Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Amino Acids ; 56(1): 23, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506925

ABSTRACT

Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Humans , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Amino Acids/metabolism , Oxidative Stress , Inflammation/drug therapy
2.
Pharm Biol ; 62(1): 285-295, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38516898

ABSTRACT

CONTEXT: Membranous glomerulonephritis (MGN) is a leading cause of nephrotic syndrome in adults. Diosgenin (DG) has been reported to exert antioxidative and anti-inflammatory effects. OBJECTIVE: To investigate the renoprotective activity of DG in a cationic bovine serum albumin-induced rat model of MGN. MATERIALS AND METHODS: Fourty male Sprague-Dawley rats were randomized into four groups. The MGN model was established and treated with a DG dose (10 mg/kg) and a positive control (TPCA1, 10 mg/kg), while normal control and MGN groups received distilled water by gavage for four consecutive weeks. At the end of the experiment, 24 h urinary protein, biochemical indices, oxidation and antioxidant levels, inflammatory parameters, histopathological examination, immunohistochemistry and immunoblotting were evaluated. RESULTS: DG significantly ameliorated kidney dysfunction by decreasing urinary protein (0.56-fold), serum creatinine (SCr) (0.78-fold), BUN (0.71-fold), TC (0.66-fold) and TG (0.73-fold) levels, and increasing ALB (1.44-fold). DG also reduced MDA (0.82-fold) and NO (0.83-fold) levels while increasing the activity of SOD (1.56-fold), CAT (1.25-fold), glutathione peroxidase (GPx) (1.55-fold) and GSH (1.81-fold). Furthermore, DG reduced Keap1 (0.76-fold) expression, Nrf2 nuclear translocation (0.79-fold), and induced NQO1 (1.25-fold) and HO-1 (1.46-fold) expression. Additionally, DG decreased IL-2 (0.55-fold), TNF-α (0.80-fold) and IL-6 (0.75-fold) levels, and reduced protein expression of NF-κB p65 (0.80-fold), IKKß (0.93-fold), p-IKKß (0.89-fold), ICAM-1 (0.88-fold), VCAM-1 (0.91-fold), MCP-1 (0.88-fold) and E-selectin (0.87-fold), and also inhibited the nuclear translocation of NF-κB p65 (0.64-fold). DISCUSSION AND CONCLUSIONS: The results suggest a potential therapeutic benefit of DG against MGN due to the inhibition of the NF-κB pathway, supporting the need for further clinical trials.


Subject(s)
Glomerulonephritis, Membranous , Rats , Male , Animals , Glomerulonephritis, Membranous/chemically induced , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/prevention & control , NF-kappa B/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , Rats, Sprague-Dawley , I-kappa B Kinase/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Antioxidants/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/prevention & control
3.
J Ethnopharmacol ; 328: 117899, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38341111

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: This study has important ethnopharmacological implications since it systematically investigated the therapeutic potential of Bacopa monnieri(L.) Wettst. (Brahmi) in treating neurological disorders characterized by oxidative stress-a growing issue in the aging population. Bacopa monnieri, which is strongly rooted in Ayurveda, has long been recognized for its neuroprotective and cognitive advantages. The study goes beyond conventional wisdom by delving into the molecular complexities of Bacopa monnieri, particularly its active ingredient, Bacoside-A, in countering oxidative stress. The study adds to the ethnopharmacological foundation for using this herbal remedy in the context of neurodegenerative disorders by unravelling the scientific underpinnings of Bacopa monnieri's effectiveness, particularly at the molecular level, against brain damage and related conditions influenced by oxidative stress. This dual approach, which bridges traditional wisdom and modern investigation, highlights Bacopa monnieri's potential as a helpful natural remedy for oxidative stress-related neurological diseases. AIM OF THE STUDY: The aim of this study is to investigate the detailed molecular mechanism of action (in vitro, in silico and in vivo) of Bacopa monnieri (L.) Wettst. methanolic extract and its active compound, Bacoside-A, against oxidative stress in neurodegenerative disorders. MATERIALS AND METHODS: ROS generation activity, mitochondrial membrane potential, calcium deposition and apoptosis were studied through DCFDA, Rhodamine-123, FURA-2 AM and AO/EtBr staining respectively. In silico study to check the effect of Bacoside-A on the Nrf-2 and Keap1 axis was performed through molecular docking study and validated experimentally through immunofluorescence co-localization study. In vivo antioxidant activity of Bacopa monnieri extract was assessed by screening the oxidative stress markers and stress-inducing hormone levels as well as through histopathological analysis of tissues. RESULTS: The key outcome of this study is that the methanolic extract of Bacopa monnieri (BME) and its active component, Bacoside-A, protect against oxidative stress in neurodegenerative diseases. At 100 and 20 µg/ml, BME and Bacoside-A respectively quenched ROS, preserved mitochondrial membrane potential, decreased calcium deposition, and inhibited HT-22 mouse hippocampus cell death. BME and Bacoside-A regulated the Keap1 and Nrf-2 axis and their downstream antioxidant enzyme-specific genes to modify cellular antioxidant machinery. In vivo experiments utilizing rats subjected to restrained stress indicated that pre-treatment with BME (50 mg/kg) downregulated oxidative stress markers and stress-inducing hormones, and histological staining demonstrated that BME protected the neuronal cells of the Cornu Ammonis (CA1) area in the hippocampus. CONCLUSIONS: Overall, the study suggests that Bacopa monnieri(L.) Wettst. has significant potential as a natural remedy for neurodegenerative disorders, and its active compounds could be developed as new drugs for the prevention and treatment of oxidative stress-related diseases.


Subject(s)
Bacopa , Neurodegenerative Diseases , Saponins , Mice , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Reactive Oxygen Species/metabolism , Calcium/metabolism , Molecular Docking Simulation , Saponins/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Extracts/pharmacology
4.
BMC Complement Med Ther ; 24(1): 71, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303002

ABSTRACT

BACKGROUND: Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS: Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-ß1) were determined. RESULTS: MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-ß1/Smad pathway. CONCLUSION: Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.


Subject(s)
Hyperthyroidism , Liver Diseases , Melissa , Plant Extracts , Animals , Rats , Gene Expression , Hyperthyroidism/complications , Hyperthyroidism/drug therapy , Inflammation/metabolism , Liver , Melissa/chemistry , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Thyroid Hormones/metabolism , Thyroxine/genetics , Thyroxine/metabolism , Transforming Growth Factor beta1/metabolism , Liver Diseases/etiology , Liver Diseases/therapy
5.
Antioxidants (Basel) ; 13(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38397804

ABSTRACT

The brain has a high metabolism rate that may generate reactive oxygen and nitrogen species. Consequently, nerve cells require highly efficient antioxidant defenses in order to prevent a condition of deleterious oxidative stress. This is particularly relevant in the hippocampus, a highly complex cerebral area involved in processing superior cognitive functions. Most current evidence points to hippocampal oxidative damage as a causal effect for neurodegenerative disorders, especially Alzheimer's disease. Nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) is a master key for the transcriptional regulation of antioxidant and detoxifying systems. It is ubiquitously expressed in brain areas, mainly supporting glial cells. In the present study, we have analyzed the relationships between Nrf2 and Keap1 isoforms in hippocampal tissue in response to aging and dietary long-chain polyunsaturated fatty acids (LCPUFA) supplementation. The possible involvement of lipoxidative and nitrosative by-products in the dynamics of the Nrf2/Keap1 complex was examined though determination of protein adducts, namely malondialdehyde (MDA), 4-hydroxynonenal (HNE), and 3-nitro-tyrosine (NTyr) under basal conditions. The results were correlated to the expression of target proteins heme-oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPx4), whose expressions are known to be regulated by Nrf2/Keap1 signaling activation. All variables in this study were obtained simultaneously from the same preparations, allowing multivariate approaches. The results demonstrate a complex modification of the protein expression patterns together with the formation of adducts in response to aging and diet supplementation. Both parameters exhibited a strong interaction. Noticeably, LCPUFA supplementation to aged animals restored the Nrf2/Keap1/target protein patterns to the status observed in young animals, therefore driving a "rejuvenation" of hippocampal antioxidant defense.

6.
Phytomedicine ; 126: 155458, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394733

ABSTRACT

BACKGROUND: As a canonical iron-dependent form of regulated cell death (RCD), ferroptosis plays a crucial role in chemical-induced liver injuries. Previous studies have demonstrated that xanthohumol (Xh), a natural prenylflavonoid isolated from hops, exhibits anti-inflammatory, anti-antioxidative and hepatoprotective properties. However, the regulatory effects of Xh on hepatic ferroptosis and the underlying mechanism have not yet been fully elucidated. PURPOSE: To investigate the hepatoprotective effects of Xh against drug-induced liver injury (DILI) and the regulatory effects of Xh on hepatic ferroptosis, as well as to reveal the underlying molecular mechanisms. METHODS/STUDY DESIGN: The hepatoprotective benefits of Xh were investigated in APAP-induced liver injury (AILI) mice and HepaRG cells. Xh was administered intraperitoneally to assess its in vivo effects. Histological and biochemical studies were carried out to evaluate liver damage. A series of ferroptosis-related markers, including intracellular Fe2+ levels, ROS and GSH levels, the levels of MDA, LPO and 4-HNE, as well as the expression levels of ferroptosis-related proteins and modulators were quantified both in vivo and in vitro. The modified peptides of Keap1 by Xh were characterized utilizing nano LC-MS/MS. RESULTS: Xh remarkably suppresses hepatic ferroptosis and ameliorates AILI both in vitro and in vivo, via suppressing Fe2+ accumulation, ROS formation, MDA generation and GSH depletion, these observations could be considerably mitigated by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistically, Xh could significantly activate the Nrf2/xCT/GPX4 signaling pathway to counteract AILI-induced hepatocyte ferroptosis. Further investigations showed that Xh could covalently modify three functional cysteine residues (cys151, 273, 288) of Keap1, which in turn, reduced the ubiquitination rates of Nrf2 and prolonged its degradation half-life. CONCLUSIONS: Xh evidently suppresses hepatic ferroptosis and ameliorates AILI via covalent modifying three key cysteines of Keap1 and activating Nrf2/xCT/GPX4 signaling pathway.


Subject(s)
Ferroptosis , Flavonoids , Propiophenones , Animals , Mice , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Reactive Oxygen Species , Tandem Mass Spectrometry , Liver , Signal Transduction , Cysteine
7.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38136184

ABSTRACT

This study evaluated the effects of maternal selenium-enriched yeast (SeY) supplementation during late gestation and lactation on sow performance, transfer of selenium (Se) and redox status, and gut microbiota community, as well as on the gut health of offspring. Seventy pregnant sows on day 85 of gestation were randomly allocated to the following two treatments: (1) sows who were fed a basal diet (basal diet contained 0.3 mg/kg Se as Na2SeO3, n = 35); (2) and sows who were fed a SeY-supplemented diet (basal diet with 0.2 mg/kg Se as SeY, n = 35). The offspring piglets were only cross-fostered within the group on day 3 of lactation (L3) according to the pig farm epidemic prevention policy. The plasma, milk, and feces samples from 10 sows, as well as plasma and intestinal samples per treatment, were collected on L1 and L21, respectively. Our results showed that maternal SeY supplementation increased the first week average weight and ADG of piglets (p < 0.05). Compared with the CON group, the SeY supplementation increased the Se content in the plasma and milk of sows and the plasma of piglets on L1 and L21 (p < 0.05). In addition, in sows, the levels of fat in the milk on L21, the level of IgA, T-AOC, and GSH-Px in the plasma on L21, and the level of T-AOC and GSH-Px in the colostrum were increased, while the MDA content was decreased in the plasma on L1 and in the colostrum and milk on L14 (p < 0.05). In the piglet plasma, the levels of IgA on L1 and L21, GSH-Px on L1, and GSH on L21 were increased, while the MDA content was decreased on L1 (p < 0.05). Maternal SeY supplementation up-regulated the small intestinal protein abundances of MUC1, E-cadherin, ZO-1, occludin, and claudin and activated the Nrf2/Keap1 signaling pathway in weaned offspring piglets. The 16S rRNA sequencing results showed that fecal microbiota had distinct separations during lactation, and the relative abundances of unclassified_f_Lachnospiraceae, Prevotaceae_UCG-001, and Lachnospiraceae_NK4A136_group were increased on L1. Collectively, the current findings suggest that maternal SeY supplementation during late gestation and lactation could improve the piglet's growth performance, Se status, antioxidant capacity and immunoglobulins transfer at the first week of lactation, as well as alter the fecal microbiota composition by increasing antioxidative-related and SCFA-producing microbiota in sows. These changes contributed to enhancing the small intestinal barrier function and activating the Nrf2/Keap1 pathway in offspring.

8.
Nanomedicine (Lond) ; 18(21): 1421-1439, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37933634

ABSTRACT

Background: Excessive reactive oxygen species (ROS) and subsequent mitochondrial dysfunction are pivotal in initiating cardiac hypertrophy. To explore nano-selenium's (SeNP's) preventive potential against this condition, the authors evaluated chemically synthesized chitosan-SeNPs and biosynthesized Bacillus cereus YC-3-SeNPs in an angiotensin II (Ang II)-induced cardiac hypertrophy model. Methods: This investigation encompassed ROS measurement, mitochondrial membrane potential analysis, transmission electron microscopy, gene and protein expression analyses, protein carbonylation assays, serum antioxidant quantification and histological staining. Results: SeNPs effectively countered Ang II-induced cardiac hypertrophy by reducing ROS, restoring mitochondrial and protein kinase 2α (CK2-α) function, activating antioxidant pathways and enhancing serum antioxidant levels. Conclusion: This finding underscores SeNPs' role in attenuating Ang II-induced myocardial hypertrophy both in vitro and in vivo.


Enlargement of the heart is called cardiac hypertrophy; this is caused by too many reactive oxygen species, which are compounds that damage the mitochondria of cells. The mitochondria provide energy to cells and their disruption can cause a significantly negative effect on cells and the tissues and organs cells make up. Selenium is a type of metal that must be consumed in small amounts to stay healthy; it has antioxidant effects, meaning it can stop reactive oxygen species and potentially prevent cardiac hypertrophy. Nano-selenium (SeNP), consisting of tiny, spherical particles containing selenium, may be a more effective way of delivering selenium as an antioxidant to prevent cardiac hypertrophy. SeNPs were made synthetically and from a type of bacterium called Bacillus cereus; both SeNPs demonstrated antioxidant effects in heart cells taken from chicken embryos and live chickens. These results suggest that SeNPs could be developed into medication to combat cardiac hypertrophy.


Subject(s)
Nanoparticles , Selenium , Selenium/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Oxidative Stress , Mitochondria/metabolism
9.
J Cell Mol Med ; 27(22): 3601-3613, 2023 11.
Article in English | MEDLINE | ID: mdl-37621124

ABSTRACT

Osteoporosis is a prevalent complication of diabetes, characterized by systemic metabolic impairment of bone mass and microarchitecture, particularly in the spine. Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been extensively employed in Traditional Chinese Medicine to manage diabetes; however, its potential to ameliorate diabetic osteoporosis (DOP) has remained obscure. Herein, we explored the protective efficacy of AR/PCC herb pair against DOP using a streptozotocin (STZ)-induced rat diabetic model. Our data showed that AR/PCC could effectively reduce the elevated fasting blood glucose and reverse the osteoporotic phenotype of diabetic rats, resulting in significant improvements in vertebral trabecular area percentage, trabecular thickness and trabecular number, while reducing trabecular separation. Specifically, AR/PCC herb pair improved impaired osteogenesis, nerve ingrowth and angiogenesis. More importantly, it could mitigate the aberrant activation of osteoblast pyroptosis in the vertebral bodies of diabetic rats by reducing increased expressions of Nlrp3, Asc, Caspase1, Gsdmd and IL-1ß. Mechanistically, AR/PCC activated antioxidant pathway through the upregulation of the antioxidant response protein Nrf2, while concurrently decreasing its negative feedback regulator Keap1. Collectively, our in vivo findings demonstrate that AR/PCC can inhibit osteoblast pyroptosis and alleviate STZ-induced rat DOP, suggesting its potential as a therapeutic agent for mitigating DOP.


Subject(s)
Anemarrhena , Diabetes Mellitus, Experimental , Osteoporosis , Rats , Animals , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Pyroptosis , Anemarrhena/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/pharmacology , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoblasts/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
10.
Fish Shellfish Immunol ; 141: 109025, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625733

ABSTRACT

Zinc plays a crucial role in the antioxidant capacity, and inflammatory response of aquatic species, but its impact on largemouth bass Micropterus salmoides is rarely reported. Therefore, this paper aimed to investigate the effects of different levels of zinc on the growth performance, histopathology, antioxidant capacity, and inflammatory cytokines of largemouth bass Micropterus salmoides. Fish with an initial weight of 7.84 ± 0.06 g were cultured for 10 weeks. Five experimental diets were prepared with supplemented proteinate Zn (Bioplex Zn, Alltech) (0, 30, 60, 90, and 120 mg/kg), which were named the Zn-42, Zn-73, Zn-103, Zn-133, and Zn-164 groups. No evident difference was found between the dietary zinc level and the survival rate, the crude lipid content of the whole fish, or the visceral somatic index. Weight gain, condition factor, whole-body crude protein content, interleukin-10, and transforming growth factor beta gene expression were gradually enhanced with up to 102.68 mg/kg zinc and decreased at higher levels. The hepatosomatic index, feed conversion ratio, malondialdehyde level in the liver, aspartate aminotransferase, and alanine transaminase activity in the serum, gradually decreased up to 102.68 mg/kg zinc, and gradually increased beyond this. Activation of the nuclear factor erythroid-derived 2-like 2/Kelch-like ECH-associated protein 1 signaling pathway gradually up-regulated the mRNA levels and activities of glutathione peroxidase, total antioxidant capacity, catalase, and superoxide dismutase in the liver, this antioxidant ability was lower when the zinc was greater than 102.68 mg/kg. The gene expressions of nuclear factor-k-gene binding and pro-inflammation cytokines (interleukin-1ß, interleukin-15, tumor necrosis factor alpha, and interleukin-8) were up-regulated up to 102.68 mg/kg zinc and then gradually repressed. In conclusion, using broken line analysis to estimate weight gain and Zn proteinate as the zinc source, the recommended dietary zinc for largemouth bass is 66.57 mg/kg zinc.


Subject(s)
Antioxidants , Bass , Animals , Antioxidants/metabolism , Dietary Supplements/analysis , Diet/veterinary , Cytokines/genetics , Zinc , Animal Feed/analysis
11.
Food Sci Nutr ; 11(7): 4233-4245, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457170

ABSTRACT

The hard-shelled mussel (Mytilus coruscus) has been used as a traditional Chinese medicine and health food in China for centuries. Polysaccharides from mussel has been reported to have multiple biological functions, however, it remains unclear whether mussel polysaccharide (MP) exerts protective effects in intestinal functions, and the underlying mechanisms of action remain unclear. The aim of this study was to investigate the protective effects and mechanism of MP on intestinal oxidative injury in mice. In this study, 40 male BALB/C mice were used, with 30 utilized to produce an animal model of intestinal oxidative injury with intraperitoneal injection of cyclophosphamide (Cy) for four consecutive days. The protective effects of two different doses of MP (300 and 600 mg/kg) were assessed by investigating the change in body weight, visceral index, and observing colon histomorphology. Moreover, the underlying molecular mechanisms were investigated by measuring the antioxidant enzymes and related signaling molecules through ELISA, real-time PCR, and western blot methods. The results showed that MP pretreatment effectively protected the intestinal from Cy-induced injury: improved the colon tissue morphology and villus structure, increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, and reduced malondialdehyde (MDA) content in serum and colon tissues. Meanwhile, MP also significantly increased the expression levels of SOD, GSH-Px, heme oxygenase-1 (HO-1), and nuclear factor E2-related factor 2 (Nrf2) mRNA in colon tissues. Further, western blot results showed that the expression of Nrf2 protein was significantly upregulated while kelch-like ECH-associated protein 1 (Keap1) was significantly downregulated by MP in the colonic tissues. This study indicates that MP can ameliorate Cy-induced oxidative stress injury in mice, and Nrf2-Keap1 signaling pathway may mediate these protective effects.

12.
ACS Nano ; 17(14): 14053-14068, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37428976

ABSTRACT

Easy recurrence and strong treatment side effects significantly limit the clinical treatment of allergic dermatitis. The human trace element selenium (Se) plays essential roles in redox regulation through incorporation into selenoproteins in the form of 21st necessary amino acid selenocysteine, to participates in the pathogenesis and intervention of chronic inflammatory diseases. Therefore, based on the safe and elemental properties of Se, we construct a facile-synthesis strategy for antiallergic selenium nanoparticles (LET-SeNPs), and scale up the production by employing a spray drying method with lactose (Lac-LET-SeNPs) or maltodextrin (Mal-LET-SeNPs) as encapsulation agents realizing larger scale production and a longer storage time. As expected, these as-prepared LET-SeNPs could effectively activate the Nrf2-Keap1 signaling pathway to enhance the expression of antioxidative selenoprotein at mRNA and protein levels, then inhibit mast cell activation to achieve efficient antiallergic activity. Interestingly, LET-SeNPs undergo metabolism to seleno-amino acids to promote biosynthesis of selenoproteins, which could suppress ROS-induced cyclooxygenase-2 (COX-2) and MAPKs activation to suppress the release of histamine and inflammatory cytokines. Allergic mouse and Macaca fascicularis models further confirm that LET-SeNPs could increase the Se content and selenoprotein expression in the skin, decrease mast cells activation and inflammatory cells infiltration, and finally exhibit the high therapeutic effects on allergic dermatitis. Taken together, this study not only constructs facile large-scale synthesis of translational Se nanomedicine to break through the bottleneck problem of nanomaterials but also sheds light on its application in the intervention and treatment of allergies.


Subject(s)
Anti-Allergic Agents , Dermatitis , Nanoparticles , Selenium , Humans , Mice , Animals , Selenium/chemistry , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Selenoproteins/metabolism , Nanoparticles/chemistry , Dermatitis/drug therapy
13.
Antioxidants (Basel) ; 12(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36978988

ABSTRACT

Sickle cell disease (SCD) is a monogenic inheritable disease characterized by severe anemia, increased hemolysis, and recurrent, painful vaso-occlusive crises due to the polymerization of hemoglobin S (HbS)-generated oxidative stress. Up until now, only four drugs are approved for SCD in the US. However, each of these drugs affects only a limited array of SCD pathologies. Importantly, curative therapies, such as gene therapy, or hematopoietic stem cell transplantation are not available for every patient because of their high costs, availability of donor matching, and their serious adverse effects. Therefore, there is an unmet medical need for novel therapeutic strategies that target broader SCD sequelae. SCD phenotypic severity can be alleviated by increasing fetal hemoglobin (HbF) expression. This results in the inhibition of HbS polymerization and thus sickling, and a reduction in oxidative stress. The efficacy of HbF is due to its ability to dilute HbS levels below the threshold required for polymerization and to influence HbS polymer stability in RBCs. Nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)-complex signaling is one of the most important cytoprotective signaling controlling oxidative stress. Nrf2 is present in most organs and, after dissociation from Keap1, it accumulates in the cytoplasm, then translocates to the nucleus where it binds to the antioxidant response element (ARE) sequences and increases the expression of various cytoprotective antioxidant genes. Keeping this in mind, various researchers have proposed a role of multiple agents, more importantly tert-Butylhydroquinone (tBHQ), curcumin, etc., (having electrophilic properties) in inhibiting keap1 activity, so that Nrf2 can translocate to the nucleus to activate the gamma globin gene, thus maintaining alpha-hemoglobin-stabilizing protein (AHSP) and HbF levels. This leads to reduced oxidative stress, consequently minimizing SCD-associated complications. In this review, we will discuss the role of the Keap-1-Nrf2 complex in hemoglobinopathies, especially in SCD, and how this complex might represent a better target for more effective treatment options.

14.
Chin J Physiol ; 66(1): 28-35, 2023.
Article in English | MEDLINE | ID: mdl-36814154

ABSTRACT

Honeycomb (Nidus vespae) is traditional Chinese medicine and can treat rheumatoid arthritis (RA), and protocatechuic acid (PCA) is a bioactive component of honeycomb. This study aimed to investigate whether PCA could reduce the H2O2-induced migration and oxidative stress of RA fibroblast-like synoviocytes (RA-FLSs). H2O2-induced RA-FLSs were used to simulate the in vitro model of RA. The viability, apoptosis, migration, invasion, and oxidative stress of RA-FLSs were detected by Cell Counting Kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, wound healing, transwell assays, DCFDA staining, and malonaldehyde and superoxide dismutase enzyme-linked immunosorbent assay kits. The expression of migration and invasion-related proteins and Nrf2/Keap1 signaling pathway-related proteins was analyzed by western blotting. As a result, PCA suppressed the viability, migration, invasion, and oxidative and promoted apoptosis of H2O2-induced RA-FLSs by activating the Nrf2/Keap1 signaling pathway. ML-385, an Nrf2 inhibitor, could enhance the viability, migration, invasion, and oxidative and inhibited apoptosis of H2O2-induced RA-FLSs. In conclusion, PCA reduced H2O2-induced migration and oxidative stress of RA-FLSs by activating the Nrf2-Keap1 signaling pathway.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Synoviocytes/metabolism , Hydrogen Peroxide/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Cell Proliferation , Cell Movement , Signal Transduction , Arthritis, Rheumatoid/metabolism , Oxidative Stress , Fibroblasts/metabolism , Cells, Cultured
15.
Phytother Res ; 37(6): 2326-2343, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36789832

ABSTRACT

Multiple sclerosis (MS) is a debilitating neurodegenerative autoimmune disease of the central nervous system (CNS). The current study aimed to investigate the neuroprotective properties of Ajugarin-I (Aju-I) against the experimental autoimmune encephalomyelitis (EAE) model of MS and explored the underlying mechanism involved. The protective potential of Aju-I was first confirmed against glutamate-induced HT22 cells and hydrogen peroxide (H2 O2 )-induced BV2 cells. Next, an EAE model has been established to investigate the mechanisms of MS and identify potential candidates for MS treatment. The behavioral results demonstrated that Aju-I post-immunization treatment markedly reduced the EAE-associated clinical score, motor impairment, and neuropathic pain. Evans blue and fluorescein isothiocyanate extravasation in the brain were markedly reduced by Aju-I. It effectively restored the EAE-associated histopathological changes in the brain and spinal cord. It markedly attenuated EAE-induced inflammation in the CNS by reducing the expression levels of p-38/JNK/NF-κB but increased the expression of IkB-α. It suppressed oxidative stress by increasing the expression of Nrf2 but decreasing the expression of keap-1. It suppressed EAE-induced apoptosis in the CNS by regulating Bax/Bcl-2 and Caspase-3 expression. Taken together, this study suggests that Aju-I treatment exhibits neuroprotective properties in the EAE model of MS via regulation of MAPK/NF-κB, Nrf2/Keap-1, and Bcl2/Bax signaling.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , NF-kappa B , NF-E2-Related Factor 2 , bcl-2-Associated X Protein , Mice, Inbred C57BL
16.
Fish Shellfish Immunol ; 134: 108589, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36773713

ABSTRACT

This study was to evaluate the mitigative effects of vitamin C (VC) on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. 270 healthy juvenile Rhynchocypris lagowskii Dybowski (4.65 ± 0.04 g) were randomly divided into 3 treatments, and fed with control diet, 80 g/kg glycinin diet and 80 g/kg glycinin+200 mg/kg VC diet respectively for 8 weeks. The results showed that glycinin significantly decreased the weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05), while VC supplementation improved the growth performance and feed utilization efficiency, and reached a level similar to the control group. Similarly, VC significantly increased the crude protein content of muscle and whole-body, and hepatopancreas and intestinal protease activities of fish fed with glycinin diet (P < 0.05). The distal intestine of fish in glycinin group showed typical damage characteristics, including breakage and atrophy of intestinal mucosal fold, and increased intestinal mucosal permeability. However, fish fed the glycinin + VC diet showed an unimpaired normal intestinal morphology. Usefully, VC supplementation could also restore impaired immune function and antioxidant capacity. VC down-regulated the mRNA levels of pro-inflammatory cytokines TNF-α and IL-1ß, and up-regulated the mRNA levels of anti-inflammatory cytokines IL-10 and TGF-ß in the distal intestine of fish fed with glycinin. Furthermore, glycinin exposure could reduce the mRNA levels of HO-1, CAT and GPx by inhibiting the activation of Nrf2-Keap1 signaling pathway, while VC supplementation reversed this phenomenon and maintained the homeostasis of antioxidant defense system. Concluded, glycinin causes growth inhibition, digestive dysfunction and intestinal damage of Rhynchocypris lagowskii Dybowski, while sufficient VC intake is beneficial for fish to resist the adverse effects of glycinin.


Subject(s)
Antioxidants , Dietary Supplements , Animals , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Ascorbic Acid/pharmacology , NF-E2-Related Factor 2/metabolism , Diet , Intestines , Vitamins/pharmacology , Cytokines/metabolism , RNA, Messenger/genetics , Animal Feed/analysis , Fish Proteins/genetics
17.
Horm Mol Biol Clin Investig ; 44(2): 159-180, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36591918

ABSTRACT

OBJECTIVES: There is evidence that mitochondrial dysfunction mediated by hyperglycemia increases the incidence of diabetes and age-related insulin resistance. Thus, maintaining mitochondrial integrity may provide alternative therapeutic approach in diabetes treatment. This study aimed to evaluate the effect of Bambusa vulgaris leaf extract on mitochondrial biogenesis in the pancreas of diabetic rats. METHODS: 11 weeks old male rats (n=30) were purchased, and sorted into the following groups: control, diabetic control, diabetes + metformin (100 mg/kg), diabetes + Aq. B. vulgaris (100 mg/kg), diabetes + Aq. B. vulgaris (200 mg/kg), and diabetes + Aq. B. vulgaris (300 mg/kg). Diabetes was induced in the rats by a single dose of 65 mg/kg streptozotocin (STZ). The mRNA expression of genes related to mitochondria biogenesis (pgc-1α, Nrf2, GSK3ß, AMPK and SIRT2) and genes of Nrf2-Keap1-ARE signaling pathway were determined by reverse transcriptase polymerase chain reaction. Molecular docking studies including lock and key docking and prime MM-GBSA were incorporated to identify the lead chemical compounds in Bambusa vulgari. RESULTS: The results showed that B. vulgaris leaf extract promotes mitochondrial biogenesis via altering the mRNA expression of mitochondrial master regulator pgc-1α, other upstream genes, and the Nrf2-Keap1-ARE antioxidant pathway. Through molecular docking results, cryptochlorogenic acid, hesperidin, orientin, vitexin, scopolin, and neochlorogenic were found as the crucial chemicals in B. vulgaris with the most modulating effect on PGC-1α, AMPK, and GSK3. CONCLUSIONS: This study thus suggests that B. vulgaris leaf extract restores the integrity of mitochondria in diabetic rats.


Subject(s)
Bambusa , Diabetes Mellitus, Experimental , Rats , Male , Animals , Bambusa/genetics , Bambusa/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/pharmacology , Glycogen Synthase Kinase 3/therapeutic use , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NF-E2-Related Factor 2/therapeutic use , Mitochondria/metabolism , DNA, Mitochondrial , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , RNA, Messenger/metabolism
18.
BMC Complement Med Ther ; 22(1): 301, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36401276

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) approximately constitutes 90% of the reported cases. 30-40% of diabetics eventually develop diabetic nephropathy (DN); accounting for one of the major causes of morbidity and mortality. Increased glucose autoxidation and non-enzymatic glycation of proteins in diabetic kidneys lead to the excessive generation of reactive oxygen species (ROS) that results in lipid peroxidation and activation of inflammatory mediators which overwhelms the scavenging capacity of the antioxidant defense system (Nrf2/Keap1/HO-1). Centratherum anthelminticum commonly called as kali zeeri (bitter cumin) and its seeds are well known for culinary purposes in Asia (Pakistan). It has reported anti-inflammatory, antioxidant, and anti-diabetic activities. The present study has attempted to explore the in-vivo anti-inflammatory, antioxidant and antihyperglycemic potential of the C. anthelminticum seed's fixed oil (FO) and its fractions in high fat-high fructose-streptozotocin (HF-HFr-STZ) induced T2DM rat model. METHODS: The T2DM rat model was developed by giving a high-fat and high-fructose diet followed by a single intraperitoneal injection of streptozotocin (STZ 60 mg/kg) on 28th day of the trial. After 72 hours of this injection, rats showing fasting blood glucose (FBG) levels≥230 mg/dL were recruited into six groups. These groups were orally administered distilled water (1 mL/kg), Gliclazide (200 mg/kg), Centratherum anthelminticum seed (FO) and its hexane (HF), chloroform (CF) and ethanol (EF) soluble fractions (200 mg/kg each), respectively for 4 weeks (i.e. 28 days). Blood, serum, and kidney tissue samples of euthanized animals were used for biochemical, pro-inflammatory, and antioxidant markers (ELISA, qRT-PCR, and spectrophotometric assays) and histology, respectively. RESULTS: C. anthelminticum FO and its fractions reduced the lipid peroxidation, and improved the antioxidant parameters: enzymatic (SOD, CAT, and GPx), non-enzymatic (GSH), and mRNA expression of anti-inflammatory markers (Nrf-2, keap1, and HO-1). mRNA expression of inflammatory and apoptotic markers (TNF-α, IL-1ß, COX-1, NF-κB, Bax, and Bcl-2) were attenuated along with improved kidney architecture. CONCLUSION: C. anthelminticum can mitigate inflammation and oxidative stress in early DN. The anti-nephropathic effect can be attributed to its ability to down-regulate NF-κB and by bringing the Nrf-2 expression levels to near normal.


Subject(s)
Asteraceae , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Rats , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/drug therapy , Fructose , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Plant Oils , RNA, Messenger , Seeds , Streptozocin/therapeutic use
19.
Curr Res Food Sci ; 5: 1148-1157, 2022.
Article in English | MEDLINE | ID: mdl-35875345

ABSTRACT

Demands for dietary supplements with anti-fatigue effects are growing fast due to increasing societal demands. Moreover, in highly physically active individuals, there are also significant needs for supplements to improve exercise performance. The present study evaluated the potential anti-fatigue and anti-oxidant effects of curcumin in mice using exhaustive swimming test. Male C57BL/6J mice were randomized into six groups: blank control (Rest), swimming control (Con), Vitamin C (Vc), low-dose curcumin (C50), middle-dose curcumin (C100), and high-dose curcumin (C200). After a 4-week intervention, the mice in all groups except the Rest group were subject to an exhaustive swimming test. Then, mice were sacrificed to examine serum biochemical markers and fatigue-related enzymes. Moreover, the gene and protein expressions of signal transduction factors involved in the Nrf2/Keap1 signaling pathway were measured. The results indicated that curcumin significantly enhanced the exercise tolerance of mice in the exhaustive swimming test. Particularly, the swimming time of mice in the C100 group was increased by 273.5% when compared to that of mice in the Con group. The levels of blood urea nitrogen, blood ammonia, lactic acid, creatine kinase and lactate dehydrogenase in the C100 group were decreased by 13.3%, 21.0%, 18.6%, 16.7% and 21.9%, respectively, when compared to those of mice in the Con group. Curcumin alleviated exercise-induced oxidative stress and significantly enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase by activating the Nrf2 signaling. These findings indicated that curcumin supplementation exerted remarkable anti-oxidant and anti-fatigue effects in mice, providing additional evidence supporting the use of curcumin as functional food, especially by those engaged in sports-related activities.

20.
Pharmacol Res ; 182: 106319, 2022 08.
Article in English | MEDLINE | ID: mdl-35732198

ABSTRACT

Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2), the redox-sensitive transcription factor, plays a key role in stress-defense and detoxification. Nrf2 is tightly controlled by its negative regulator cum sensor Kelch-[ECH]-associated protein 1 (Keap1). Nrf2 is well known for its dual nature owing to its cancer preventive and cancer promoting abilities. Modulation of this biphasic nature of Nrf2 signaling by phytochemicals may be a potential cancer preventive and anticancer therapeutic strategy. Phytocompounds may either act as Nrf2-activator or Nrf2-inhibitor depending on their differential concentration and varied cellular environment. Tea is not just the most popular global beverage with innumerable health-benefits but has well-established chemopreventive and chemotherapeutic effects. Various types of tea infusions contain a wide range of bioactive compounds, such as polyphenolic catechins and flavonols, which are endowed with potent antioxidant properties. Despite of their rapid biotransformation and poor bioavailability, regular tea consumption is risk-reductive for several cancer forms. Tea catechins show their dual Nrf2-modulatory effect by directly acting on Nrf2-Keap1 or their upstream regulators and downstream effectors in a highly case-specific manner. In this review, we have tried to present a comprehensive evaluation of the Nrf2-mediated chemopreventive and chemotherapeutic applications of tea in various preclinical cancer models, the Nrf2-modulatory mechanisms, and the limitations which need to be addressed in future research.


Subject(s)
NF-E2-Related Factor 2 , Neoplasms , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasms/drug therapy , Neoplasms/prevention & control , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Tea
SELECTION OF CITATIONS
SEARCH DETAIL