventricular remodeling remains unclear. Methods: We explored the effects of MLZD on ventricular remodeling and their underlying mechanisms, respectively, in SD rats with MI models and in H9c2 cardiomyocytes with oxygen-glucose deprivation (OGD) models. The cardiac structure and function of rats were measured by echocardiography, HE staining, and Masson staining. Apoptosis, inflammation, mitochondrial structure and function, and sirtuin 3 (SIRT3) expression were additionally examined. Results: MLZD treatment significantly ameliorated cardiac structure and function, and thus reversed ventricular remodeling, compared with the control. Further research showed that MLZD ameliorated mitochondrial structural disruption, protected against mitochondrial dynamics disorder, restored impaired mitochondrial function, inhibited inflammation, and thus inhibited apoptosis. Moreover, the decreased expression level of SIRT3 was enhanced after MLZD treatment. The protective effects of MLZD on SIRT3 and mitochondria, nevertheless, were blocked by 3-TYP, a selective inhibitor of SIRT3. Discussion: These findings together revealed that MLZD could improve the ventricular remodeling of MI rats by ameliorating mitochondrial damage and its associated apoptosis, which might exert protective effects by targeting SIRT3.

17.
Article in English | WPRIM | ID: wpr-928962

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the elderly and it accounts for nearly 80% of all dementias. The pathogenesis of AD is complicated and enigmatic thus far. The mitochondrial cascade hypothesis assumes that mitochondrial damage may mediate, drive, or contribute to a variety of AD pathologies and may be the main factor in late-onset AD. Currently, there are no widely recognized drugs able to attenuate mitochondrial damage in AD. Notably, increasing evidence supports the efficacy of acupuncture for improving the mitochondrial structure and protecting mitochondrial functions in AD. This review reports the mechanisms by which acupuncture regulates mitochondrial dynamics, energy metabolism, calcium homeostasis and apoptosis. In conclusion, these findings suggest that AD mitochondrial dysfunction represents a reasonable therapeutic target and acupuncture could play a significant role in preventing and treating AD.


Subject(s)
Aged , Humans , Acupuncture Therapy , Alzheimer Disease/drug therapy , Apoptosis , Mitochondria/metabolism
18.
Free Radic Biol Med ; 178: 219-225, 2022 01.
Article in English | MEDLINE | ID: mdl-34863877

ABSTRACT

I present a summary of my research during the last few decades of research which focused on understanding the biochemical basis for maintaining an optimum metabolism to support long-term health. I realized that adequate levels of ∼40 vitamins and minerals needed as cofactors in thousands of metabolic reactions were critical for maintaining a healthy metabolism, and thus for longevity and prevention of chronic disease. Inadequate dietary intake of vitamins and minerals accelerates the risk of aging-associated diseases, leading to insidious damage. The Triage Theory provides a mechanistic rationale for such damage: shortage of a nutrient triggers a built-in rationing mechanism that allocates the scarce nutrient to proteins needed for immediate survival (survival proteins), at the expense of those needed for long-term survival (longevity proteins). Many as-yet-unknown longevity vitamins and proteins likely remain to be discovered. The fiber and nutrient-rich CHORI-bar was developed to fill gaps in inadequate diets; it yielded broadscale metabolic improvements. The health-related damages resulting from vitamin D deficiency and the positive effects of vitamin D supplementation were connected to numerous health-related problems, including the higher level of deficiency in people of color residing at northern latitudes. In general, prevention of degenerative diseases of aging requires expertise in metabolism, nutrition, biochemistry and regulatory functions.


Subject(s)
Minerals , Vitamins , Aging , Humans , Longevity , Vitamin A
19.
Phytomedicine ; 94: 153815, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34781232

ABSTRACT

BACKGROUND: Doxorubicin (DOX) is a broad-spectrum anti-tumor drug that has been associated with cardiotoxicity. Plant extracts have been shown to confer protection against DOX-induced cardiotoxicity. Apocynum venetum L. belongs to the Apocynaceae family. Flavonoid extracted from Apocynum venetum L. possess various biological effects, such as lowering blood pressure levels, sedation, diuresis, anti-aging, and improving immunity. PURPOSE: This study investigated the mechanism by which dry leaf extract of Apocynum venetum L. (AVLE) alleviates DOX-induced cardiomyocyte apoptosis. METHODS: HPLC-MS/MS and HPLC methods were used to analyze the components of AVLE. The effects of DOX and AVLE on apoptosis of H9c2 and HMC cells were assessed using the MTT assay. Calcein AM/PI, TUNEL, and flow cytometry were carried out to determine the effects of AVLE on DOX-induced apoptosis. The effect of AVLE on DOX-induced oxidative stress in cardiomyocytes was investigated using ELISA test. Mito-Tracker Red CMXRos, JC-1, and RT-qPCR assays were performed to evaluate the impact of AVLE on DOX-induced cardiomyocyte mitochondrial activity and membrane permeability. Western blot assay was carried out to determine the activation of multiple signaling molecules, including phosphorylated-protein kinase B (p-AKT), Cytochrome c, Bcl-2 family, and caspase family in the apoptosis pathway. The AKT inhibitor was used to block AKT/Bcl-2 signaling pathway to investigate the role of AKT in the protection conferred by AVLE against DOX-induced cardiotoxicity. RESULTS: A total of 8 compounds, including rutin, hyperoside, isoquercetin, unidentified compounds, myricetin, quercetin, quercetin-3-O-glucuronide and kaempferol, were detected in AVLE. Of note, DOX suppressed lactate dehydrogenase (LDH) levels, aggravated oxidative stress, and promoted cardiomyocyte apoptosis. It also upregulated the mRNA expression levels of voltage-dependent anion channel 1 (VDAC1), adenosine nucleotide transporter 1 (ANT1), and cyclophilin D (CYPD), while suppressing mitochondrial activity and mitochondrial membrane permeability. Treatment with DOX altered the expression levels of apoptosis-associated proteins, Bcl-2 and Bax. However, AVLE treatment alleviated DOX-induced effects on cardiomyocytes. In addition, application of AKT inhibitors promoted DOX-induced apoptosis and reversed the inhibitory effects of AVLE on DOX-induced apoptosis. CONCLUSIONS: AVLE confer cardio protection by suppressing oxidative stress and apoptosis of cardiomyocytes via AKT/Bcl-2 signaling pathway.


Subject(s)
Apocynum , Apocynum/metabolism , Apoptosis , Cardiotoxicity/metabolism , Doxorubicin/metabolism , Doxorubicin/toxicity , Humans , Myocytes, Cardiac/metabolism , Oxidative Stress , Plant Extracts/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tandem Mass Spectrometry
20.
Zhonghua Nan Ke Xue ; 27(6): 483-488, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34914286

ABSTRACT

OBJECTIVE: To explore the possible pathogenesis of chronic nonbacterial prostatitis (CNP) in rats from the perspective of mitochondria, and the interventional effect of Jiedu Huoxue Decoction (JHD) on CNP. METHODS: Forty clean-grade SD male rats were randomly divided into 4 groups of an equal number, sham control, CNP model control, Qianliekang Tablets intervention (QLK) and JHD intervention, those in the former two groups treated intragastrically with normal saline, and those in the latter two with QLK and JHD, respectively, at 2g/kg qd for 30 successive days. Then serum and prostate tissue samples were collected from the rats for calculation of the organ coefficients, HE staining, extraction of mitochondria in the prostate tissue, measurement of the levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and Na+-K+-ATPase by colorimetric assay, and observation of the ultrastructural changes of the prostatic epithelial cells under the transmission electron microscope (TEM). RESULTS: The organ coefficient of the prostate was significantly higher in the CNP model controls (ï¼»1.95 ± 0.39ï¼½%) than in the sham control (ï¼»1.50 ± 0.42ï¼½%, P < 0.05), QLK (ï¼»1.54 ± 0.32ï¼½%, P < 0.05) and JHD groups (ï¼»1.47 ± 0.53ï¼½%, P < 0.05). TEM showed significant hyperplasia of the interstitial fibrous tissue, glandular structural disorder and inflammatory cell immersion in the CNP model controls, decreased inflammatory cells and reduced hyperplasia of epithelial cells in the acinar and interstitial fibrous tissues in the QLK and JHD groups, but no significant changes in the sham controls. The CNP model controls, compared with the QLK and JHD groups, exhibited remarkably lower levels of SOD (ï¼»17.42 ± 2.91ï¼½ vs ï¼»23.47 ± 5.79ï¼½ and ï¼»22.52 ± 3.88ï¼½ U/mg prot, P < 0.05), GSH-PX (ï¼»38.35 ± 6.98ï¼½ vs ï¼»47.68 ± 10.37ï¼½ and ï¼»89.95 ± 7.65ï¼½ U/mg prot, P < 0.05 or P < 0.01), and Na+-K+-ATPase in the prostatic mitochondria (ï¼»0.98 ± 0.40ï¼½ vs ï¼»1.37 ± 0.29ï¼½ and ï¼»1.85 ± 0.32ï¼½ µmol Pi/mg prot/h, P < 0.05 or P < 0.01), but a higher level of MDA (ï¼»1.70 ± 0.22ï¼½ vs ï¼»0.54 ± 0.14ï¼½ and ï¼»0.59 ± 0.17ï¼½ nmol/mg prot, P < 0.01). Significant mitochondrial damage was observed in the prostate tissue of the CNP model controls, and markedly enhanced mitochondrial autophagy was seen in the JHD group. CONCLUSIONS: Chronic nonbacterial prostatitis induces mitochondrial dysfunction in the prostate of rats, and Jiedu Huoxue Decoction can promote the recovery of mitochondrial function, which may be related to mitochondrial autophagy.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Mitochondria/drug effects , Prostatitis , Animals , Autophagy , Male , Mitochondria/pathology , Prostate/ultrastructure , Prostatitis/drug therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL