Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 381
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Molecules ; 29(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611744

ABSTRACT

The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plants has grown in significance in recent years. ZnO NPs were synthesized in this work via a chemical precipitation method with Jasminum sambac (JS) leaf extract serving as a capping agent. These NPs were characterized using UV-vis spectroscopy, FT-IR, XRD, SEM, TEM, TGA, and DTA. The results from UV-vis and FT-IR confirmed the band gap energies (3.37 eV and 3.50 eV) and the presence of the following functional groups: CN, OH, C=O, and NH. A spherical structure and an average grain size of 26 nm were confirmed via XRD. The size and surface morphology of the ZnO NPs were confirmed through the use of SEM analysis. According to the TEM images, the ZnO NPs had an average mean size of 26 nm and were spherical in shape. The TGA curve indicated that the weight loss starts at 100 °C, rising to 900 °C, as a result of the evaporation of water molecules. An exothermic peak was seen during the DTA analysis at 480 °C. Effective antibacterial activity was found at 7.32 ± 0.44 mm in Gram-positive bacteria (S. aureus) and at 15.54 ± 0.031 mm in Gram-negative (E. coli) bacteria against the ZnO NPs. Antispasmodic activity: the 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by (78.19%), acetylcholine (at a concentration of 1 µM) by (67.57%), and nicotine (at a concentration of 2 µg/mL) by (84.35%). The antipyretic activity was identified using the specific Shodhan vidhi method, and their anti-inflammatory properties were effectively evaluated with a denaturation test. A 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by 78.19%, acetylcholine (at a concentration of 1 µM) by 67.57%, and nicotine (at a concentration of 2 µg/mL) by 84.35%. These results underscore the sample solution's potential as an effective therapeutic agent, showcasing its notable antispasmodic activity. Among the administered doses, the 150 mg/kg sample dose exhibited the most potent antipyretic effects. The anti-inflammatory activity of the synthesized NPs showed a remarkable inhibition percentage of (97.14 ± 0.005) at higher concentrations (250 µg/mL). Furthermore, a cytotoxic effect was noted when the biologically synthesized ZnO NPs were introduced to treated cells.


Subject(s)
Antipyretics , Jasminum , Nanoparticles , Zinc Oxide , Zinc Oxide/pharmacology , Parasympatholytics , Acetylcholine , Escherichia coli , Histamine , Nicotine , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology
2.
J Trace Elem Med Biol ; 84: 127443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579498

ABSTRACT

The following investigation was carried out to determine the effects of Selenium nanoparticles (Se NPs) on the growth rates, nutrient digestibility, and hematology of Cirrhinus mrigala fingerlings fed sunflower meal as basal diet. The experiment included seven test diets with varying Se levels (0, 0.5, 1, 1.5, 2, 2.5, and 3 mg/kg) based on Se NPs supplementation. Chromic oxide, an inert maker, was also added. Fingerlings were fed at a rate of 5% of their body weight. The test meal of 1 mg/kg Se NPs resulted in the highest weight gain (12.31 g) and the lowest feed conversion ratio (1.58). Best hematological indices (RBCs 2.84 106 mm-3, WBCs 7.79 103 mm-3, PLT 66, Hb 8.5 g/100 ml, PCV 25% and MCV 190 fl) and maximum nutrient absorption (crude protein 72%, ether extract 73% and gross energy 67%) were also observed in the case of 1 mg/kg supplementation of Se NPs. Hematology studies indicated that when fish were fed 0.5 mg/kg Se NPs, their levels began to rise. Maximum results were achieved with feed containing 1 mg/kg of Se NPs, but when the concentration increased above 1 mg/kg, the values began to decline. Instead, nutrient digestibility began to increase when the concentration of Se NPs increased to 1 mg/kg and abruptly started to decline with a further increase in Se NPs. The results demonstrated that a sunflower meal-based diet supplemented with Se NPs (1 mg/kg) increased the growth performance, nutritional digestibility, and hematology of C. mrigala fingerlings.


Subject(s)
Dietary Supplements , Nanoparticles , Selenium , Animals , Selenium/pharmacology , Selenium/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Digestion/drug effects , Nutrients/metabolism , Animal Feed/analysis
3.
Sci Rep ; 14(1): 5789, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461344

ABSTRACT

The production of surface compounds coated with active substances has gained significant attention in recent years. This study investigated the physical, mechanical, antioxidant, and antimicrobial properties of a composite made of starch and zinc oxide nanoparticles (ZnO NPs) containing various concentrations of Ferula gummosa essential oil (0.5%, 1%, and 1.5%). The addition of ZnO NPs improved the thickness, mechanical and microbial properties, and reduced the water vapor permeability of the starch active film. The addition of F. gummosa essential oil to the starch nanocomposite decreased the water vapor permeability from 6.25 to 5.63 g mm-2 d-1 kPa-1, but this decrease was significant only at the concentration of 1.5% of essential oils (p < 0.05). Adding 1.5% of F. gummosa essential oil to starch nanocomposite led to a decrease in Tensile Strength value, while an increase in Elongation at Break values was observed. The results of the antimicrobial activity of the nanocomposite revealed that the pure starch film did not show any lack of growth zone. The addition of ZnO NPs to the starch matrix resulted in antimicrobial activity on both studied bacteria (Staphylococcus aureus and Escherichia coli). The highest antimicrobial activity was observed in the starch/ZnO NPs film containing 1.5% essential oil with an inhibition zone of 340 mm2 on S. aureus. Antioxidant activity increased significantly with increasing concentration of F. gummosa essential oil (P < 0.05). The film containing 1.5% essential oil had the highest (50.5%) antioxidant activity. Coating also improved the chemical characteristics of fish fillet. In conclusion, the starch nanocomposite containing ZnO NPs and F. gummosa essential oil has the potential to be used in the aquatic packaging industry.


Subject(s)
Anti-Infective Agents , Ferula , Nanoparticles , Oils, Volatile , Zinc Oxide , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Staphylococcus aureus , Steam , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Starch/chemistry , Escherichia coli , Nanoparticles/chemistry
4.
Front Bioeng Biotechnol ; 12: 1326143, 2024.
Article in English | MEDLINE | ID: mdl-38464542

ABSTRACT

Introduction: The development of an effective extender is important for semen preservation and the artificial insemination (AI) industry. This study demonstrates the beneficial effect of zinc oxide nanoparticles (ZnO-NPs) as an additive to semen extenders to improve semen quality, fertility, and antibacterial activity during liquid preservation in a boar model. Methods: Initially, to find out the safe concentration of ZnO-NPs in sperm cells, a wide range of ZnO-NP concentrations (0, 5, 10, 50, 100, 500, and 1,000 µM) were co-incubated with sperm at 37°C for a cytotoxic study. These NP concentrations were compared to their salt control zinc acetate (ZA) at the same concentrations and to a control group. The effect of the different concentrations of ZnO-NPs on sperm motility, membrane integrity, mitochondrial membrane potential (MMP), and apoptosis was assessed. Accordingly, the non-toxic dose was selected and supplemented in MODENA extender to determine its beneficial effect on the boar semen parameters mentioned and the lipid peroxidation (LPO) levels during liquid preservation at 16°C for 6 days. The non-cytotoxic dosage was subsequently chosen for AI, fertility investigations, and the evaluation of the antibacterial efficacy of ZnO-NPs during preservation hours. An antibacterial study of ZnO-NPs and its salt control at doses of 10 µM and 50 µM was carried out by the colony forming unit (CFU) method. Results and discussion: The cytotoxic study revealed that 5, 10, and 50 µM of ZnO-NPs are safe. Consequently, semen preserved in the MODENA extender, incorporating the non-toxic dose, exhibited 10 and 50 µM ZnO-NPs as the optimal concentrations for beneficial outcomes during liquid preservation at 16°C. ZnO-NPs of 10 µM concentration resulted in a significantly (p < 0.05) improved conception rate of 86.95% compared to the control of 73.13%. ZnO-NPs of 10 and 50 µM concentrations exhibit potent antimicrobial action by reducing the number of colonies formed with days of preservation in comparison to the negative control. The investigation concluded that the incorporation of 10 µM ZnO-NPs led to enhancements in sperm motility, membrane integrity, and MMP, attributed to a reduction in the malondialdehyde (MDA) levels. This improvement was accompanied by a concurrent increase in fertility rates, including farrowing rate and litter size, during the liquid preservation process. Furthermore, ZnO-NPs exhibited an antimicrobial effect, resulting in decreased bacterial growth while preserving boar semen at 16°C for 6 days. These findings suggest that ZnO-NPs could serve as a viable alternative to antibiotics, potentially mitigating antibiotic resistance concerns within the food chain.

5.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542055

ABSTRACT

The circular economy, which attempts to decrease agricultural waste while also improving sustainable development through the production of sustainable products from waste and by-products, is currently one of the main objectives of environmental research. Taking this view, this study used a green approach to synthesize two forms of silver nanoparticles: coated silver nanoparticles with olive leaf extract (Ag-olive) and uncoated pure silver nanoparticles (Ag-pure), which were produced by the calcination of Ag-olive at 550 °C. The extract and the fabricated nanoparticles were characterized by a variety of physicochemical techniques, including high-performance liquid chromatography (HPLC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Adult ticks (Hyalomma dromedarii) (Acari: Ixodidae) were used in this study to evaluate the antiparasitic activity of synthesized nanoparticles and extract. Furthermore, the antifungal activity was evaluated against Aspergillus aculeatus strain N (MW958085), Fuserium oxysporum (MT550034), and Alternaria tenuissiuma (MT550036). In both antiparasitic and antifungal tests, the as-synthesized Ag-olive showed higher inhibition activity than Ag-pure and olive leaf extract. The findings of this research suggest that Ag-olive may be a powerful and eco-friendly antiparasitic and antifungal agent. Ag-pure was also evaluated as a photocatalyst under sunlight for the detoxification of Eri-chrome-black T (EBT), methylene blue (MB), methyl orange (MO), and rhodamine B (RhB).


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Olea , Antifungal Agents/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Antiparasitic Agents , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sunlight , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
6.
J Oleo Sci ; 73(5): 683-693, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522941

ABSTRACT

In this study, we outlined the green synthesis of Zinc oxide nanoparticles (ZnO NPs) using the plant-mediated method. Employing the nitrate derivative of Zinc and the extract from the native medicinal plant, Ottonia anisum, the nanoparticles were effectively produced. After obtaining a yellow-colored paste, it was meticulously dried, gathered, and set aside for subsequent examination. The UV-visible spectrometry analysis indicated an absorption peak at 320 nm, which is indicative of ZnO NPs. Characterization techniques, such as XRD and HR-TEM, confirmed the existence of agglomerated ZnO NPs with an average diameter of 40 nm. Through EDS analysis, distinct energy signals for both Zinc and Oxygen were observed, confirming their composition. Furthermore, FT-IR spectroscopy highlighted an absorption peak for Zn-O bonding in the range of 400 to 600 cm -1 . Further, we employed three distinct pain models in mice to evaluate the influence of ZnO NPs on the nociceptive threshold. Our findings revealed that, when orally administered, ZnO NPs at concentrations ranging from 5-20 mg/kg exerted a dose-dependent analgesic effect in both the hot-plate and the acetic acid-induced writhing tests. Moreover, when ZnO NPs were administered at doses between 2.5-10 mg/kg, there was a notable reduction in pain responses during both the initial and subsequent phases of the formalin test, but no change in PGE 2 production within the mice's hind paw was found. On the other hand, acute lung injury studies revealed that the administration of ZnO NPs orally 90 minutes prior to HCl instillation decreased the neutrophil infiltration into the lungs in a doseresponsive manner. This reduction in pulmonary inflammation was paralleled by a significant decrease in lung edema, as evidenced by the reduced total protein content in the BALF. Additionally, the ZnO NPs appeared to recalibrate the lung's redox equilibrium following HCl exposure, which was determined through measurements of ROS, malondialdehyde, glutathione, and catalase activity. All these results further indicated the potential of biofabricated ZnO NPs for future applications in analgesics and acute lung injury treatments.


Subject(s)
Acute Lung Injury , Analgesics , Plant Extracts , Zinc Oxide , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Analgesics/chemical synthesis , Analgesics/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Mice , Male , Metal Nanoparticles/chemistry , Green Chemistry Technology , Dose-Response Relationship, Drug , Disease Models, Animal , Pain/drug therapy , Pain/chemically induced , Acetic Acid
7.
Sci Rep ; 14(1): 6519, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38499602

ABSTRACT

In this study, tin dioxide nanoparticles (SnO2 NPs) were successfully synthesized through an eco-friendly method using basil leaves extract. The fabricated SnO2 NPs demonstrated significant adsorption capabilities for phenol (PHE), p-nitrophenol (P-NP), and p-methoxyphenol (P-MP) from water matrices. Optimal conditions for maximum removal efficiency was determined for each phenolic compound, with PHE showing a remarkable 95% removal at a 3 ppm, 0.20 g of SnO2 NPs, pH 8, and 30 min of agitation at 35 °C. Molecular docking studies unveiled a potential anticancer mechanism, indicating the ability of SnO2 NPs to interact with the epidermal growth factor receptor tyrosine kinase domain and inhibit its activity. The adsorption processes followed pseudo-second order kinetics and Temkin isotherm model, revealing spontaneous, exothermic, and chemisorption-controlled mechanisms. This eco-friendly approach utilizing plant extracts was considered as a valuable tool for nano-sorbent production. The SnO2 NPs not only exhibit promise in water treatment and also demonstrate potential applications in cancer therapy. Characterization techniques including scanning electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy (XRD), and energy-dispersive X-ray spectroscopy (EDAX) provided comprehensive insights into the results.


Subject(s)
Nanoparticles , Tin , Molecular Docking Simulation , Oxides , Nanoparticles/chemistry , Phenol , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Plant Extracts/chemistry
8.
Biotechnol Rep (Amst) ; 41: e00830, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332899

ABSTRACT

Current research endeavours are progressively focussing towards discovering sustainable methods for synthesising eco-friendly materials. In this environment, nanotechnology has emerged as a key frontier, especially in bioremediation and biotechnology. A few areas of nanotechnology including membrane technology, sophisticated oxidation processes, and biosensors. It is possible to create nanoparticles (NPs) via physical, chemical, or biological pathways in a variety of sizes and forms. These days, the investigation of plants as substitutes for NP synthesis methods has drawn a lot of interest. Toxic water contaminants such as methyl blue have been shown to be removed upto 70% by nanoparticles. In our article, we aimed at focussing the environmental sustainability and cost-effectiveness towards the green synthesis of nanoparticles. Furthermore it offers a comprehensive thorough summary of green NP synthesis methods which can be distinguished by their ease of use, financial sustainability, and environmentally favourable utilization of plant extracts. This study highlights how green synthesis methods have the potential to transform manufacturing of NPs while adhering to environmental stewardship principles and resource efficiency.

9.
Microb Pathog ; 189: 106595, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387848

ABSTRACT

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Subject(s)
Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Titanium , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Biofilms , Metal Nanoparticles/chemistry
10.
Int J Biol Macromol ; 263(Pt 2): 130391, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417746

ABSTRACT

The textiles for medical use and the purification of textile factory effluents have become the most crucial part of the human healthcare sector. In this study bioactive compounds produced by four distinct plant extracts were used for the synthesis of zinc oxide nanoparticles. The four different ZnO nanoparticles were comprehensively characterized by different analytical techniques. XRD analysis revealed the crystalline nature and phase purity of the ZnO nanoparticles. FTIR spectra provided information on the function of plant extracts in the stabilization or capping process. The size distribution and morphological diversity of the nanoparticles were further clarified by SEM and TEM images. The photocatalytic degradation activity of the four ZnO nanoparticles on two different dyes showed that ZnO nanoparticles prepared from A. indica were most effective for the degradation of 98 % and 91 % of Rhodamine B and Alizarin red dye respectively. The selected ZnO nanoparticles from A. indica were used to prepare ZnO-chitosan nanocomposites before coating on cotton fabrics. The hydrophobicity, UV protection factor, and antibacterial activity of ZnO-chitosan nanocomposites, when coated on cotton fabrics, were also examined. The overall results demonstrated the ZnO and ZnO-chitosan nanocomposite prepared in the present study as a promising material for environmental remediation application.


Subject(s)
Chitosan , Nanocomposites , Zinc Oxide , Humans , Zinc Oxide/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Textiles , Coloring Agents , Nanocomposites/chemistry , Plant Extracts/chemistry
11.
Sci Rep ; 14(1): 4689, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409460

ABSTRACT

Antimicrobial resistance is a worldwide health problem that demands alternative antibacterial strategies. Modified nano-composites can be an effective strategy as compared to traditional medicine. The current study was designed to develop a biocompatible nano-drug delivery system with increased efficacy of current therapeutics for biomedical applications. Zinc oxide nanoparticles (ZnO-NPs) were synthesized by chemical and green methods by mediating with Moringa olifera root extract. The ZnO-NPs were further modified by drug conjugation and coating with PEG (CIP-PEG-ZnO-NPs) to enhance their therapeutic potential. PEGylated ZnO-ciprofloxacin nano-conjugates were characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry, and Scanning Electron Microscopy. During antibacterial screenings chemically and green synthesized CIP-PEG-ZnO-NPs revealed significant activity against clinically isolated Gram-positive and Gram-negative bacterial strains. The sustainable and prolonged release of antibiotics was noted from the CIP-PEG conjugated ZnO-NPs. The synthesized nanoparticles were found compatible with RBCs and Baby hamster kidney cell lines (BHK21) during hemolytic and MTT assays respectively. Based on initial findings a broad-spectrum nano-material was developed and tested for biomedical applications that eradicated Staphylococcus aureus from the infectious site and showed wound-healing effects during in vivo applications. ZnO-based nano-drug carrier can offer targeted drug delivery, and improved drug stability and efficacy resulting in better drug penetration.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Ciprofloxacin/pharmacology , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Microscopy, Electron, Scanning , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124017, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38354677

ABSTRACT

Nanoparticles are a boon for humanity because of their improved functionality and unlimited potential applications. Considering this significance, the proposed study introduced a simple, fast and eco-friendly method for synthesis of fluorescent silver nanoparticles (Ag-NPs) using Panax Ginseng root extract as a reducing and capping agent. Synthesis of Ag-NPs was performed in one step within three minutes utilizing microwave irradiation. The resulting Ag-NPs were characterized using various microscopic and spectroscopic techniques such as, Transmission Electron Microscope (TEM), UV/Visible spectroscopy, Fourier Transform Infrared Spectroscopy(FTIR) and Energy Dispersive X-ray analysis (EDX). The prepared Ag-NPs, which act as a fluorescent nano-probe with an emission band at 416 nm after excitation at 331 nm, were used to assay nilvadipine (NLV) spectrofluorimetrically in its pharmaceutical dosage form with good sensitivity and reproducibility. The proposed study is based on the ability of NLV to quantitatively quench the native Ag-NPs fluorescence, forming a ground state complex as a result of static quenching and an inner filter mechanism. The suggested approach displayed a satisfactory linear relationship throughout a concentration range of 5.0 µM - 100.0 µM, with LOD and LOQ values of 1.18 µM and 3.57 µM, respectively. Validation of the suggested approach was examined in accordance with ICH recommendations. In addition, the anti-bacterial and anti-fungal activities of the prepared nanoparticles were investigated, and they demonstrated effective anti-microbial activities and opened a future prospective to combat future antibiotic resistance. Finally, in-vitro cytotoxicity assay of Ag-NPs against normal and cancerous human cell lines was studied using MTT assay. The results proved the potential use of the produced Ag-NPs as an adjunct to anticancer treatment or for drug delivery without significantly harming healthy human cells.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Nifedipine/analogs & derivatives , Panax , Humans , Silver/pharmacology , Silver/chemistry , Fluorescent Dyes/pharmacology , Metal Nanoparticles/chemistry , Reproducibility of Results , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Bacteria , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests
13.
Environ Geochem Health ; 46(2): 30, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227286

ABSTRACT

The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.


Subject(s)
Environmental Pollutants , Wastewater , Escherichia coli , Fruit , Staphylococcus aureus , Magnetic Iron Oxide Nanoparticles , Plant Extracts
14.
Sci Total Environ ; 919: 170473, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286292

ABSTRACT

Users of novel psychoactive substances (NPS) are at risk, due to limited information about the toxicity and unpredictable effects of these compounds. Wastewater-based epidemiology (WBE) has been used as a tool to provide insight into NPS use at the population level. To understand the preferences and trends of NPS use in Australia, this study involved liquid chromatography mass spectrometry analysis of wastewater collected from Australian states and territories from February 2022 to February 2023. In total, 59 different NPS were included across two complementary analytical methods and covered up to 57 wastewater catchments over the study. The NPS detected in wastewater were 25-B-NBOMe, buphedrone, 1-benzylpiperazine (BZP), 3-chloromethcathinone, N,N-dimethylpentylone (N,N-DMP), N-ethylheptedrone, N-ethylpentylone, eutylone, 4F-phenibut, 2-fluoro deschloroketamine, hydroxetamine, mephedrone, methoxetamine, methylone, mitragynine, pentylone, phenibut, para-methoxyamphetamine (PMA), alpha-pyrrolidinovalerophenone (α-PVP) and valeryl fentanyl. The detection frequency for these NPS ranged from 3 % to 100 % of the sites analysed. A noticeable decreasing trend in eutylone detection frequency and mass loads was observed whilst simultaneously N,N-DMP and pentylone increased over the study period. The emergence of some NPS in wastewater pre-dates other sources of monitoring and provides further evidence that WBE can be used as an additional early warning system for alerting potential NPS use.


Subject(s)
Amphetamines , Illicit Drugs , Wastewater-Based Epidemiological Monitoring , gamma-Aminobutyric Acid/analogs & derivatives , Australia , Wastewater , Illicit Drugs/analysis , Psychotropic Drugs/analysis
15.
Expert Rev Anti Infect Ther ; 22(4): 253-272, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37461145

ABSTRACT

BACKGROUND: Based on gas chromatography - mass spectrometry (GC-MS) results of a previous study, six metabolites including alpha-terpineol, geranyl acetate, linalool, myrcenol, terpinolene, and thymol showed significantly higher amounts relative to other metabolites. METHODS: A continuation of the previous study, the interaction of these metabolites with the main virulence factors of P. aeruginosa (pseudomonas elastase and exotoxin A), Staphylococcus aureus (alpha-hemolysin and protein 2a), Mycobacterium tuberculosis (ESX-secreted protein B and the serine/threonine protein kinase), and Escherichia coli (heat-labile enterotoxin and Shiga toxin) were evaluated by molecular docking study and molecular simulation. RESULTS: In the case of Shiga toxin, higher and lower binding affinities were related to alpha-terpinolene and zincite with values of -5.8 and -2.6 kcal/mol, respectively. For alpha-hemolysin, terpinolene and alpha-terpinolene demonstrated higher binding affinities with similar energies of -5.9 kcal/mol. Thymol and geranyl acetate showed lower binding energy of -5.7 kcal/mol toward protein 2a. Furthermore, thymol had a higher binding affinity toward heat-labile enterotoxin and ESX-secreted protein B with values of -5.9 and -6.1 kcal/mol, respectively. CONCLUSIONS: It is concluded that the availability of secondary metabolites of A. haussknechtii surrounding zinc oxide (ZnO) NPs can hinder P. aeruginosa by inactivating Pseudomonas elastase and exotoxin.


Subject(s)
Acetates , Acyclic Monoterpenes , Cyclohexane Monoterpenes , Monoterpenes , Mycobacterium tuberculosis , Octanols , Staphylococcal Infections , Humans , Thymol/chemistry , Staphylococcus aureus , Pseudomonas aeruginosa , Molecular Docking Simulation , Virulence Factors , Escherichia coli , Hemolysin Proteins , Enterotoxins , Exotoxins , Shiga Toxins , Pancreatic Elastase
16.
Fish Physiol Biochem ; 50(1): 239-258, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37656302

ABSTRACT

Pollution and climate change pose significant threats to aquatic ecosystems, with adverse impacts on aquatic animals, including fish. Climate change increases the toxicity of metal in aquatic ecosystems. To understand the severity of metal pollution and climate change, an experiment was conducted to delineate the mitigation potential of selenium (Se) and selenium nanoparticles (Se-NPs) against lead (Pb) and high temperature stress in Pangasianodon hypophthalmus. For the experiment, five isonitrogenous and isocaloric diets were prepared, varying in selenium supplementation as Se at 0, 1, and 2 mg kg-1 diet, and Se-NPs at 1 and 2 mg kg-1 diet. The fish in stressor groups were exposed to Pb (1/20th of LC50 concentration, 4 ppm) and high temperature (34 °C) throughout the experiment. The results demonstrated that dietary supplementation of Se at 1 and 2 mg kg-1 diet, as well as Se-NPs at 1 mg kg-1 diet, significantly reduced (p < 0.01) the levels of lactate dehydrogenase and malate dehydrogenase in both liver and muscle tissues. Additionally, the levels of alanine aminotransferase and aspartate aminotransferase in both gill and liver tissues were significantly decreased (p < 0.01) with the inclusion of Se and Se-NPs in the diets. Furthermore, the enzymes glucose-6-phosphate dehydrogenase in gill and liver tissues, fructose 1,6-bisphosphatase in liver and muscle tissues, and acid phosphatase in liver tissue were remarkably reduced (p < 0.01) due to the supplementation of Se and Se-NPs. Moreover, dietary supplementation of Se and Se-NPs significantly enhanced (p < 0.01) the activity of pyruvate kinase, glucokinase, hexokinase, alkaline phosphatase, ATPase, protease, amylase, lipase, and RNA/DNA ratio in the fish. Histopathological examination of gill and liver tissues also indicated that Se and Se-NPs protected against structural damage caused by lead and high-temperature stress. Moreover, the study examined the bioaccumulation of selenium and lead in muscle, water, and diets. The aim of the study revealed that Se and Se-NPs effectively protected the fish from lead toxicity and high-temperature stress, while also improving the function of cellular metabolic enzymes in P. hypophthalmus.


Subject(s)
Catfishes , Nanoparticles , Selenium , Animals , Lead/metabolism , Ecosystem , Antioxidants/metabolism , Catfishes/physiology
17.
Biol Trace Elem Res ; 202(1): 268-290, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37060542

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.


Subject(s)
Metal Nanoparticles , Nanoparticles , Trace Elements , Zinc Oxide , Animals , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Poultry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Zinc
18.
Microsc Res Tech ; 87(3): 602-615, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38018343

ABSTRACT

This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 µm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 µg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 µg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.


Subject(s)
Antineoplastic Agents , Cucurbita , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Humans , Animals , Chlorocebus aethiops , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antioxidants/pharmacology , Cucurbita/metabolism , Molecular Docking Simulation , Vero Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Seeds/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , X-Ray Diffraction
19.
3 Biotech ; 14(1): 20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38144392

ABSTRACT

This study outlines the synthesis of biogenic copper oxide nanoparticles (CuONPs) using an extract derived from Cassia fistula Linn (Cf) leaves through a green synthesis approach. Characterization of the synthesized CfBio-CuONPs was carried out using UV- VIS, FTIR, DLS, XRD, and TEM studies. The CfBio-CuONPs exhibited a prominent peak at 272 nm in UV-VIS spectroscopy, and XRD measurements confirmed their crystalline nature. The FTIR spectrum of CfBio-CuONPs revealed the presence of functional groups such as O-H and aromatic groups. TEM analysis confirmed that the CfBio-CuONPs were predominantly spherical with diameters ranging from 15 to 25 nm. Subsequently, the antibacterial potential of CfBio-CuONPs was evaluated against four pathogenic bacteria, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Bacillus subtilis. Among these, B. subtilis exhibited the highest zone of inhibition (26.93 ± 2.01 mm), followed by E. coli (24.25 ± 1.04 mm), P. aeruginosa (23.98 ± 0.97 mm), and S. epidermidis (22.97 ± 1.20 mm). CfBio-CuONPs demonstrated maximum antioxidant activity (78 ± 1.54%) at a dose-dependent concentration of 2000 µg/ml. Furthermore, in vitro toxicity assessment using the toxtrak test indicated that CfBio-CuONPs exhibited a significantly stronger toxic effect value/PI against E. coli (93.52%) compared to P. aeruginosa (92.65%), B. subtilis (91.25%), and S. epidermidis (82.89%). These results underscore the notable toxicity of CfBio-CuONPs against E. coli, surpassing that against other bacteria and conventional antibiotics. This study highlights the potential utility of CfBio-CuONPs for eradicating pathogenic microorganisms and suggests potential implications for ecotoxicology. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03869-5.

20.
Int J Biol Macromol ; 258(Pt 2): 128869, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114013

ABSTRACT

In this work, a simple, efficient and eco-friendly green synthesis of manganese dioxide nanoparticles (MnO2NPs) by Psidium guajava leaf extract was described. Fourier-Transform infrared spectra results revealed that involvement of the plant extract functional groups in the formation of MnO2NPs. The UV-vis absorption spectra of the synthesized MnO2NPs exhibited absorption peaks at 374 nm, which were attributed to the band gap of the MnO2NPs. Crystal phase identification of the MnO2NPs were characterized by X-ray diffraction analysis and the formation of crystalline MnO2NPs have been confirmed. Furthermore, scanning electron microscopy analysis showed that the synthesized MnO2NPs have a spherical in shape. Interestingly, the prepared green synthesized MnO2NPs showed catalytic degradation activity for malachite green dye. Malachite green's photocatalytic degradation was detected spectrophotometrically in the wavelength range of 250-900 nm, and it was discovered to have a photodegradation efficiency of 75.5 % within 90 min when exposed to solar radiation. Green synthesized MnO2NPs are responsible for this higher activity. An interaction between synthesized NPs and biomolecules, including CT-DNA and BSA was also evaluated. The spectrophotometric and Fluoro spectroscopic analyses indicate a gradual reduction in peak intensities and shifts in wavelengths, indicating binding and affinity between the NPs and the biomolecules.


Subject(s)
Metal Nanoparticles , Psidium , Rosaniline Dyes , Metal Nanoparticles/chemistry , Manganese Compounds , Oxides , X-Ray Diffraction , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL