Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neuroscience ; 435: 1-9, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32112919

ABSTRACT

Traditional Chinese medicine has been reported to influence the proliferation and differentiation of neural stem cells (NSCs) that may be protective against nervous system diseases. Recent evidence indicates the importance of musk ketone in nerve recovery and preventing secondary damage after cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) rat model was established by a transient filament model, and rats were treated with musk ketone (0.9 or 1.8 µM). Next, an in vitro oxygen-glucose deprivation (OGD) cell model was established to study the effect of musk ketone on the proliferation and differentiation of NSCs. To determine the potential mechanisms of musk ketone involved in activities of NSCs, the effect of musk ketone on the PI3K/Akt signaling pathway activation was assessed. Furthermore, NSCs were treated with musk ketone in the presence of PI3K/Akt inhibitor Akti-1/2 to examine their roles on NSC proliferation and differentiation. Musk ketone reduced cerebral ischemic injury in a dose-dependent manner in rats. In addition, NSCs treated with musk ketone showed enhanced proliferation and differentiation along with increased PI3K/Akt signaling pathway activation. The effects of muck ketone were reversed by Akti-1/2. Altogether, musk ketone promoted NSC proliferation and differentiation and protected against cerebral ischemia by activating the PI3K/Akt signaling pathway, highlighting the potential of musk ketone as a physiologically validated approach for the treatment of cerebral ischemia.


Subject(s)
Brain Ischemia , Neural Stem Cells , Animals , Brain Ischemia/drug therapy , Cell Differentiation , Cell Proliferation , Neural Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , Xylenes
2.
BMC Complement Altern Med ; 16(1): 511, 2016 Dec 08.
Article in English | MEDLINE | ID: mdl-27931220

ABSTRACT

BACKGROUND: Musk is widely used in clinical practice for its anti-cancer properties. Here, we treated various types of cancer using musk to determine which cancers are sensitive to musk treatment. We also compared effects of native musk and synthetic musk ketone in cancer cells. Furthermore, we investigated mechanisms underlying effects of musk. METHODS: Twenty two cancer cell lines were treated with musk. Cell proliferation and apoptosis analyses were carried out. Native musk and synthetic musk ketone were analyzed by gas chromatograph-mass spectrometer (GC-MS) assay. Differentially expressed genes were determined by microarray and quantitative real-time polymerase chain reaction. RESULTS: Native musk strongly induced the growth repression and the apoptosis in the majority of cancer cell lines in a dose-dependent manner, but distinct types of cancer showed significantly different reactions. Cancer cells which originated from epithelial cells showed higher sensitivity for musk treatment. By contrast, leukaemia and lymphoma cells were not sensitive. GC-MS analysis demonstrated that native musk contains more than 30 contents in which musk ketone is a major component; synthetic musk ketone was consistent with natural musk ketone, and the used sample of synthetic musk ketone contained only sole component. Similar to native musk, synthetic musk ketone induced the growth repression and the apoptosis of cancer cells. Additionally, numerous genes were differentially expressed in lung cancer cells after native musk treatment. These differentially expressed genes were involved in many signalling pathways. Among these pathways, apoptosis-related pathways included interleukin family, tumor necrosis factor family, and MAPK signalling pathway. Native musk and synthetic musk ketone can up-regulate IL-24 (interleukin family) and DDIT3 (MAPK signalling pathway) in lung cancer cells. CONCLUSIONS: This research provided strong evidence that native musk and synthetic musk ketone can induce the growth repression and the apoptosis of cancer cells. However, the selection of sensitive cancer patient for individualized treatment is a key step in clinical application. Synthetic musk ketone can substitute for native musk to treat cancer patients. Musk might induce the growth repression and the apoptosis of lung cancer cells through up-regulating IL-24 and DDIT3 expressions.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Fatty Acids, Monounsaturated/therapeutic use , Lung Neoplasms/drug therapy , Xylenes/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor , Fatty Acids, Monounsaturated/pharmacology , Gas Chromatography-Mass Spectrometry , Humans , Signal Transduction , Xylenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL