Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Front Pharmacol ; 15: 1359632, 2024.
Article in English | MEDLINE | ID: mdl-38606171

ABSTRACT

Camellia oleifera is a medicine food homology plant widely cultivated in the Yangtze River Basin and southern China due to its camellia oil. Camellia oleifera bud and fruit exist simultaneously, and its bud is largely discarded as waste. However, C. oleifera bud has been used in traditional Chinese medicine to treat a variety of ailments. Thus, the purpose of this study was to identify the chemical components of C. oleifera bud ethanol extract (EE) and first evaluate its anticancer effects in non-small cell lung cancer A549 cells. Based on UHPLC-Q-Orbitrap-MS analysis, seventy components were identified. For anticancer activity, C. oleifera bud EE had remarkable cytotoxic effect on non-small cell lung cancer A549 (IC50: 57.53 ± 1.54 µg/mL) and NCI-H1299 (IC50: 131.67 ± 4.32 µg/mL) cells, while showed lower cytotoxicity on non-cancerous MRC-5 (IC50 > 320 µg/mL) and L929 (IC50: 179.84 ± 1.08 µg/mL) cells. It dramatically inhibited the proliferation of A549 cells by inducing cell cycle arrest at the G1 phase. Additionally, it induced apoptosis in A549 cells through a mitochondria-mediated pathway, which decreased mitochondrial membrane potential, upregulated Bax, activated caspase 9 and caspase 3, and resulted in PARP cleavage. Wound healing and transwell invasion assays demonstrated that C. oleifera bud EE inhibited the migration and invasion of A549 cells in a dose-dependent manner. The above findings indicated that C. oleifera bud EE revealed notable anticancer effects by inhibiting proliferation, inducing apoptosis, and suppressing migration and invasion of A549 cells. Hence, C. oleifera bud ethanol extract could serve as a new source of natural anticancer drugs.

2.
Mol Biol Rep ; 51(1): 523, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630183

ABSTRACT

BACKGROUND: In recent decades, phytotherapy has remained as a key therapeutic option for the treatment of various cancers. Evodiamine, an excellent phytocompound from Evodia fructus, exerts anticancer activity in several cancers by modulating drug resistance. However, the role of evodiamine in cisplatin-resistant NSCLC cells is not clear till now. Therefore, we have used evodiamine as a chemosensitizer to overcome cisplatin resistance in NSCLC. METHODS: Here, we looked into SOX9 expression and how it affects the cisplatin sensitivity of cisplatin-resistant NSCLC cells. MTT and clonogenic assays were performed to check the cell proliferation. AO/EtBr and DAPI staining, ROS measurement assay, transfection, Western blot analysis, RT-PCR, Scratch & invasion, and comet assay were done to check the role of evodiamine in cisplatin-resistant NSCLC cells. RESULTS: SOX9 levels were observed to be higher in cisplatin-resistant A549 (A549CR) and NCI-H522 (NCI-H522CR) compared to parental A549 and NCI-H522. It was found that SOX9 promotes cisplatin resistance by regulating ß-catenin. Depletion of SOX9 restores cisplatin sensitivity by decreasing cell proliferation and cell migration and inducing apoptosis in A549CR and NCI-H522CR. After evodiamine treatment, it was revealed that evodiamine increases cisplatin-induced cytotoxicity in A549CR and NCI-H522CR cells through increasing intracellular ROS generation. The combination of both drugs also significantly inhibited cell migration by inhibiting epithelial to mesenchymal transition (EMT). Mechanistic investigation revealed that evodiamine resensitizes cisplatin-resistant cells toward cisplatin by decreasing the expression of SOX9 and ß-catenin. CONCLUSION: The combination of evodiamine and cisplatin may be a novel strategy for combating cisplatin resistance in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Quinazolines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , beta Catenin , Epithelial-Mesenchymal Transition , Reactive Oxygen Species , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cell Death , SOX9 Transcription Factor/genetics
3.
Integr Cancer Ther ; 23: 15347354241233544, 2024.
Article in English | MEDLINE | ID: mdl-38469817

ABSTRACT

BACKGROUND: In the era of precision medicine, individual temperature sensitivity has been highlighted. This trait has traditionally been used for cold-heat pattern identification to understand the inherent physical characteristics, which are influenced by genetic factors, of an individual. However, genome-wide association studies (GWASs) on this trait are limited. METHODS: Using genotype data from 90 patients with advanced non-small cell lung cancer (NSCLC) and epidermal growth factor receptor mutations, we performed a GWAS to assess the association between single nucleotide polymorphisms (SNPs) and temperature sensitivity, such as cold and heat scores. The score of each participant was evaluated using self-administered questionnaires on common symptoms and a 15-item symptom-based cold-heat pattern identification questionnaire. RESULTS: The GWAS was adjusted for confounding factors, including age and sex, and significant associations were identified for cold and heat scores: SNP rs145814326, located on the intron of SORCS2 at chromosome 4p16.1, had a P-value of 1.86 × 10-7; and SNP rs79297667, located upstream from SEMA4D at chromosome 9q22.2, had a P-value of 8.97 × 10-8. We also found that the genetic variant regulates the expression level of SEMA4D in the main tissues, including the lungs and white blood cells, in NSCLC. CONCLUSIONS: SEMA4D was found to be significantly associated with temperature sensitivity in patients with NSCLC, suggesting an increased expression of SEMA4D in patients with higher heat scores. The potential role of temperature sensitivity as a prognostic or predictive marker of immune response in NSCLC should be further studied.


Subject(s)
Antigens, CD , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Semaphorins , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Genome-Wide Association Study , Temperature
4.
Clin Lung Cancer ; 25(3): 225-232, 2024 May.
Article in English | MEDLINE | ID: mdl-38553325

ABSTRACT

INTRODUCTION: Lung cancer survival is improving in the United States. We investigated whether there was a similar trend within the Veterans Health Administration (VHA), the largest integrated healthcare system in the United States. MATERIALS AND METHODS: Data from the Veterans Affairs Central Cancer Registry were analyzed for temporal survival trends using Kaplan-Meier estimates and linear regression. RESULTS: A total number of 54,922 Veterans were identified with lung cancer diagnosed from 2010 to 2017. Histologies were classified as non-small-cell lung cancer (NSCLC) (64.2%), small cell lung cancer (SCLC) (12.9%), and 'other' (22.9%). The proportion with stage I increased from 18.1% to 30.4%, while stage IV decreased from 38.9% to 34.6% (both P < .001). The 3-year overall survival (OS) improved for stage I (58.6% to 68.4%, P < .001), stage II (35.5% to 48.4%, P < .001), stage III (18.7% to 29.4%, P < .001), and stage IV (3.4% to 7.8%, P < .001). For NSCLC, the median OS increased from 12 to 21 months (P < .001), and the 3-year OS increased from 24.1% to 38.3% (P < .001). For SCLC, the median OS remained unchanged (8 to 9 months, P = .10), while the 3-year OS increased from 9.1% to 12.3% (P = .014). Compared to White Veterans, Black Veterans with NSCLC had similar OS (P = .81), and those with SCLC had higher OS (P = .003). CONCLUSION: Lung cancer survival is improving within the VHA. Compared to White Veterans, Black Veterans had similar or higher survival rates. The observed racial equity in outcomes within a geographically and socioeconomically diverse population warrants further investigation to better understand and replicate this achievement in other healthcare systems.


Subject(s)
Lung Neoplasms , United States Department of Veterans Affairs , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , United States/epidemiology , Male , Female , Aged , Middle Aged , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Veterans Health , Survival Rate , Neoplasm Staging , Veterans/statistics & numerical data , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/therapy , Registries , Aged, 80 and over
5.
Phytomedicine ; 128: 155333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518633

ABSTRACT

BACKGROUND: Targeting long non-coding RNAs (LncRNAs) is a novel and promising approach in cancer therapy. In our previous study, we investigated the effects of ailanthone (aila), the main active compound derived from the stem barks of Ailanthus altissima (Mill.) Swingle, on the growth of non-small cell lung cancer (NSCLC) cells. Although we observed significant inhibition of NSCLC cell growth of aila, the underlying mechanisms involving LncRNAs, specifically LncRNA growth arrest specific 5 (GAS5), remain largely unknown. METHODS: To further explore the impact of aila on NSCLC, we performed a series of experiments. Firstly, we confirmed the inhibitory effect of aila on NSCLC cell growth using multiple assays, including MTT, wound healing, transwell assay, as well as subcutaneous and metastasis tumor mice models in vivo. Next, we utilized cDNA microarray and RT-QPCR to identify GAS5 as the primary target of aila. To verify the importance of GAS5 in aila-induced tumor inhibition, we manipulated GAS5 expression levels by constructing GAS5 over-expression and knockdown NSCLC cell lines. Furthermore, we investigated the upstream and downstream signaling pathways of GAS5 through western blot and RT-QPCR analysis. RESULTS: Our results showed that aila effectively increased GAS5 expression, as determined by microarray analysis. We also observed that aila significantly enhanced GAS5 expression in a dose- and time-dependent manner across various NSCLC cell lines. Notably, over-expression of GAS5 led to a significant suppression of NSCLC cell tumor growth; while aila had minimal inhibitory effect on GAS5-knockdown NSCLC cells. Additionally, we discovered that aila inhibited ULK1 and autophagy, and this inhibition was reversed by GAS5 knockdown. Moreover, we found that aila up-regulated GAS5 expression by suppressing UPF1-mediated nonsense-mediated mRNA decay (NMD). CONCLUSION: In summary, our findings suggest that aila promotes GAS5 expression by inhibiting UPF1-mediated NMD, leading to the repression of ULK1-mediated autophagy and subsequent inhibitory effects on NSCLC cells. These results indicate that aila is a potent enhancer of GAS5 and holds promising potential for application in NSCLC therapy. However, our research is currently focused only on NSCLC. It remains to be determined whether aila can also inhibit the growth of other types of tumors through the UPF1/GAS5/ULK1 signaling pathway. In future studies, we can further investigate the mechanisms by which aila suppresses other types of tumors and potentially broaden the scope of its application in cancer therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Signal Transduction , Carcinoma, Non-Small-Cell Lung/drug therapy , RNA, Long Noncoding/genetics , Humans , Animals , Lung Neoplasms/drug therapy , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Mice, Nude , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Ailanthus/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Quassins/pharmacology , RNA Helicases/metabolism
6.
Aging (Albany NY) ; 16(7): 6212-6228, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38555532

ABSTRACT

PURPOSE: We aim to explore the effect of Chinese Patent Medicine (CPM), including Huisheng oral solution (HSOS) on the 4-year survival rate of patients with stage II and III non-small cell lung cancer, and assess the association between blood coagulation indicators and survival outcomes. MATERIALS AND METHODS: 313 patients diagnosed with stage II and III NSCLC were collected during 2015-2016. Kaplan-Meier method and Cox proportional hazard model were applied to analyze the factors affecting the 4-year survival rate of patients. RESULTS: According to the effect of CPM, the medicine prescribed in this study could be classified into two types. The proportion of patients who received "Fuzheng Quyu" CPM for more than three months was higher than the proportion of patients who received other two types of CPM for more than three months. Medical records of 313 patients with NSCLC were analyzed. 4-year survival rate for patients received CPM more than 6 months and 3 months were higher than those received CPM less than 3 months (P = 0.028 and P = 0.021 respectively. In addition, 4-year survival rate for patients who received HSOS for more than 3 months was higher than those who received HSOS for less than 3 months (P = 0.041). Patients with elevated preoperative fibrinogen (FIB) level and those without surgery had an increased mortality risk (HR = 1.98, P < 0.01, and HR = 2.76, P < 0.01 respectively). CONCLUSION: The medium and long-term use of CPM/HSOS was positively associated with higher survival rate in NSCLC patients. Patients with high-level preoperative FIB level and those without surgery might have a poor prognosis in the following years.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Neoplasm Staging , Humans , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Male , Female , Lung Neoplasms/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Middle Aged , Retrospective Studies , Drugs, Chinese Herbal/therapeutic use , Aged , Adult , Survival Rate , Treatment Outcome
7.
Integr Cancer Ther ; 23: 15347354241237973, 2024.
Article in English | MEDLINE | ID: mdl-38504436

ABSTRACT

BACKGROUND: Postoperative non-small cell lung cancer (NSCLC) patients frequently encounter a deteriorated quality of life (QOL), disturbed immune response, and disordered homeostasis. Si-Jun-Zi Decoction (SJZD), a well-known traditional Chinese herbal formula, is frequently employed in clinical application for many years. Exploration is underway to investigate the potential therapeutic effect of SJZD for treating postoperative NSCLC. OBJECTIVE: To assess the efficacy of SJZD on QOLs, hematological parameters, and regulations of gut microbiota in postoperative NSCLC patients. METHODS: A prospective observational cohort study was conducted, enrolling 65 postoperative NSCLC patients between May 10, 2020 and March 15, 2021 in Yueyang Hospital, with 33 patients in SJZD group and 32 patients in control (CON) group. The SJZD group comprised of patients who received standard treatments and the SJZD decoction, while the CON group consisted of those only underwent standard treatments. The treatment period was 4 weeks. The primary outcome was QOL. The secondary outcomes involved serum immune cell and inflammation factor levels, safety, and alterations in gut microbiota. RESULTS: SJZD group showed significant enhancements in cognitive functioning (P = .048) at week 1 and physical functioning (P = .019) at week 4. Lung cancer-specific symptoms included dyspnea (P = .001), coughing (P = .008), hemoptysis (P = .034), peripheral neuropathy (P = .019), and pain (arm or shoulder, P = .020, other parts, P = .019) eased significantly in the fourth week. Anemia indicators such as red blood cell count (P = .003 at week 1, P = .029 at week 4) and hemoglobin (P = .016 at week 1, P = .048 at week 4) were significantly elevated by SJZD. SJZD upregulated blood cell cluster differentiation (CD)3+ (P = .001 at week 1, P < .001 at week 4), CD3+CD4+ (P = .012 at week 1), CD3+CD8+ (P = .027 at week 1), CD19+ (P = .003 at week 4), increased anti-inflammatory interleukin (IL)-10 (P = .004 at week 1, P = .003 at week 4), and decreased pro-inflammatory IL-8 (P = .004 at week 1, p = .005 at week 4). Analysis of gut microbiota indicated that SJZD had a significant impact on increasing microbial abundance and diversity, enriching probiotic microbes, and regulating microbial biological functions. CONCLUSIONS: SJZD appears to be an effective and safe treatment for postoperative NSCLC patients. As a preliminary observational study, this study provides a foundation for further research.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Quality of Life , Prospective Studies , Treatment Outcome
8.
Heliyon ; 10(6): e27152, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38496882

ABSTRACT

Background: The ginseng polysaccharide injection is a well-known traditional Chinese medicine often employed as a supplementary treatment for cancer. This treatment can not only alleviate the adverse effects caused by tumor radiotherapy and chemotherapy but also enhance the immune system of individuals diagnosed with lung cancer. It is important to acknowledge the efficacy of ginseng polysaccharide injection in the treatment of non-small cell lung cancer (NSCLC). However, these small-sample studies may have certain biases, and the underlying mechanisms of ginseng polysaccharides therapy for NSCLC are still unclear. Methods: The present study involved a systematic review of the literature on randomized controlled trials (RCTs) focusing on using ginseng polysaccharide injection as a therapeutic approach for NSCLC. Seven databases were searched for eligible studies published before April 2023. Two researchers independently managed data extraction, risk of bias assessment, and data analyses using RevMan 5.3 software. In network pharmacology, we thoroughly searched the relevant literature on ginseng polysaccharides (GPs) and the PubChem database. This search aimed to identify the main active ingredients and targets associated with ginseng polysaccharides. Subsequently, we compared these targets with those of NSCLC and utilized bioinformatics techniques to analyze and explore their potential interactions. Results: A total of 11 RCTs involving 845 patients with NSCLC were included in the meta-analysis. The meta-analysis revealed that ginseng polysaccharide injection combined significantly improved the objective response rate [RR = 1.45, 95% CI (1.26, 1.67), P < 0.00001]. Furthermore, it was observed that ginseng polysaccharide injection increased the serum levels of CD4+ T-lymphocytes (CD4+ T) [MD = 8.98, 95% CI (5.18, 12.78), P < 0.00001], and decreased the serum levels of CD8+ T-lymphocytes (CD8+ T) [MD = -2.68, 95% CI (-4.66, -0.70), P = 0.008]. Through network pharmacology analysis, a total of 211 target genes of GPs and 81 common targets were identified. GAPDH, EGFR, VEGFA, JUN, SRC, CASP3, STAT3, CCND1, HSP90AA1, and MMP9 were identified as the core target proteins. Additionally, KEGG enrichment analysis revealed 122 relevant signaling pathways, including Pathways in cancer, PD-L1 expression and PD-1 checkpoint pathway in cancer, and Proteoglycans in cancer. Conclusion: Ginseng polysaccharide injection can improve the ORR of patients with NSCLC, increase the serum levels of CD4+ T, and decrease the serum levels of CD8+ T. The potential mechanism may be associated with the PD-1/PD-L1 signaling pathway.

9.
Integr Cancer Ther ; 23: 15347354241237234, 2024.
Article in English | MEDLINE | ID: mdl-38469799

ABSTRACT

OBJECTIVE: The purpose of this overview is to assess systematic reviews (SRs)/ meta-analyses (MAs) of Huachansu (HCS) combination chemotherapy for treating non-small cell lung cancer (NSCLC) and provide summarized evidence for clinical decision making. METHODS: From the creation of the database to JUNE 2023, 8 databases in English and Chinese were searched. SRs/MAs that met the inclusion and exclusion criteria were included. Two reviewers independently screened research, extracted data and assessed methodological quality, risk of bias, report quality and evidence quality by using relevant criteria from AMSTAR-2, ROBIS scale, PRISMA, and GRADE system. RESULTS: The short-term effect, long-term effect, quality of life improvement, safety and pain relief effect in 8 included SRs/MAs were assessed in this overview according to quantitative synthesis. Results assessed by AMSTAR-2, PRISMA, and ROBIS were generally unsatisfactory, with the results of the AMSTAR-2 assessment showing that all of them were of low or critically low quality; the number of items in the included research that were fully reported (compliance was 100%) by the PRISMA checklist was only 50%, while there were 38.10% of the research reporting less than 60% completeness; the ROBIS assessment showed a small number of systems to be low risk of bias. In addition, 26 items were rated as moderate quality, while 50.94% of items were rated as low or critically low quality by GRADE. CONCLUSION: HCS may be a promising adjuvant therapy for NSCLC. However, high-quality SRs/MAs and randomized control trials (RCTs) should be conducted to provide sufficient evidence so as to draw a definitive conclusion.


Subject(s)
Amphibian Venoms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Combined Modality Therapy , Lung Neoplasms/drug therapy , Systematic Reviews as Topic , Meta-Analysis as Topic
10.
Heliyon ; 10(6): e28026, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533033

ABSTRACT

Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., or Indian Bay Leaf, is a well-known traditional ayurvedic medicine used to treat various ailments. However, the molecular mechanism of action of Cinnamomum tamala essential oil (CTEO) against non-small cell lung cancer (NSCLC) remains elusive. The present study aims to decipher the molecular targets and mechanism of CTEO in treating NSCLC. GC-MS analysis detected 49 constituents; 44 successfully passed the drug-likeness screening and were identified as active compounds. A total of 3961 CTEO targets and 4588 anti-NSCLC-related targets were acquired. JUN, P53, IL6, MAPK3, HIF1A, and CASP3 were determined as hub genes, while cinnamaldehyde, ethyl cinnamate and acetophenone were identified as core compounds. Enrichment analysis revealed that targets were mainly involved in apoptosis, TNF, IL17, pathways in cancer and MAPK signalling pathways. mRNA expression, pathological stage, survival analysis, immune infiltrate correlation and genetic alteration analysis of the core hub genes were carried out. Kaplan-Meier overall survival (OS) curve revealed that HIF1A and CASP3 are linked to worse overall survival in Lung Adenocarcinoma (LUAD) cancer patients compared to normal patients. Ethyl cinnamate and cinnamaldehyde showed high binding energy with the MAPK3 and formed stable interactions with MAPK3 during the molecular dynamic simulations for 100 ns. The MM/PBSA analysis revealed that van der Waals (VdW) contributions predominantly account for a significant portion of the compound interactions within the binding pocket of MAPK3. Density functional theory analysis showed cinnamaldehyde as the most reactive and least stable compound. CTEO exhibited selective cytotoxicity by inhibiting the proliferation of A549 cells while sparing normal HEK293 cells. CTEO triggered apoptosis by arresting the cell cycle, increasing ROS accumulation, causing mitochondrial depolarisation, and elevating caspase-3, caspase-8 and caspase-9 levels in A549 cells. The above study provides insights into the pharmacological mechanisms of action of Cinnamomum tamala essential oil against non-small cell lung cancer treatment, suggesting its potential as an adjuvant therapy.

11.
BMC Complement Med Ther ; 24(1): 125, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500118

ABSTRACT

BACKGROUND: Osimertinib is regarded as a promising third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) for advanced non-squamous non-small cell lung cancer (NSCLC) patients who developed T790M. However the adverse effects, primarily fatigue, remain an overwhelming deficiency of Osimertinib, hindering it from achieving adequate clinical efficacy for such NSCLC. Ganoderma lucidum has been used for thousands of years in China to combat fatigue, while Ganoderma Lucidum spores powder (GLSP) is the main active ingredient. The aim of this study is to investigate whether GLSP is sufficiently effective and safe in improving fatigue and synergizing with Osimertinib in non-squamous NSCLC patients with EGFR mutant. METHOD/DESIGN: A total of 140 participants will be randomly assigned to receive either de-walled GSLP or placebo for a duration of 56 days. The primary outcome measure is the fatigue score associated with EGFR-TKI adverse reactions at week 8, evaluated by the Chinese version of the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire for Cancer Patients (QLQ-C30). Secondary outcomes include evaluation of treatment effectiveness, assessment of quality of life (QoL), and exploration of immune indicators and gut microbiota relationships. Following enrollment, visits are scheduled biweekly until week 12. TRIAL REGISTRATION: China Clinical Trial Registry ChiCTR2300072786. Registrated on June 25, 2023.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Reishi , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Quality of Life , Powders/therapeutic use , ErbB Receptors/genetics , Protein Kinase Inhibitors/adverse effects , Mutation , Spores, Fungal , Randomized Controlled Trials as Topic
12.
BMC Complement Med Ther ; 24(1): 70, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303001

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of human death worldwide. Herbal prescription SH003 has been developed to treat several cancers including NSCLC. Due to the multi-component nature of SH003 with multiple targets and pathways, a network pharmacology study was conducted to analyze its active compounds, potential targets, and pathways for the treatment of NSCLC. METHODS: We systematically identified oral active compounds within SH003, employing ADME criteria-based screening from TM-MC, OASIS, and TCMSP databases. Concurrently, SH003-related and NSCLC-associated targets were amalgamated from various databases. Overlapping targets were deemed anti-NSCLC entities of SH003. Protein-protein interaction networks were constructed using the STRING database, allowing the identification of pivotal proteins through node centrality measures. Empirical validation was pursued through LC-MS analysis of active compounds. Additionally, in vitro experiments, such as MTT cell viability assays and western blot analyses, were conducted to corroborate network pharmacology findings. RESULTS: We discerned 20 oral active compounds within SH003 and identified 239 core targets shared between SH003 and NSCLC-related genes. Network analyses spotlighted 79 hub genes, including TP53, JUN, AKT1, STAT3, and MAPK3, crucial in NSCLC treatment. GO and KEGG analyses underscored SH003's multifaceted anti-NSCLC effects from a genetic perspective. Experimental validations verified SH003's impact on NSCLC cell viability and the downregulation of hub genes. LC-MS analysis confirmed the presence of four active compounds, namely hispidulin, luteolin, baicalein, and chrysoeriol, among the eight compounds with a median of > 10 degrees in the herb-compounds-targets network in SH003. Previously unidentified targets like CASP9, MAPK9, and MCL1 were unveiled, supported by existing NSCLC literature, enhancing the pivotal role of empirical validation in network pharmacology. CONCLUSION: Our study pioneers the harmonization of theoretical predictions with practical validations. Empirical validation illuminates specific SH003 compounds within NSCLC, simultaneously uncovering novel targets for NSCLC treatment. This integrated strategy, accentuating empirical validation, establishes a paradigm for in-depth herbal medicine exploration. Furthermore, our network pharmacology study unveils fresh insights into SH003's multifaceted molecular mechanisms combating NSCLC. Through this approach, we delineate active compounds of SH003 and target pathways, reshaping our understanding of its therapeutic mechanisms in NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Network Pharmacology , Lung Neoplasms/drug therapy , Angiogenesis Inhibitors , Blotting, Western
13.
Zhongguo Zhong Yao Za Zhi ; 49(2): 471-486, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403323

ABSTRACT

This study combined network pharmacology, molecular docking, and in vitro experiments to explore the potential mechanism of the active components of the n-butanol fraction of Wenxia Formula(NWXF) combined with gefitinib(GEF) in treating non-small cell lung cancer(NSCLC). Ultra-performance liquid chromatography-quadrupole Orbitrap mass spectrometry(UPLC-Q-Orbitrap MS) was employed to detect the main chemical components of NWXF. The active components of NWXF were retrieved from SwissADME, and the candidate targets of these active components were retrieved from SwissTargetPrediction. Online Mendelian Inheritance in Man(OMIM) and GeneCards were searched for the targets of NSCLC. Cytoscape 3.9.0 and STRING were employed to build the protein-protein interaction(PPI) network with the common targets shared by NWXF and NSCLC. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment were performed in DAVID to predict the potential mechanisms. Finally, molecular docking between the main active ingredients and key targets was conducted in SYBYL-X 2.0. The methyl thiazolyl tetrazolium(MTT) assay was employed to evaluate the inhibitory effects of NWXF and/or GEF on the proliferation of human non-small cell lung cancer cells(A549 and PC-9). Additionally, the impact of NWXF on human embryonic lung fibroblast cells(MRC-5) was assessed. The effectiveness of the drug combination was evaluated based on the Q value. The terminal-deoxynucleoitidyl transferase mediated nick-end labeling(TUNEL) assay was employed to examine the apoptosis of A549 and PC-9 cells treated with NWXF and/or GEF. Quantitative real-time PCR(qRT-PCR) was employed to measure the mRNA levels of epidermal growth factor receptor(EGFR), c-Jun N-terminal kinase(JNK), and Bcl2-associated X protein(Bax) in the A549 and PC-9 cells treated with NWXF and/or GEF. Western blot was employed to determine the protein levels of EGFR, p-EGFR, JNK, p-JNK, and Bax in the A549 and PC-9 cells treated with NWXF and/or GEF. A total of 77 active components, 488 potential targets, and 49 key targets involved in the treatment of NSCLC with NWXF were predicted. The results of GO annotation showed that NWXF may treat NSCLC by regulating the biological processes such as cell proliferation, apoptosis, and protein phosphorylation. KEGG enrichment revealed that the key targets of NWXF in treating NSCLC were enriched in the mitogen-activated protein kinase(MAPK), phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT), hypoxia-inducible factor-1(HIF-1), and microRNA-related signaling pathways. Molecular docking results showed that 91.9% of the docking scores were greater than 5, indicating the strong binding capability between main active components and key targets. The cell experiments demonstrated that NWXF combined with GEF synergistically inhibited the proliferation, promoted the apoptosis, decreased p-EGFR/EGFR and p-JNK/JNK values, down-regulated the mRNA levels of EGFR and JNK, and up-regulated the mRNA and protein levels of Bax in A549 and PC-9 cells. In conclusion, NWXF combined with GEF can regulate the EGFR/JNK pathway to promote the apoptosis of NSCLC cells, thus treating NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Gefitinib/pharmacology , 1-Butanol , bcl-2-Associated X Protein , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors , RNA, Messenger , Drugs, Chinese Herbal/pharmacology
14.
Front Oncol ; 14: 1307836, 2024.
Article in English | MEDLINE | ID: mdl-38371619

ABSTRACT

Background and aim: Chinese herbal injection (CHI) is a widely used preparation for advanced non-small cell lung cancer (NSCLC) treatment to alleviate the adverse drug reactions and enhance the clinical efficacy of chemotherapy. However, its efficacy and safety in combination with platinum-based chemotherapy (PBC) remain poorly understood owing to the lack of high-level evidence in the face of a wide variety of CHIs. Therefore, in this study, we aimed to explore the efficacy and safety of CHIs in combination with PBC regimens in the treatment of mid- and advanced NSCLC. Methods: Systematic evaluation and meta-analysis were conducted as per the Preferred Reporting Project for Systematic Evaluation and Meta-Analysis Protocols (PRISMA-P). Seven databases were comprehensively searched for relevant randomized controlled trials (RCTs) through August 1, 2022. The quality of each study was evaluated based on the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analysis was performed using Revman 5.3, with dichotomies expressed as risk ratio (RR) and 95% confidence interval (CI). Objective response rate (ORR) and disease control rate (DCR) were selected as the primary outcomes, with quality of life (QoL) and toxic side effects as secondary outcomes. Results: A total of 140 RCTs were included in this study. The results of the meta-analysis suggested that, compared with PBC alone, PBC combined with CHIs significantly improved the ORR (RR=1.35, 95% CI: 1.30-1.41, P<0.001), DCR (RR=1.15, 95% CI: 1.13-1.18, P<0.001) and QoL (RR=1.29, 95% CI: 1.24-1.33, P<0.001). Moreover, the combination treatment reduced chemotherapy-induced leukopenia (RR=0.69, 95% CI: 0.64-0.75, P<0.001), anemia (RR=0.70, 95% CI: 0.62-0.79, P<0.001), thrombocytopenia (RR=0.68, 95% CI: 0.62-0.75, P<0.001), nausea and vomiting (RR=0.69, 95% CI: 0.63-0.76, P<0.001), diarrhea (RR=0.59, 95% CI: 0.48-0.73, P<0.001), and constipation (RR=0.68, 95% CI: 0.54-0.86, P=0.001). Conclusion: According to the available evidence, CHIs in combination with PBC can improve clinical efficacy and reduce the toxic side effects in the treatment of advanced NSCLC. However, considering the study's limitations, more rigorous and high-quality studies are needed to further confirm the results. Systematic review registration: https://inplasy.com/inplasy-2022-1-0104/, identifier INPLASY202210104.

15.
Front Cell Infect Microbiol ; 14: 1341032, 2024.
Article in English | MEDLINE | ID: mdl-38415012

ABSTRACT

Objective: This study is aim to discern the Traditional Chinese Medicine (TCM) syndrome classifications relevant to immunotherapy sensitive in non-small cell lung cancer (NSCLC) patients, and to delineate intestinal microbiota biomarkers and impact that wield influence over the efficacy of NSCLC immunotherapy, grounded in the TCM theory of "lung and large intestine stand in exterior-interior relationship." Methods: The study cohort consisted of patients with advanced NSCLC who received treatment at the Oncology Department of Chengdu Fifth People's Hospital. These patients were categorized into distinct TCM syndrome types and subsequently administered immune checkpoint inhibitors (ICIs), specifically PD-1 inhibitors. Stool specimens were collected from patients both prior to and following treatment. To scrutinize the differences in microbial gene sequences and species of the intestinal microbiota, 16S rRNA amplicon sequencing technology was employed. Additionally, peripheral blood samples were collected, and the analysis encompassed the assessment of T lymphocyte subsets and myeloid suppressor cell subsets via flow cytometry. Subsequently, alterations in the immune microenvironment pre- and post-treatment were thoroughly analyzed. Results: The predominant clinical manifestations of advanced NSCLC patients encompassed spleen-lung Qi deficiency syndrome and Qi-Yin deficiency syndrome. Notably, the latter exhibited enhanced responsiveness to ICIs with a discernible amelioration of the immune microenvironment. Following ICIs treatment, significant variations in microbial abundance were identified among the three strains: Clostridia, Lachnospiraceae, and Lachnospirales, with a mutual dependency relationship. In the subset of patients manifesting positive PD-L1 expression and enduring therapeutic benefits, the study recorded marked increases in the ratios of CD3+%, CD4+%, and CD4+/CD8+ within the T lymphocyte subsets. Conversely, reductions were observed in the ratios of CD8%, Treg/CD4+, M-MDSC/MDSC, and G-MDSC/MDSC. Conclusion: The strains Clostridia, Lachnospiraceae, and Lachnospirales emerge as potential biomarkers denoting the composition of the intestinal microbiota in the NSCLC therapy. The immunotherapy efficacy of ICIs markedly accentuates in patients displaying durable treatment benefits and those expressing positive PD-L1.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , B7-H1 Antigen , RNA, Ribosomal, 16S/genetics , Immunotherapy , Programmed Cell Death 1 Receptor , Lung , Tumor Microenvironment
16.
In Vivo ; 38(2): 864-872, 2024.
Article in English | MEDLINE | ID: mdl-38418111

ABSTRACT

BACKGROUND/AIM: Recent lung cancer treatments include an immune checkpoint inhibitor (ICI) pembrolizumab, platinum-based agents, plus an additional cytotoxic anticancer agent. Nutritional indices, such as the geriatric nutritional risk index (GNRI) and the prognostic nutritional index (PNI), are known to correlate with the prognosis of cancer chemotherapy. Several previous studies have investigated the relationship between PNI and treatment response in non-small cell lung cancer patients, reporting significantly increased OS and PFS in the high PNI group before treatment. However, the relationship between the three-drug combination and GNRI/PNI is unclear. The current study aimed to investigate the association of nutritional indices with duration of treatment success and occurrence of side effects in triple therapy. PATIENTS AND METHODS: Seventy-two patients with non-small cell lung cancer, treated with combination of carboplatin, pemetrexed, and pembrolizumab from November 2019 to September 30, 2022, were classified into two groups (High and Low) for GNRI and PNI, and a retrospective study was performed. RESULTS: In terms of time-to-treatment-failure (TTF), univariate and multivariate Cox proportional hazards regression analysis showed the Low-PNI group to have significantly shorter TTF than the High-PNI group (p=0.006); multivariate analysis results also showed PNI as a factor affecting TTF (HR=2.791, 95%CI=1.362-5.721, p=0.005). On the other hand, GNRI was not shown to be a factor affecting TTF. CONCLUSION: PNI at the start of treatment was an independent prognostic factor affecting treatment success time (TTF) in non-small cell lung cancer patients receiving triple therapy. However, PNI was not shown to be a prognostic predictor of irAE development.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aged , Lung Neoplasms/drug therapy , Nutrition Assessment , Carcinoma, Non-Small-Cell Lung/drug therapy , Retrospective Studies , Prognosis , Antineoplastic Agents/therapeutic use
17.
Chem Biol Drug Des ; 103(1): e14414, 2024 01.
Article in English | MEDLINE | ID: mdl-38230796

ABSTRACT

Among all types of cancers, non-small cell lung cancer (NSCLC) exhibits the highest mortality rate with a five-year survival rate below 17% for patients. The Buzhong Yiqi decoction (BZYQD), traditional Chinese medicine (TCM) formula, has been reported to exhibit clinical efficacy in the treatment of NSCLC. Nevertheless, the underlying molecular mechanism remains elusive. This study aimed to assess the mechanistic actions exerted by BZYQD against NSCLC using network pharmacological analysis and experimental validation. The public databases were searched for active compounds in BZYQD, their potential targets, and NSCLC-related targets. The protein-protein interaction (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the core targets and signaling pathways of BZYQD against NSCLC. After screening, this study validated the results of predictions through in vitro experiments and public databases. We found 192 common targets between BZYQD and NSCLC. KEGG analysis showed that the anti-NSCLC effects of BZYQD were mediated through the PI3K-AKT signaling pathway. The results of in vitro experiment indicated that BZYQD could inhibit cell viability and proliferation of A549 and H1299 cells apart from inducing cell apoptosis. In addition, western blot results substantiated that BZYQD could treat NSCLC by inhibiting the activation of the PI3K-AKT signaling pathway. The current study investigated the pharmacological mechanism of BZYQD against NSCLC via network pharmacology and in vitro analyses. Overall, the results revealed that BZYQD could be a promising therapeutic agent for the treatment of NSCLC in the future. Still, more experimental investigations are needed to confirm the applicability of BZYQD for clinical trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Lung Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation
18.
Plants (Basel) ; 13(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256842

ABSTRACT

Non-small-cell lung cancer (NSCLC) is renowned for its aggressive and highly metastatic nature. In recent years, there has been a surge in interest regarding the therapeutic potential of traditional medicinal plants. Dracaena loureirin (D. loureirin), Ficus racemosa Linn. (F. racemosa), and Harrisonia perforata (Blanco) Merr. (H. perforata) are prominent traditional medicinal herbs in Thailand, recognized for their diverse biological activities, including antipyretic and anti-inflammatory effects. However, their prospective anti-cancer properties against NSCLC remain largely unexplored. This study aimed to evaluate the anti-cancer attributes of ethanolic extracts obtained from D. loureiri (DLEE), F. racemosa (FREE), and H. perforata (HPEE) against the A549 lung adenocarcinoma cell lines. Sulforhodamine B (SRB) assay results revealed that only DLEE exhibited cytotoxic effects on A549 cells, whereas FREE and HPEE showed no such cytotoxicity. To elucidate the anti-cancer mechanisms of DLEE, cell cycle and apoptosis assays were performed. The findings demonstrated that DLEE inhibited cell proliferation and induced cell cycle arrest at the G0/G1 phase in A549 cells through the downregulation of key cell cycle regulator proteins, including cyclin D1, CDK-2, and CDK-4. Furthermore, DLEE treatment facilitated apoptosis in A549 cells by suppressing anti-apoptotic proteins (Bcl-2, Bcl-xl, and survivin) and enhancing apoptotic proteins (cleaved-caspase-3 and cleaved-PARP-1). In summary, our study provides novel insights into the significant anti-cancer properties of DLEE against A549 cells. This work represents the first report suggesting that DLEE has the capability to impede the growth of A549 lung adenocarcinoma cells through the induction of apoptosis.

19.
J Exp Clin Cancer Res ; 43(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163890

ABSTRACT

BACKGROUND: Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS: RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS: RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION: RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Zebrafish , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Ceramides/therapeutic use , Regulatory-Associated Protein of mTOR , YY1 Transcription Factor/genetics
20.
Phytother Res ; 38(3): 1574-1588, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282115

ABSTRACT

BACKGROUND AND AIM: Gefitinib resistance is an urgent problem to be solved in the treatment of non-small cell lung cancer (NSCLC). Tanshinone IIA (Tan IIA) is one of the main active components of Salvia miltiorrhiza, which exhibits significant antitumor effects. The aim of this study is to explore the reversal effect of Tan IIA on gefitinib resistance in the epidermal growth factor receptor (EGFR)-mutant NSCLC and the underlying mechanism. EXPERIMENTAL PROCEDURE: CCK-8, colony formation assay, and flow cytometry were applied to detect the cytotoxicity, proliferation, and apoptosis, respectively. The changes in lipid profiles were measured by electrospray ionization-mass spectrometry (MS)/MS. Western blot, real-time q-PCR, and immunohistochemical were used to detect the protein and the corresponding mRNA levels. The in vivo antitumor effect was validated by the xenograft mouse model. KEY RESULTS: Co-treatment of Tan IIA enhanced the sensitivity of resistant NSCLC cells to gefitinib. Mechanistically, Tan IIA could downregulate the expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream target genes, causing changes in lipid profiles, thereby reversing the gefitinib-resistance in EGFR-mutant NSCLC cells in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS: Tan IIA improved gefitinib sensitivity via SREBP1-mediated lipogenesis. Tan IIA could be a potential candidate to enhance sensitivity for gefitinib-resistant NSCLC patients.


Subject(s)
Abietanes , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Lung Neoplasms/pathology , Gefitinib/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Lipogenesis , Sterol Regulatory Element Binding Protein 1/metabolism , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors , Apoptosis , Lipids , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL