Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
Add more filters

Publication year range
1.
Nutrients ; 16(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612957

ABSTRACT

A meta-analysis suggested that marine n-3 polyunsaturated fatty acids (PUFAs), e.g., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), might reduce cancer mortality. However, a randomized clinical trial of marine n-3 PUFA and vitamin D supplementation failed to verify this benefit. This study aimed to investigate the potential interaction between vitamin D supplementation and serum EPA and DHA levels. This post hoc analysis of the AMATERASU trial (UMIN000001977), a randomized controlled trial (RCT), included 302 patients with digestive tract cancers divided into two subgroups stratified by median serum levels of EPA + DHA into higher and lower halves. The 5-year relapse-free survival (RFS) rate was significantly higher in the higher half (80.9%) than the lower half (67.8%; hazard ratio (HR), 2.15; 95% CI, 1.29-3.59). In the patients in the lower EPA + DHA group, the 5-year RFS was significantly higher in the vitamin D (74.9%) than the placebo group (49.9%; HR, 0.43; 95% CI, 0.24-0.78). Conversely, vitamin D had no effect in the higher half, suggesting that vitamin D supplementation only had a significant interactive effect on RFS in the lower half (p for interaction = 0.03). These results suggest that vitamin D supplementation may reduce the risk of relapse or death by interacting with marine n-3 PUFAs.


Subject(s)
Fatty Acids , Gastrointestinal Neoplasms , Humans , Dietary Supplements , Vitamins , Prognosis , Vitamin D , Docosahexaenoic Acids , Eicosapentaenoic Acid , Randomized Controlled Trials as Topic
2.
BMC Med ; 22(1): 109, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38468309

ABSTRACT

BACKGROUND: Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been suggested as a cognitive enhancing agent, though their effect is doubtful. We aimed to examine the effect of n-3 PUFA on the cognitive function of middle-aged or older adults without dementia. METHODS: We reviewed randomized controlled trials of individuals aged 40 years or older. We systematically searched PubMed/MEDLINE, EMBASE, CINAHL, PsycINFO, and Cochrane Library databases. We used the restricted cubic splines model for non-linear dose-response meta-analysis in terms of the standardized mean difference with 95% confidence intervals. RESULTS: The current meta-analysis on 24 studies (n 9660; follow-up 3 to 36 months) found that the beneficial effect on executive function demonstrates an upward trend within the initial 12 months of intervention. This effect is prominently observed with a daily intake surpassing 500 mg of n-3 PUFA and up to 420 mg of eicosapentaenoic acid (EPA). Furthermore, these trends exhibit heightened significance in regions where the levels of blood docosahexaenoic acid (DHA) + EPA are not very low. CONCLUSIONS: Supplementation of n-3 PUFA may confer potential benefits to executive function among the middle-aged and elderly demographic, particularly in individuals whose dietary DHA + EPA level is not substantially diminished.


Subject(s)
Cognition , Fatty Acids, Omega-3 , Humans , Fatty Acids, Omega-3/administration & dosage , Cognition/drug effects , Cognition/physiology , Randomized Controlled Trials as Topic , Aged , Middle Aged , Adult , Dietary Supplements , Dose-Response Relationship, Drug , Dementia/drug therapy
3.
Nutrients ; 16(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38474762

ABSTRACT

INTRODUCTION: chronic low-grade inflammation, or inflammaging, emerges as a crucial element in the aging process and is associated with cardiovascular and neurological diseases, sarcopenia, and malnutrition. Evidence suggests that omega-3 fatty acids present a potential therapeutic agent in the prevention and treatment of inflammatory diseases, mitigating oxidative stress, and improving muscle mass, attributes that are particularly relevant in the context of aging. The objective of the present study was to evaluate the effectiveness of supplementation with omega-3 fish oil in improving the immune response and oxidative stress in knockout mice for interleukin IL-10 (IL-10-/-). MATERIAL AND METHODS: female C57BL/6 wild-type (WT) and interleukin IL-10 knockout (IL-10-/-) mice were fed during 90 days with a standard diet (control groups), or they were fed/supplemented with 10% of the omega-3 polyunsaturated fatty acid diet (omega-3 groups). Muscle, liver, intestinal, and mesenteric lymph node tissue were collected for analysis. RESULTS: the IL-10-/-+O3 group showed greater weight gain compared to the WT+O3 (p = 0.001) group. The IL-10-/-+O3 group exhibited a higher frequency of regulatory T cells than the IL-10-/- group (p = 0.001). It was found that animals in the IL-10-/-+O3 group had lower levels of steatosis when compared to the IL-10-/- group (p = 0.017). There was even greater vitamin E activity in the WT group compared to the IL-10-/-+O3 group (p = 0.001) and WT+O3 compared to IL-10-/-+O3 (p = 0.002), and when analyzing the marker of oxidative stress, MDA, an increase in lipid peroxidation was found in the IL-10-/-+O3 group when compared to the IL-10-/- group (p = 0.03). Muscle tissue histology showed decreased muscle fibers in the IL-10-/-+O3, IL-10-/-, and WT+O3 groups. CONCLUSION: the findings show a decrease in inflammation, an increase in oxidative stress markers, and a decrease in antioxidant markers in the IL-10-/-+O3 group, suggesting that supplementation with omega-3 fish oil might be a potential intervention for inflammaging that characterizes the aging process and age-related diseases.


Subject(s)
Fatty Acids, Omega-3 , Female , Mice , Animals , Fatty Acids, Omega-3/pharmacology , Antioxidants/pharmacology , T-Lymphocytes, Regulatory/metabolism , Mice, Knockout , Interleukin-10/metabolism , Mice, Inbred C57BL , Fish Oils/pharmacology , Oxidative Stress , Dietary Supplements , Liver/metabolism , Inflammation/metabolism
4.
Curr Drug Res Rev ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38409715

ABSTRACT

BACKGROUND: Sickle cell disease is a severe genetic disorder, and searching for therapeutic strategies is indispensable for prolonged and improved life for people affected by this condition. OBJECTIVE: This qualitative systematic review aimed to highlight the therapeutic potential of omega- 3 (n-3) in people with sickle cell disease. METHODS: The search was performed by combining sickle cell disease and n-3 descriptors in DeCS/ MeSH databases, including Scopus, PubMed, ScienceDirect, Web of Science, and Virtual Health Library. The risk of bias assessment in the primary studies was performed using the Cochrane risk of bias tool for randomized controlled trials. The evidence quality was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool. RESULTS: From the 187 records identified, seven were selected for data collection. Based on the evidence, n-3 supplementation contributes to lower activation of pro-inflammatory biomarkers, improves the concentration of docosahexaenoic and eicosapentaenoic acids in the erythrocyte membrane, provides better hemostatic response, and helps in vaso-occlusive crisis, pain episodes, and hospitalization reduction. CONCLUSION: The findings suggest that n-3 adjuvant therapy favors the clinical and general aspects of people with sickle cell disease.

5.
Br J Nutr ; 131(9): 1608-1618, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38220216

ABSTRACT

Observational evidence linking dietary n-3 PUFA intake and health outcomes is limited by a lack of robust validation of dietary intake using blood n-3 PUFA levels and potential confounding by fish oil supplement (FOS) use. We investigated the relationship between oily fish intake, FOS use and plasma n-3 PUFA levels in 121 650 UK Biobank (UKBB) participants. Ordinal logistic regression models, adjusted for clinical and lifestyle factors, were used to quantify the contribution of dietary oily fish intake and FOS use to plasma n-3 PUFA levels (measured by NMR spectroscopy). Oily fish intake and FOS use were reported by 38 % and 31 % of participants, respectively. Increasing oily fish intake was associated with a higher likelihood of FOS use (P < 0·001). Oily fish intake ≥ twice a week was the strongest predictor of high total n-3 PUFA (OR 6·7 (95 % CI 6·3, 7·1)) and DHA levels (6·6 (6·3, 7·1). FOS use was an independent predictor of high plasma n-3 PUFA levels (2·0 (2·0, 2·1)) with a similar OR to that associated with eating oily fish < once a week (1·9 (1·8, 2·0)). FOS use was associated with plasma n-3 PUFA levels that were similar to individuals in the next highest oily fish intake category. In conclusion, FOS use is more common in frequent fish consumers and modifies the relationship between oily fish intake and plasma n-3 PUFA levels in UKBB participants. If unaccounted for, FOS use may confound the relationship between dietary n-3 PUFA intake, blood levels of n-3 PUFAs and health outcomes.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3 , Fish Oils , Fishes , Humans , Fish Oils/administration & dosage , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/administration & dosage , United Kingdom , Male , Female , Middle Aged , Aged , Diet , Adult , Biological Specimen Banks , Seafood , Animals , UK Biobank
6.
Br J Nutr ; 131(1): 103-112, 2024 01 14.
Article in English | MEDLINE | ID: mdl-37381894

ABSTRACT

The relationship between erythrocyte membrane n-3 PUFA and breast cancer risk is controversial. We aimed to examine the associations of erythrocyte membrane n-3 PUFA with odds of breast cancer among Chinese women by using a relatively large sample size. A case-control study was conducted including 853 newly diagnosed, histologically confirmed breast cancer cases and 892 frequency-matched controls (5-year interval). Erythrocyte membrane n-3 PUFA were measured by GC. Logistic regression and restricted cubic spline were used to quantify the association between erythrocyte membrane n-3 PUFA and odds of breast cancer. Erythrocyte membrane α-linolenic acid (ALA), docosapentaenoic acid (DPA) and total n-3 PUFA were inversely and non-linearly associated with odds of breast cancer. The OR values (95 % CI), comparing the highest with the lowest quartile (Q), were 0·57 (0·43, 0·76), 0·43 (0·32, 0·58) and 0·36 (0·27, 0·49) for ALA, DPA and total n-3 PUFA, respectively. Erythrocyte membrane EPA and DHA were linearly and inversely associated with odds of breast cancer ((EPA: ORQ4 v. Q1 (95 % CI) = 0·59 (0·45, 0·79); DHA: ORQ4 v. Q1 (95 % CI) = 0·50 (0·37, 0·67)). The inverse associations were observed between ALA and odds of breast cancer in postmenopausal women, and between DHA and oestrogen receptor+ breast cancer. This study showed that erythrocyte membrane total and individual n-3 PUFA were inversely associated with odds of breast cancer. Other factors, such as menopause and hormone receptor status, may warrant further investigation when examining the association between n-3 PUFA and odds of breast cancer.


Subject(s)
Breast Neoplasms , Fatty Acids, Omega-3 , Humans , Female , Erythrocyte Membrane , Breast Neoplasms/epidemiology , Case-Control Studies , Logistic Models , China/epidemiology , Eicosapentaenoic Acid , Docosahexaenoic Acids
7.
Br J Nutr ; 131(7): 1196-1224, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38053371

ABSTRACT

Maternal diet influences breast milk nutritional profile; however, it is unclear which nutrients and contaminants are particularly responsive to short- and long-term changes in maternal intake, and the impact of specific exclusion diets, such as vegan or vegetarian. This study systematically reviewed the literature on the effects of maternal nutrient intake, including exclusion diets, on both the nutrient and contaminant content of breast milk. The electronic databases, PubMed, CENTRAL, Web of Science and CINALH were systematically searched until 4 June 2023, with additionally searches of reference lists (PROSPERO, CRD42020221577). The quality of the studies was examined using Cochrane Risk of Bias tool and Newcastle-Ottawa scale. Eighty-eight studies (n 6577) met the search criteria. Due to high heterogeneity, meta-analysis was not possible. There was strong evidence of response to maternal intakes for DHA and EPA, vitamins A, E and K, iodine and Se in breast milk composition, some evidence of response for α-linolenic acid, B vitamins, vitamin C and D, ovalbumin, tyrosine and contaminants, and insufficient evidence to identify the effects arachidonic acid, Cu, Fe, Zn and choline. The paucity of evidence and high heterogeneity among studies reflects the need for more high-quality trials. However, this review identified the importance of maternal intake in the nutritional content of breast milk for a wide range of nutrients and supports the recommendation for supplementation of DHA and vitamin B12 for those on restrictive diets.


Subject(s)
Lactation , Milk, Human , Humans , Female , Lactation/physiology , Vitamins , Diet , Eating
8.
Behav Brain Res ; 459: 114788, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38036263

ABSTRACT

Does it make a difference what we eat when it comes to our mental health? Food and nutrients are essential not only for human biology and physical appearance but also for mental and emotional well-being. There has been a significant increase in the favourable effects of dietary supplements in the treatment of depressive state in the latest days. Co-supplements which can be a great contribution in the management of depression from the future perspective and might help to reduce standard anti-depressant drug doses, which can be a strategic way to reduce the side effect of standard anti-depressants drugs. This study was designed to evaluate and compare the anti-depressant effects of cholecalciferol-D3 (V.D3), n-3 polyunsaturated fatty acid (PUFA), and a combination of V.D3 + n-3 PUFA with fluoxetine treatment in chronic unpredictable mild stress (CUMS) induced depression in the mice model. We established CUMS depressant mice model and treated CUMS mice with V.D3, n-3 PUFA, and a combination of V.D3 + n-3 PUFA with fluoxetine. Behavioral changes were measured by the forced swim and tail suspension test. Oxidative stress markers and anti-depressant activity were assessed through parameters such as superoxide dismutase, reduced glutathione, lipid peroxidation, and serum corticosterone levels. Additionally, we measured the levels of neurotransmitters dopamine and serotonin. CUMS induced mice displayed depressive-like behaviours. Moreover, cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine treatment attenuated the depressive-like behaviour in CUMS mice accompanied with suppression of oxidative stress markers by up-regulated the expression of an antioxidant signalling pathway. The results suggested that treatment of cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine significantly ameliorated depressive-like behaviours in CUMS induced depression in mice. To delve further into the implications of these findings, future studies could explore the specific molecular mechanisms underlying the observed effects on oxidative stress markers and the antioxidant signaling pathway. This could provide valuable insights into the potential of dietary supplements in the management of depression and help in reducing the reliance on conventional antidepressant medications, thus improving the overall quality of treatment for this prevalent mental health condition.


Subject(s)
Depression , Fatty Acids, Omega-3 , Mice , Humans , Animals , Depression/drug therapy , Depression/etiology , Depression/metabolism , Fluoxetine/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Dietary Supplements , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , Hippocampus/metabolism , Behavior, Animal
9.
Article in English | MEDLINE | ID: mdl-38083891

ABSTRACT

In recent years, scientific research has increasingly focused on the cardiovascular benefits of omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplements. The most promising results emerged from the new trials on a high-dose eicosapentaenoic acid (EPA)-only approach, instead of the previously prescribed therapy with EPA + docosahexaenoic acid (DHA). The evidence of the reduction of cardiovascular events in patients at high cardiovascular risk with EPA is intriguing. However, physicians have expressed concern about the potential high risk of atrial fibrillation (AF) occurrence due to such an approach. This study aims to investigate the current evidence on the cardiovascular benefits of EPA and its association with atrial arrhythmogenesis. Current guidelines consider EPA (as IPE) treatment for selected patients but with no specific indication regarding AF risk evaluation. We propose a flowchart that could be a starting point for the future development of an algorithm to help clinicians to prescribe EPA safely and effectively, especially in patients at high risk of incipient AF.


Subject(s)
Atrial Fibrillation , Cardiovascular System , Fatty Acids, Omega-3 , Humans , Eicosapentaenoic Acid/adverse effects , Atrial Fibrillation/drug therapy , Atrial Fibrillation/epidemiology , Heart
10.
Nutrients ; 15(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37892536

ABSTRACT

This study aimed to investigate the impact of influencing factors (sex, eicosapentaenoic acid (EPA) status at baseline, linoleic acid (LA) intake, milk fat intake) on the conversion of α-linolenic acid (ALA) obtained from linseed oil into its long-chain metabolites. In addition, the effect of ALA on cardiovascular risk markers was investigated. This study used a parallel design approach by randomly assigning the 134 subjects to one of four diets (high in LA (HLA); low in LA (LLA); high in milk fat (MF); control (Western diet)) each enriched with linseed oil (10 en%, 22-27 mL ≙ 13-16 g ALA). Blood samples were taken at baseline and after 4, 8, and 12 weeks of dietary intervention. The study was fully completed by 105 subjects (57.4 ± 12.1 years; 65.7% female). Results showed that ALA (296-465%), C-20:4n3 (54-140%), and EPA (37-73%) concentrations in erythrocytes increased in all groups (p < 0.01). In contrast, docosahexaenoic acid (19-35%, p < 0.01) and n-3 index (10-21%, p < 0.05) dropped in the HLA, LLA, and control groups. An increase in C-22:5n3 was only observed in the MF (36%) and control groups (11%) (p < 0.05). In addition, an increase in LA (7-27%) was found in the HLA, LLA, and control groups, whereas C-20:3n6 (16-22%), arachidonic acid (10-16%), C-22:4n6 (12-30%), and C-22:5n6 (32-47%) decreased (p < 0.01). The conversion into EPA was higher in men than in women (69 vs. 39%, p = 0.043) and in subjects with low EPA status compared to participants with high EPA status (79 vs. 29%, p < 0.001). A high LA status attenuates the conversion rate. In line with the literature, no clear effects on blood lipids and parameters of glucose metabolism were found in relation to ALA supplementation.


Subject(s)
Phascolarctidae , Female , Humans , Male , alpha-Linolenic Acid , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Linseed Oil , Phascolarctidae/metabolism
11.
Nutr Res ; 118: 128-136, 2023 10.
Article in English | MEDLINE | ID: mdl-37660501

ABSTRACT

Many studies have investigated the beneficial effects of n-3 polyunsaturated fatty acids, such as their potential for lowering lipid levels and reducing diabetes risk. However, few studies have specifically examined docosapentaenoic acid (DPA), an n-3 polyunsaturated fatty acid with limited availability in its pure form. We hypothesized that DPA would have lipid-lowering effects and improve insulin resistance in KK/Ta mice. To test our hypothesis, 7-week-old KK/Ta mice were fed a high-fat diet for 12 weeks to induce obesity before being divided into 3 groups and fed an experimental diet for 10 weeks. The experimental diets were: LSO, using lard and safflower oil as fat sources; SO, in which lard in the LSO diet was replaced with safflower oil; and DPA, in which lard in the LSO diet was replaced with DPA oil. After 10 weeks, plasma triglyceride and total cholesterol concentrations were significantly decreased in the DPA group, but not in the SO group. Sterol regulatory element-binding protein-1 and stearoyl-CoA desaturase-1 gene expressions involved in fatty acid synthesis in the liver were significantly lower in the DPA group compared with the LSO group. Plasma glucose concentrations were significantly decreased in both the SO group and the DPA group compared with the LSO group, whereas plasma insulin concentrations were significantly decreased in the DPA group alone. These results indicate that DPA has plasma lipid-lowering and hypoglycemic effects, possibly from suppression of fatty acid synthesis in the liver.


Subject(s)
Diabetes Mellitus , Fatty Acids, Omega-3 , Animals , Mice , Blood Glucose/metabolism , Safflower Oil , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Omega-3/pharmacology , Obesity/drug therapy , Obesity/metabolism , Diabetes Mellitus/metabolism , Liver/metabolism , Lipid Metabolism
12.
Nutrients ; 15(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686888

ABSTRACT

Recently, the prevalence of atopic dermatitis has increased drastically, especially in urban populations. This multifactorial skin disease is caused by complex interactions between various factors including genetics, environment, lifestyle, and diet. In eczema, apart from using an elimination diet, the adequate content of fatty acids from foods (saturated, monounsaturated, and polyunsaturated fatty acids) plays an important role as an immunomodulatory agent. Different aspects regarding atopic dermatitis include connections between lipid metabolism in atopic dermatitis, with the importance of the MUFA levels, as well as of the omega-6/omega-3 balance that affects the formation of long-chain (C20 eicosanoic and C22 docosaenoic) fatty acids and bioactive lipids from them (such as prostaglandins). Impair/repair of the functioning of epidermal barrier is influenced by these fatty acid levels. The purpose of this review is to drive attention to membrane fatty acid composition and its involvement as the target of fatty acid supplementation. The membrane-targeted strategy indicates the future direction for dermatological research regarding the use of nutritional synergies, in particular using red blood cell fatty acid profiles as a tool for checking the effects of supplementations to reach the target and influence the inflammatory/anti-inflammatory balance of lipid mediators. This knowledge gives the opportunity to develop personalized strategies to create a healthy balance by nutrition with an anti-inflammatory outcome in skin disorders.


Subject(s)
Dermatitis, Atopic , Fatty Acids, Omega-3 , Humans , Fatty Acids , Dermatitis, Atopic/therapy , Nutritional Status , Prostaglandins , Food
13.
Healthcare (Basel) ; 11(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37628530

ABSTRACT

The n-3 polyunsaturated fatty acids (PUFAs) can reduce inflammatory markers and may therefore be useful in obesity management. The aim of this study was to analyze the effect of supplementation with n-3 PUFAs on total fatty acid profile in red blood cells (RBCs), as well as biochemical and inflammatory markers, in subjects with obesity. The study consisted in a randomized placebo-controlled, double-blind clinical trial involving 41 subjects with obesity during a 4-month follow-up. Individuals were randomly assigned to two groups: n-3 PUFA supplementation (1.5 g fish oil) and placebo (1.5 g sunflower oil). Anthropometric, biochemical, dietetic, cytokine and total fatty acid profiles in RBCs were measured. Both groups increased their PUFA intake and DHA incorporation in RBCs. However, the placebo group showed a reduction in serum IL-8 and MCP-1 at the end of the study. A multiple linear regression model adjusted by body fat mass and sex showed that an increase in DHA in RBCs decreased the serum IL-8 levels in both study groups at the end of the study. Our results highlight the role of dietary DHA and n-3 supplementation usefulness in exerting beneficial anti-inflammatory effects.

14.
Redox Biol ; 64: 102803, 2023 08.
Article in English | MEDLINE | ID: mdl-37392516

ABSTRACT

Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.


Subject(s)
Colitis , Fatty Acids, Omega-3 , Inflammatory Bowel Diseases , Mice , Animals , Mice, Transgenic , Fatty Acids, Omega-3/adverse effects , Colitis/chemically induced , Colitis/genetics , Inflammation/genetics , Liver , Oxidative Stress
15.
Nutrients ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447319

ABSTRACT

Alcohol use poses a significant global health concern, leading to serious physical and socioeconomic issues worldwide. The current treatment options for problematic alcohol consumption are limited, leading to the exploration of alternative approaches, such as nutraceuticals. One promising target is very-long-chain n-3 polyunsaturated fatty acids (VLC n-3 PUFAs). This review aims to compile the most relevant pre-clinical and clinical evidence on the effect of VLC n-3 PUFAs on alcohol use disorders and related outcomes. The findings suggest that VLC n-3 PUFAs may alleviate the physiological changes induced by alcohol consumption, including neuroinflammation and neurotransmitter dysregulation. Additionally, they can reduce withdrawal symptoms, improve mood, and reduce stress level, all of which are closely associated with problematic alcohol consumption. However, more research is required to fully understand the precise mechanisms by which VLC n-3 PUFAs exert their function. Furthermore, PUFAs should not be considered a standalone solution, but as a complement to other therapeutic approaches. Although preliminary evidence supports the potential therapeutic effect of VLC n-3 PUFAs on problematic alcohol consumption, additional research is needed to validate these findings and determine the optimal use of PUFAs as part of a comprehensive approach to the treatment of alcohol use disorders.


Subject(s)
Alcoholism , Fatty Acids, Omega-3 , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Alcoholism/drug therapy , Fatty Acids, Unsaturated , Alcohol Drinking/adverse effects , Central Nervous System
16.
Nutrients ; 15(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513526

ABSTRACT

Rationale and Methods: Skeletal muscle derangements, potentially including mitochondrial dysfunction with altered mitochondrial dynamics and high reactive oxygen species (ROS) generation, may lead to protein catabolism and muscle wasting, resulting in low exercise capacity and reduced survival in chronic heart failure (CHF). We hypothesized that 8-week n-3-PUFA isocaloric partial dietary replacement (Fat = 5.5% total cal; EPA + DHA = 27% total fat) normalizes gastrocnemius muscle (GM) mitochondrial dynamics regulators, mitochondrial and tissue pro-oxidative changes, and catabolic derangements, resulting in preserved GM mass in rodent CHF [Myocardial infarction (MI)-induced CHF by coronary artery ligation, left-ventricular ejection fraction <50%]. Results: Compared to control animals (Sham), CHF had a higher GM mitochondrial fission-fusion protein ratio, with low ATP and high ROS production, pro-inflammatory changes, and low insulin signalling. n-3-PUFA normalized all mitochondrial derangements and the pro-oxidative state (oxidized to total glutathione ratio), associated with normalized GM cytokine profile, and enhanced muscle-anabolic insulin signalling and prevention of CHF-induced GM weight loss (all p < 0.05 vs. CHF and p = NS vs. S). Conclusions:n-3-PUFA isocaloric partial dietary replacement for 8 weeks normalizes CHF-induced derangements of muscle mitochondrial dynamics regulators, ROS production and function. n-3-PUFA mitochondrial effects result in preserved skeletal muscle mass, with potential to improve major patient outcomes in clinical settings.


Subject(s)
Fatty Acids, Omega-3 , Heart Failure , Insulins , Mice , Animals , Fatty Acids, Omega-3/metabolism , Reactive Oxygen Species/metabolism , Stroke Volume , Ventricular Function, Left , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Heart Failure/drug therapy , Diet , Insulins/metabolism
17.
Nutrients ; 15(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37375709

ABSTRACT

Supplemental n-3 polyunsaturated fatty acids (PUFA) on bone metabolism have yielded inconsistent results. This study aimed to examine the effects of n-3 PUFA supplementation on bone metabolism markers and bone mineral density through a meta-analysis of randomized controlled trials. A systematic literature search was conducted using the PubMed, Web of Science, and EBSCO databases, updated to 1 March 2023. The intervention effects were measured as standard mean differences (SMD) and mean differences (MD). Additionally, n-3 PUFA with the untreated control, placebo control, or lower-dose n-3 PUFA supplements were compared, respectively. Further, 19 randomized controlled trials (RCTs) (22 comparisons, n = 2546) showed that n-3 PUFA supplementation significantly increased blood n-3 PUFA (SMD: 2.612; 95% CI: 1.649 to 3.575). However, no significant effects were found on BMD, CTx-1, NTx-1, BAP, serum calcium, 25(OH)D, PTH, CRP, and IL-6. Subgroup analyses showed significant increases in femoral neck BMD in females (0.01, 95% CI: 0.01 to 0.02), people aged <60 years (0.01, 95% CI: 0.01 to 0.01), and those people in Eastern countries (0.02, 95% CI: 0.02 to 0.03), and for 25(OH)D in people aged ≥60 years (0.43, 95% CI: 0.11 to 0.74), treated with n-3 PUFA only (0.36, 95% CI: 0.06 to 0.66), and in studies lasting ≤6 months (0.29, 95% CI: 0.11 to 0.47). NTx-1 decreased in both genders (-9.66, 95% CI: -15.60 to -3.71), and serum calcium reduction was found in studies lasting >6 months (-0.19, 95% CI: -0.37 to -0.01). The present study demonstrated that n-3 PUFA supplementation might not have a significant effect on bone mineral density or bone metabolism markers, but have some potential benefits for younger postmenopausal subjects in the short term. Therefore, additional high-quality, long-term randomized controlled trials (RCTs) are warranted to fully elucidate the potential benefits of n-3 PUFA supplementation, as well as the combined supplementation of n-3 PUFA, on bone health.


Subject(s)
Fatty Acids, Omega-3 , Female , Humans , Adult , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Bone Density , Calcium/pharmacology , Fatty Acids, Unsaturated/pharmacology , Dietary Supplements
18.
Metabolites ; 13(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37233671

ABSTRACT

The accumulating literature demonstrates that omega-3 polyunsaturated fatty acid (n-3 polyunsaturated fatty acid, N3PUFA) can be incorporated into the phospholipid bilayer of cell membranes in the human body to positively affect the cardiovascular system, including improving epithelial function, decreasing coagulopathy, and attenuating uncontrolled inflammatory responses and oxidative stress. Moreover, it has been proven that the N3PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors of some potent endogenous bioactive lipid mediators that mediate some favorable effects attributed to their parent substances. A dose-response relationship between increased EPA and DHA intake and reduced thrombotic outcomes has been reported. The excellent safety profile of dietary N3PUFAs makes them a prospective adjuvant treatment for people exposed to a higher risk of cardiovascular problems associated with COVID-19. This review presented the potential mechanisms that might contribute to the beneficial effects of N3PUFA and the optimal form and dose applied.

19.
J Ovarian Res ; 16(1): 87, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120599

ABSTRACT

n-3 PUFAs are classic antioxidant that can be used to treat follicular dysplasia and hyperinsulinemia caused by excessive oxidative stress in PCOS women. To investigate the effect of n-3 PUFA supplementation on the oocyte quality of polycystic ovary syndrome (PCOS) mice during in vitro maturation, a PCOS mouse model was established by dehydroepiandrosterone (DHEA). The GV oocytes of the control and PCOS groups were collected and cultured in vitro with or without n-3 PUFAs. After 14 h, the oocytes were collected. Our data demonstrated that the oocyte maturation rate of PCOS mice significantly increased after the addition of 50 µM n-3 PUFAs. The results of immunofluorescence showed that the abnormal rates of spindles and chromosomes in the PCOS + n-3 PUFA group were lower than those in the PCOS group. The mRNA expression of an antioxidant-related gene (Sirt1) and DNA damage repair genes (Brca1/Msh2) was found to be significantly rescued after n-3 treatment. Additionally, the results of living cell staining showed that the addition of n-3 PUFAs could reduce the levels of reactive oxygen species and mitochondrial superoxide in PCOS oocytes. In conclusion, the addition of 50 µM n-3 PUFAs during the in vitro maturation of PCOS mouse oocytes can improve the maturation rate by reducing the level of oxidative stress and the rate of spindle/chromosome abnormalities, providing valuable support during the IVM process.


Subject(s)
Fatty Acids, Omega-3 , Polycystic Ovary Syndrome , Humans , Female , Animals , Mice , In Vitro Oocyte Maturation Techniques , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Oocytes/metabolism , Dietary Supplements
20.
Anim Reprod Sci ; 252: 107231, 2023 May.
Article in English | MEDLINE | ID: mdl-37086576

ABSTRACT

The present study evaluated the effect of dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) on preovulatory follicle (POF) turnover, prolificacy, and endocrine and metabolic milieu in Malpura sheep. Fifty cyclic ewes with 3-3.5 body condition scores on a five-point scale were allocated equally to two groups (n = 25) following estrus synchronization and were supplemented with 0.6 mL/kg body weight of n-3 PUFA-rich fish oil (FO) or palm oil (PO) as control, for 60 d following an acclimatization period of 7 d. All ewes were mated with sexually active rams at the end of the supplementation period. On ultrasonographic ovarian scanning at the last fourth estrus, the mean number of POFs was 77.8% greater (P < 0.01) in FO ewes than in the PO ewes. The proportion of ewes with multiple ovulations two months after the beginning of supplementation was 56% in the FO group as compared to 8% in the PO group. The number of fetuses was 46% higher (P < 0.01) in the FO than in the PO ewes at d 45 of gestation. At lambing, the twinning percent in the FO ewes was three times greater than in the PO ewes (27.3 vs. 9.1%). Plasma cholesterol, estradiol, and insulin concentrations were lower (P < 0.01) in ewes fed with FO than those offered PO group at the end of the feeding period. It was concluded that the dietary supplementation of n-3 PUFA-rich FO in well-fed Malpura ewes improved the number of follicles and ovulation rate which led to an increased prolificacy, accompanied by a reduction of plasma cholesterols, estradiol, and insulin.


Subject(s)
Fatty Acids, Omega-3 , Insulins , Animals , Sheep , Female , Ovarian Follicle , Dietary Supplements , Fish Oils/pharmacology , Fatty Acids, Omega-3/pharmacology , Estradiol/pharmacology , Fatty Acids/pharmacology , Insulins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL