Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Brain Sci ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38137125

ABSTRACT

The orbitofrontal cortex (OFC) is a functionally heterogeneous brain region contributing to mental processes relating to meditation practices. The OFC has been reported to decline in volume with increasing age and differs in volume between meditation practitioners and non-practitioners. We hypothesized that the age-related decline of the OFC is diminished in meditation practitioners. We tested this hypothesis in a sample of 50 long-term meditators and 50 matched controls by correlating chronological age with regional gray matter volumes of the left and right OFC, as well as in seven left and right cytoarchitectonically defined subregions of the OFC (Fo1-Fo7). In both meditators and controls, we observed a negative relationship between age and OFC (sub)volumes, indicating that older participants have smaller OFC volumes. However, in meditators, the age-related decline was less steep compared to controls. These age-related differences reached significance for left and right Fo2, Fo3, Fo4, and Fo7, as well as left Fo5 and right Fo6. Since different subregions of the OFC are associated with distinct brain functions, further investigations are required to explore the functional implications of these findings in the context of meditation and the aging brain.

2.
Cereb Cortex ; 33(7): 3664-3673, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35972417

ABSTRACT

The kidney and brain expressed protein (KIBRA) rs17070145 polymorphism is associated with both structure and activation of the olfactory cortex. However, no studies have thus far examined whether KIBRA can be linked with olfactory function and whether brain structure plays any role in the association. We addressed these questions in a population-based cross-sectional study among rural-dwelling older adults. This study included 1087 participants derived from the Multidomain Interventions to Delay Dementia and Disability in Rural China, who underwent the brain MRI scans in August 2018 to October 2020; of these, 1016 took the 16-item Sniffin' Sticks identification test and 634 (62.40%) were defined with olfactory impairment (OI). Data were analyzed using the voxel-based morphometry analysis and general linear, logistic, and structural equation models. The KIBRA rs17070145 C-allele (CC or CT vs. TT genotype) was significantly associated with greater gray matter volume (GMV) mainly in the bilateral orbitofrontal cortex and left thalamus (P < 0.05) and with the multi-adjusted odds ratio of 0.73 (95% confidence interval 0.56-0.95) for OI. The left thalamic GMV could mediate 8.08% of the KIBRA-olfaction association (P < 0.05). These data suggest that the KIBRA rs17070145 C-allele is associated with a reduced likelihood of OI among older adults, partly mediated through left thalamic GMV.


Subject(s)
Gray Matter , Olfaction Disorders , Aged , Humans , Brain , Cerebral Cortex , Cross-Sectional Studies , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Thalamus/diagnostic imaging
3.
Int J Psychophysiol ; 181: 50-63, 2022 11.
Article in English | MEDLINE | ID: mdl-36030986

ABSTRACT

Previous studies indicate that the structure and function of medial prefrontal cortex (PFC) and lateral orbitofrontal cortex (OFC) are associated with heart rate variability (HRV). Typically, this association is assumed to reflect the PFC's role in controlling HRV and emotion regulation, with better prefrontal structural integrity supporting greater HRV and better emotion regulation. However, as a control system, the PFC must monitor and respond to heart rate oscillatory activity. Thus, engaging in regulatory feedback during heart rate oscillatory activity may over time help shape PFC structure, as relevant circuits and connections are modified. In the current study with younger and older adults, we tested whether 5 weeks of daily sessions of biofeedback to increase heart rate oscillations (Osc+ condition) vs. to decrease heart rate oscillations (Osc- condition) affected cortical volume in left OFC and right OFC, two regions particularly associated with HRV in prior studies. The left OFC showed significant differences in volume change across conditions, with Osc+ increasing volume relative to Osc-. The volume changes in left OFC were significantly correlated with changes in mood disturbance. In addition, resting low frequency HRV increased more in the Osc+ than in the Osc- condition. These findings indicate that daily biofeedback sessions regulating heart rate oscillatory activity can shape both resting HRV and the brain circuits that help control HRV and regulate emotion.


Subject(s)
Biofeedback, Psychology , Rest , Aged , Emotions , Heart Rate/physiology , Humans , Prefrontal Cortex , Rest/physiology
4.
Cogn Affect Behav Neurosci ; 22(6): 1349-1357, 2022 12.
Article in English | MEDLINE | ID: mdl-35761030

ABSTRACT

Previous research suggests that excessive negative self-related thought during mind wandering involves the default mode network (DMN) core subsystem and the orbitofrontal cortex (OFC). Heart rate variability (HRV) biofeedback, which involves slow paced breathing to increase HRV, is known to promote emotional well-being. However, it remains unclear whether it has positive effects on mind wandering and associated brain function. We conducted a study where young adults were randomly assigned to one of two 5-week interventions involving daily biofeedback that either increased heart rate oscillations via slow paced breathing (Osc+ condition) or had little effect on heart rate oscillations (active control or Osc- condition). The two intervention conditions did not differentially affect mind wandering and DMN core-OFC functional connectivity. However, the magnitude of participants' heart rate oscillations during daily biofeedback practice was associated with pre-to-post decreases in mind wandering and in DMN core-OFC functional connectivity. Furthermore, the reduction in the DMN core-OFC connectivity was associated with a decrease in mind wandering. Our results suggested that daily sessions involving high amplitude heart rate oscillations may help reduce negative mind wandering and associated brain function.


Subject(s)
Attention , Magnetic Resonance Imaging , Young Adult , Humans , Heart Rate , Attention/physiology , Brain/physiology , Brain Mapping , Biofeedback, Psychology
5.
eNeuro ; 9(2)2022.
Article in English | MEDLINE | ID: mdl-35105661

ABSTRACT

Cognitive flexibility, attributed to frontal cortex, is vital for navigating the complexities of everyday life. The mediodorsal thalamus (MD), interconnected to frontal cortex, may influence cognitive flexibility. Here, male rats performed an attentional set-shifting task measuring intradimensional (ID) and extradimensional (ED) shifts in sensory discriminations. MD lesion rats needed more trials to learn the rewarded sensory dimension. However, once the choice response strategy was established, learning further two-choice discriminations in the same sensory dimension, and reversals of the reward contingencies in the same dimension, were unimpaired. Critically though, MD lesion rats were impaired during the ED shift, when they must rapidly update the optimal choice response strategy. Behavioral analyses showed MD lesion rats had significantly reduced correct within-trial second choice responses. This evidence shows that transfer of information via the MD is critical when rapid within-trial updates in established choice response strategies are required after a rule change.


Subject(s)
Attention , Reward , Animals , Attention/physiology , Frontal Lobe , Male , Prefrontal Cortex/physiology , Rats , Thalamus
6.
Cell Rep ; 36(7): 109563, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34407401

ABSTRACT

Overconsumption of highly palatable, energy-dense food is considered a key driver of the obesity pandemic. The orbitofrontal cortex (OFC) is critical for reward valuation of gustatory signals, yet how the OFC adapts to obesogenic diets is poorly understood. Here, we show that extended access to a cafeteria diet impairs astrocyte glutamate clearance, which leads to a heterosynaptic depression of GABA transmission onto pyramidal neurons of the OFC. This decrease in GABA tone is due to an increase in extrasynaptic glutamate, which acts via metabotropic glutamate receptors to liberate endocannabinoids. This impairs the induction of endocannabinoid-mediated long-term plasticity. The nutritional supplement, N-acetylcysteine rescues this cascade of synaptic impairments by restoring astrocytic glutamate transport. Together, our findings indicate that obesity targets astrocytes to disrupt the delicate balance between excitatory and inhibitory transmission in the OFC.


Subject(s)
Astrocytes/pathology , Neuronal Plasticity , Obesity/physiopathology , Prefrontal Cortex/physiopathology , Acetylcysteine/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Biological Transport/drug effects , Diet , Endocannabinoids/metabolism , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Homeostasis/drug effects , Hypertrophy , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neuronal Plasticity/drug effects , Prefrontal Cortex/drug effects , Rats, Long-Evans , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/physiology
7.
Brain Sci ; 11(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34356137

ABSTRACT

In this paper, utilizing the interactional research paradigm developed by Éva Bányai, we discuss the hypnotic relationship from the viewpoint of interactional synchrony. Based on our three decades of empirical studies of an interactional paradigm, we propose the analogy between hypnosis and mother-child interaction. Hypnosis is considered as a potential corrective/reparative possibility when the real childhood experiences appear to be unfavourable. Possible neuroanatomical and neurochemical mechanisms are also suggested in the right hemispheric orbitofrontal cortex and central oxytocin system.

8.
Article in English | MEDLINE | ID: mdl-34065588

ABSTRACT

It has been recently suggested that contact with nature improves mood via reducing the activity of the prefrontal cortex. However, the specific regions within the prefrontal cortex that underlie this effect remain unclear. In this study, we aimed to identify the specific regions involved in the mood-improving effect of viewing images of nature using a 52-channel functional near-infrared spectroscopy (fNIRS). Specifically, we focused on the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (dlPFC), two regions associated with affective processing and control. In a randomized controlled crossover experiment, we assigned thirty young adults to view images of nature and built environments for three minutes each in a counterbalanced order. During image viewing, participants wore a fNIRS probe cap and had their oxyhemoglobin (oxy-Hb) measured. Immediately following each image viewing, participants indicated their mood in terms of comfortableness, relaxation, and vigor. Results showed that viewing images of nature significantly increased comfortableness and relaxation but not vigor compared to viewing images of built environments, with a large effect size. Meanwhile, the concentration of oxy-Hb in only the right OFC and none of the other regions significantly decreased while viewing the images of nature compared to built environments, with a medium effect size. We speculate that viewing images of nature improves mood by reducing the activity of or calming the OFC. Since the OFC is hyperactive in patients with depression and anxiety at rest, contact with nature might have therapeutic effects for them.


Subject(s)
Affect , Oxyhemoglobins , Prefrontal Cortex , Relaxation , Humans , Oxyhemoglobins/analysis , Prefrontal Cortex/metabolism , Spectroscopy, Near-Infrared , Young Adult
9.
Transl Neurodegener ; 10(1): 17, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059131

ABSTRACT

BACKGROUND: Increased catabolism has recently been recognized as a clinical manifestation of amyotrophic lateral sclerosis (ALS). The hypothalamic systems have been shown to be involved in the metabolic dysfunction in ALS, but the exact extent of hypothalamic circuit alterations in ALS is yet to be determined. Here we explored the integrity of large-scale cortico-hypothalamic circuits involved in energy homeostasis in murine models and in ALS patients. METHODS: The rAAV2-based large-scale projection mapping and image analysis pipeline based on Wholebrain and Ilastik software suites were used to identify and quantify projections from the forebrain to the lateral hypothalamus in the SOD1(G93A) ALS mouse model (hypermetabolic) and the FusΔNLS ALS mouse model (normo-metabolic). 3 T diffusion tensor imaging (DTI)-magnetic resonance imaging (MRI) was performed on 83 ALS and 65 control cases to investigate cortical projections to the lateral hypothalamus (LHA) in ALS. RESULTS: Symptomatic SOD1(G93A) mice displayed an expansion of projections from agranular insula, ventrolateral orbitofrontal and secondary motor cortex to the LHA. These findings were reproduced in an independent cohort by using a different analytic approach. In contrast, in the FusΔNLS ALS mouse model hypothalamic inputs from insula and orbitofrontal cortex were maintained while the projections from motor cortex were lost. The DTI-MRI data confirmed the disruption of the orbitofrontal-hypothalamic tract in ALS patients. CONCLUSION: This study provides converging murine and human data demonstrating the selective structural disruption of hypothalamic inputs in ALS as a promising factor contributing to the origin of the hypermetabolic phenotype.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Hypothalamus/pathology , Neural Pathways/pathology , Prefrontal Cortex/pathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Animals , Brain Mapping , Case-Control Studies , Cohort Studies , Diffusion Tensor Imaging , Energy Metabolism , Humans , Hypothalamus/diagnostic imaging , Immunohistochemistry , Mice , Motor Cortex/growth & development , Motor Cortex/pathology , Neural Pathways/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , RNA-Binding Protein FUS/genetics , Superoxide Dismutase-1/genetics
10.
J Neurosci ; 40(41): 7887-7901, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32900835

ABSTRACT

The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury.


Subject(s)
Cerebral Cortex/physiology , Conditioning, Operant/physiology , Discrimination, Psychological/physiology , Neural Pathways/physiology , Thalamus/physiology , White Matter/physiology , Animals , Brain Mapping , Cerebral Cortex/diagnostic imaging , Fornix, Brain/physiology , Macaca mulatta , Magnetic Resonance Imaging , Male , Memory/physiology , Neural Pathways/diagnostic imaging , Reward , Space Perception/physiology , Thalamus/diagnostic imaging , Visual Perception/physiology , White Matter/diagnostic imaging
11.
J Neurosci ; 40(31): 5894-5907, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32601247

ABSTRACT

The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion-specific manner. However, it is unknown how mu-opioid signaling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in vitro patch-clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist DAMGO produced a concentration-dependent inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long lasting and not reversed on washout of DAMGO or by application of the mu-opioid receptor antagonist CTAP, suggesting an inhibitory long-term depression (LTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/protein kinase A (PKA) signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC.SIGNIFICANCE STATEMENT Considering that both the orbitofrontal cortex (OFC) and the opioid system regulate reward, motivation, and food intake, understanding the role of opioid signaling within the OFC is fundamental for a mechanistic understanding of the sequelae for several psychiatric disorders. This study makes several novel observations. First, mu-opioids induce a long-lasting suppression of inhibitory synaptic transmission onto OFC pyramidal neurons in a regionally selective manner. Second, mu-opioids recruit parvalbumin inputs to suppress inhibitory synaptic transmission in the mOFC. Third, the regional selectivity of mu-opioid action of endogenous opioids is due to the efficacy of mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascades. These experiments are the first to reveal a cellular mechanism of opioid action within the OFC.


Subject(s)
Analgesics, Opioid/pharmacology , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Frontal Lobe/drug effects , Pyramidal Cells/drug effects , Receptors, Opioid, mu/drug effects , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid , Animals , Cyclic AMP-Dependent Protein Kinases , Endorphins/metabolism , In Vitro Techniques , Interneurons/drug effects , Long-Term Synaptic Depression/drug effects , Male , Mice , Mice, Inbred C57BL , Parvalbumins , Patch-Clamp Techniques , Signal Transduction/drug effects
12.
Neurosci Biobehav Rev ; 112: 376-391, 2020 05.
Article in English | MEDLINE | ID: mdl-32070693

ABSTRACT

The retinoid family members, including vitamin A and derivatives like 13-cis-retinoic acid (ITT) and all-trans retinoic acid (ATRA), are essential for normal functioning of the developing and adult brain. When vitamin A intake is excessive, however, or after ITT treatment, increased risks have been reported for depression and suicidal ideation. Here, we review pre-clinical and clinical evidences supporting association between retinoids and depressive disorders and discuss several possible underlying neurobiological mechanisms. Clinical evidences include case reports and studies from healthcare databases and government agency sources. Preclinical studies further confirmed that RA treatment induces hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis and typical depressive-like behaviors. Notably, the molecular components of the RA signaling are widely expressed throughout adult brain. We further discuss three most important brain systems, hippocampus, hypothalamus and orbitofrontal cortex, as major brain targets of RA. Finally, we highlight altered monoamine systems in the pathophysiology of RA-associated depression. A better understanding of the neurobiological mechanisms underlying RA-associated depression will provide new insights in its etiology and development of effective intervention strategies.


Subject(s)
Depression/chemically induced , Depressive Disorder/chemically induced , Hippocampus/drug effects , Hypothalamo-Hypophyseal System/drug effects , Hypothalamus/drug effects , Prefrontal Cortex/drug effects , Tretinoin/adverse effects , Animals , Humans
13.
Front Hum Neurosci ; 13: 177, 2019.
Article in English | MEDLINE | ID: mdl-31293405

ABSTRACT

Damage to the orbitofrontal cortex (OFC) often occurs following a traumatic brain injury (TBI) and can lead to complex behavioral changes, including difficulty with attention and concentration. We investigated the effects of musical training on patients with behavioral and cognitive deficits following a mild traumatic brain injury (mTBI) and found significant functional neuro-plastic changes in the OFC's networks. The results from neuropsychological tests revealed an improved cognitive performance. Moreover, six out of seven participants in this group returned to work post intervention and reported improved well-being and social behavior. In this study, we explore the functional changes in OFC following music-supported intervention in reference to connecting networks that may be responsible for enhanced social interaction. Furthermore, we discuss the factor of dopamine release during playing as an element providing a possible impact on the results. The intervention consisted of playing piano, two sessions per week in 8 weeks, 30 min each time, with an instructor. Additional playing was required with a minimum of 15 min per day at home. Mean time playing piano in reference to participant's report was 3 h per week during the intervention period. Three groups participated, one mTBI group (n = 7), two control groups consisting of healthy participants, one with music training (n = 11), and one baseline group without music training (n = 12). Participants in the clinical group had received standardized cognitive rehabilitation treatment during hospitalization without recovering from their impairments. The intervention took place 2 years post injury. All participants were assessed with neuropsychological tests and with both task and resting-state functional magnetic resonance imaging (fMRI) pre-post intervention. The results demonstrated a significant improvement of neuropsychological tests in the clinical group, consistent with fMRI results in which there were functional changes in the orbitofrontal networks (OFC). These changes were concordantly seen both in a simple task fMRI but also in resting-state fMRI, which was analyzed with dynamic causal modeling (DCM). We hypothesized that playing piano, as designed in the training protocol, may provide a positive increase in both well-being and social interaction. We suggest that the novelty of the intervention may have clinical relevance for patients with behavioral problems following a TBI.

14.
Behav Brain Res ; 369: 111938, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31071348

ABSTRACT

Receiving feedback from neural activity, dubbed neurofeedback, can reinforce brain self-regulation. In a real-time functional magnetic resonance imaging (fMRI) experiment, healthy participants received amygdala neurofeedback via a visual brain-computer interface. The brain response to signals of reward and failure was modeled. In contrast to previous analyses, we take into account feedback that immediately preceded these signals. That means we tested whether responses were modulated while participants observed sequent reward and failure signals. The orbitofrontal cortex (OFC) showed a negative Blood Oxygenation Level Dependent (BOLD) response to failure signals, when they were preceded by more failure signals. When failure signals were preceded by reward, in contrast, the response was less pronounced. The results suggest weighted processing of neurofeedback value in the OFC. Learning to self-regulate the brain with neurofeedback may involve similar neural networks as the learning of goal-directed action.


Subject(s)
Neurofeedback/methods , Prefrontal Cortex/physiology , Adult , Amygdala/physiology , Brain/physiology , Brain Mapping/methods , Brain-Computer Interfaces , Female , Healthy Volunteers , Humans , Learning/physiology , Magnetic Resonance Imaging/methods , Reinforcement, Psychology , Reward , Young Adult
15.
Elife ; 82019 04 23.
Article in English | MEDLINE | ID: mdl-31012845

ABSTRACT

The ability to flexibly use knowledge is one cardinal feature of goal-directed behaviors. We recently showed that thalamocortical and corticothalamic pathways connecting the medial prefrontal cortex and the mediodorsal thalamus (MD) contribute to adaptive decision-making (Alcaraz et al., 2018). In this study, we examined the impact of disconnecting the MD from its other main cortical target, the orbitofrontal cortex (OFC) in a task assessing outcome devaluation after initial instrumental training and after reversal of action-outcome contingencies. Crossed MD and OFC lesions did not impair instrumental performance. Using the same approach, we found however that disconnecting the OFC from its other main thalamic afferent, the submedius nucleus, produced a specific impairment in adaptive responding following action-outcome reversal. Altogether, this suggests that multiple thalamocortical circuits may act synergistically to achieve behaviorally relevant functions.


Subject(s)
Adaptation, Psychological , Neural Pathways/physiology , Prefrontal Cortex/physiology , Thalamus/physiology , Animals , Behavior, Animal , Male , Rats, Long-Evans
16.
Neurosci Res ; 147: 17-25, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30605697

ABSTRACT

Motor imagery is the mental execution of an action without any actual movement. Although numerous studies have utilized questionnaires to evaluate the vividness of motor imagery, it remains unclear whether it is related to the accuracy of motor imagery. To examine the relationship between vividness and accuracy, we investigated brain activity during kinesthetic and visual motor imagery, by using a novel sequential finger-tapping task. We estimated accuracy by measuring the fidelity of the actual performance and evaluated vividness by using a visual analog scale. We found that accuracy of visual motor imagery was correlated with the activity in the left visual cortex, as well as with bilateral sensorimotor regions. In contrast, vividness of visual motor imagery was associated with the activity in the right orbitofrontal cortex. However, there was no correlation in the brain activity between the right orbitofrontal cortex and visuomotor regions or between vividness and accuracy of motor imagery. In addition, we did not find any correlation in the kinesthetic imagery condition. We conclude that vividness of visual motor imagery is associated with the right orbitofrontal cortex and is independent of processes occurring in sensorimotor regions, which would be responsible for the accuracy of visual motor imagery.


Subject(s)
Cerebral Cortex/physiology , Imagination/physiology , Kinesthesis/physiology , Psychomotor Performance/physiology , Adult , Brain Mapping , Female , Humans , Male , Movement/physiology , Visual Cortex/physiology
17.
Brain Struct Funct ; 224(2): 961-971, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30506279

ABSTRACT

A growing body of evidence shows that olfactory information is processed within a thalamic nucleus in both rodents and humans. The mediodorsal thalamic nucleus (MDT) receives projections from olfactory cortical areas including the piriform cortex (PCX) and is interconnected with the orbitofrontal cortex (OFC). Using electrophysiology in freely moving rats, we recently demonstrated the representation of olfactory information in the MDT and the dynamics of functional connectivity between the PCX, MDT and OFC. Notably, PCX-MDT coupling is specifically increased during odor sampling of an odor discrimination task. However, whether this increase of coupling is functionally relevant is unknown. To decipher the importance of PCX-MDT coupling during the sampling period, we used optogenetics to specifically inactivate the PCX inputs to MDT during an odor discrimination task and its reversal in rats. We demonstrate that inactivating the PCX inputs to MDT does not affect the performance accuracy of an odor discrimination task and its reversal, however, it does impact the rats' sampling duration. Indeed, rats in which PCX inputs to MDT were inactivated during the sampling period display longer sampling duration during the odor reversal learning compared to controls-an effect not observed when inactivating OFC inputs to MDT. We demonstrate a causal link between the PCX inputs to MDT and the odor sampling performance, highlighting the importance of this specific cortico-thalamic pathway in olfaction.


Subject(s)
Odorants , Olfactory Cortex/physiology , Olfactory Pathways/physiology , Olfactory Perception/physiology , Reversal Learning/physiology , Thalamus/physiology , Animals , Discrimination Learning/physiology , Male , Rats , Rats, Long-Evans
18.
Neuropharmacology ; 144: 233-243, 2019 01.
Article in English | MEDLINE | ID: mdl-30385254

ABSTRACT

Previous clinical and pre-clinical studies suggest the involvement of ventromedial orbitofrontal cortex (vmOFC) and glutamatergic neurotransmission in obsessive-compulsive disorder (OCD). Ketamine, an NMDA glutamatergic receptor antagonist, has shown a rapid and long-lasting antidepressant effect, but its anti-compulsive effect has been scarcely investigated. The antidepressant effect of ketamine involves NMDA receptor blockade, AMPA receptor activation, increased serotonin (5-HT) release and attenuation of nitric oxide (NO) synthesis. It is not known if these mechanisms are involved in ketamine-induced anti-compulsive effect. Therefore, we firstly investigated the effect of S-ketamine in the marble-burying test (MBT), a model for screening of drugs with potential to treat OCD. Then, we evaluated whether ketamine effects in the MBT would involve the vmOFC, be dependent on AMPA receptors, facilitation of serotonergic neurotransmission and inhibition of nitrergic pathway. Our results showed that single systemic (10 mg/kg) and intra-vmOFC (10 nmol/side) administration of S-ketamine reduces marble burying behaviour (MBB) without affecting spontaneous locomotors activity. Pre-treatment with NBQX (3 mg/kg; AMPA receptor antagonist) blocked the reduction of MBB induced by S-ketamine. However, pre-treatment with p-CPA (150 mg/kg/day; a 5-HT synthesis inhibitor), WAY100635 (3 mg/kg; a 5-HT1A receptor antagonist), or L-arginine (500 mg/kg; a nitric oxide precursor) did not counteract S-ketamine effect in the MBT. In contrast, associating sub-effective doses of L-NAME (10 mg/kg; NOS inhibitor) and S-ketamine (3 mg/kg) decreased MBB. In conclusion, the reduction of MBB by S-ketamine strengthens its possible anti-compulsive effect. The vmOFC is involved in this S-ketamine effect, which is dependent on the activation of AMPA receptors.


Subject(s)
Ketamine/pharmacology , Obsessive-Compulsive Disorder/drug therapy , Prefrontal Cortex/drug effects , Psychotropic Drugs/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Drug Evaluation, Preclinical , Male , Mice , Motor Activity/drug effects , Obsessive-Compulsive Disorder/metabolism , Prefrontal Cortex/metabolism , Random Allocation , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
19.
Cortex ; 109: 92-103, 2018 12.
Article in English | MEDLINE | ID: mdl-30312781

ABSTRACT

The brain draws on knowledge of statistical structure in the environment to facilitate detection of new events. Understanding the nature of this representation is a key challenge in sensory neuroscience. Specifically, it is unknown whether real-time perception of rapidly-unfolding sensory signals is driven by a coarse or detailed representation of the proximal stimulus history. We recorded electroencephalography brain responses to frequency outliers in regularly-patterned (REG) versus random (RAND) tone-pip sequences which were generated anew on each trial. REG and RAND sequences were matched in frequency content and span, only differing in the specific order of the tone-pips. Stimuli were very rapid, limiting conscious reasoning in favour of automatic processing of regularity. Listeners were naïve and performed an incidental visual task. Outliers within REG evoked a larger response than matched outliers in RAND. These effects arose rapidly (within 80 msec) and were underpinned by distinct sources from those classically associated with frequency-based deviance detection. These findings are consistent with the notion that the brain continually maintains a detailed representation of ongoing sensory input and that this representation shapes the processing of incoming information. Predominantly auditory-cortical sources code for frequency deviance whilst frontal sources are associated with tracking more complex sequence structure.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Adult , Auditory Cortex/physiology , Electroencephalography , Female , Humans , Male , Prefrontal Cortex/physiology , Reaction Time/physiology , Sound , Young Adult
20.
Neuroimage Clin ; 19: 106-121, 2018.
Article in English | MEDLINE | ID: mdl-30035008

ABSTRACT

Posttraumatic stress disorder (PTSD) is a chronic and disabling neuropsychiatric disorder characterized by insufficient top-down modulation of the amygdala activity by the prefrontal cortex. Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging method with potential for modifying the amygdala-prefrontal interactions. We report the first controlled emotion self-regulation study in veterans with combat-related PTSD utilizing rtfMRI-nf of the amygdala activity. PTSD patients in the experimental group (EG, n = 20) learned to upregulate blood­oxygenation-level-dependent (BOLD) activity of the left amygdala (LA) using the rtfMRI-nf during a happy emotion induction task. PTSD patients in the control group (CG, n = 11) were provided with a sham rtfMRI-nf. The study included three rtfMRI-nf training sessions, and EEG recordings were performed simultaneously with fMRI. PTSD severity was assessed before and after the training using the Clinician-Administered PTSD Scale (CAPS). The EG participants who completed the study showed a significant reduction in total CAPS ratings, including significant reductions in avoidance and hyperarousal symptoms. They also exhibited a significant reduction in comorbid depression severity. Overall, 80% of the EG participants demonstrated clinically meaningful reductions in CAPS ratings, compared to 38% in the CG. No significant difference in the CAPS rating changes was observed between the groups. During the first rtfMRI-nf session, functional connectivity of the LA with the orbitofrontal cortex (OFC) and the dorsolateral prefrontal cortex (DLPFC) was progressively enhanced, and this enhancement significantly and positively correlated with the initial CAPS ratings. Left-lateralized enhancement in upper alpha EEG coherence also exhibited a significant positive correlation with the initial CAPS. Reduction in PTSD severity between the first and last rtfMRI-nf sessions significantly correlated with enhancement in functional connectivity between the LA and the left DLPFC. Our results demonstrate that the rtfMRI-nf of the amygdala activity has the potential to correct the amygdala-prefrontal functional connectivity deficiencies specific to PTSD.


Subject(s)
Amygdala/physiopathology , Depressive Disorder, Major/physiopathology , Magnetic Resonance Imaging , Neurofeedback/physiology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Brain Mapping/methods , Depressive Disorder, Major/pathology , Emotions/physiology , Female , Humans , Image Processing, Computer-Assisted/methods , Learning/physiology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Stress Disorders, Post-Traumatic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL