Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 7379, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548786

ABSTRACT

We investigated the dietary effects of the single application of Saccharomyces cerevisiae, Lactobacillus bulgaricus, and their combination on growth, proximate composition of whole fish body, antioxidant defense, and histoarchitecture of hapa-reared Mugil capito. Healthy fish (Fish weighed = 10.30 ± 0.10 g at first) were randomly allocated into 4 equal groups, each with three replicates. These groups were designed as follows: (1) a group fed a basal diet without probiotics (control), (2) a group fed a diet containing S. cerevisiae (4 g/kg diet), (3) a group fed a diet containing L. bulgaricus (2 g/kg diet), and (4) the last group fed a diet containing a combination of both, all for a duration of 60 days. Probiotic-treated groups showed significantly better growth and nutrition utilization than the control group. Significant differences were observed in the crude fat and crude protein contents among the groups, with the combination group exhibiting the highest levels. However, there were no significant variations in ash content across all groups. The highest hepatic antioxidant capacity (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activities) was observed in the combination group. Thiobarbituric acid reactive substance (TBARS) concentrations were decreased significantly in all probiotic groups, suggesting improved oxidative stress resilience in these groups. The histomorphological analysis of the hepatopancreatic tissues revealed well-arranged parenchyma, increased glycogen storage, and melanomacrophage centers in probiotic-treated groups, particularly the combined probiotics group. Furthermore, the probiotic supplementation improved the histoarchitecture of the intestinal villi compared to the control group. To put it briefly, combined dietary administration of these probiotics improved growth, body composition, antioxidant defenses, and hepatic and intestinal health in hapa-reared M. capito, highlighting their promising role in promoting welfare and productivity.


Subject(s)
Antioxidants , Probiotics , Animals , Antioxidants/metabolism , Saccharomyces cerevisiae/metabolism , Probiotics/pharmacology , Diet , Fishes/metabolism , Body Composition , Animal Feed/analysis , Dietary Supplements/analysis
2.
Biol Trace Elem Res ; 200(5): 2406-2415, 2022 May.
Article in English | MEDLINE | ID: mdl-34308499

ABSTRACT

Zinc is one of the essential microelements involved in vital physiological and biological functions in the fish body. The study evaluated the growth performance, antioxidative capacity, and intestinal histomorphology of Grey Mullet (Liza ramada)-fed dietary zinc nanoparticles (ZnO-NPs) at 0, 10, 20, and 40 mg/kg for the first time. The final weight and specific growth rate (SGR) of Grey Mullet-fed dietary ZnO-NPs at 20 and 40 mg/kg were meaningfully enhanced (p < 0.05). Further, the weight gain (WG) was significantly higher in fish treated with ZnO-NPs than the control, and fish fed 20-40 mg/kg had the highest WG (p < 0.05). The feed conversion ratio (FCR) was meaningfully reduced in fish fed 20-40 mg ZnO-NPs/kg (p < 0.05). The histomorphology of the intestines revealed a significant improvement in villus height, villus width, and goblet cells by ZnO-NPs. The lysozyme activity, phagocytic activity, and phagocytic index showed higher levels in Grey Mullet-fed dietary ZnO-NPs at 20 mg/kg than fish fed 0, 10, and 40 mg/kg (p < 0.05). Superoxide dismutase (SOD) and catalase (CAT) were markedly improved in Grey Mullet treated with ZnO-NPs compared with the control, and the group of fish treated with 20 mg/kg had the highest SOD and CAT (p < 0.05). Glutathione peroxidase (GPx) was significantly higher in fish fed 20-40 mg/kg ZnO-NPs than fish fed 0-10 mg/kg and fish fed 40 mg ZnO-NPs/kg showing the highest GPx value (p < 0.05). The concentration of malondialdehyde was markedly lowered in Grey Mullet fed ZnO-NPs at varying levels (p < 0.05). Based on the overall results, the regression analysis suggests that ZnO-NPs can be included at 24.61-35.5 mg/kg for the best performances of Grey Mullet.


Subject(s)
Metal Nanoparticles , Smegmamorpha , Zinc Oxide , Animal Feed/analysis , Animals , Antioxidants/pharmacology , Diet , Dietary Supplements/analysis , Fishes , Glutathione Peroxidase , Intestines , Superoxide Dismutase , Zinc/pharmacology , Zinc Oxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL