Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Heliyon ; 10(7): e28435, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560225

ABSTRACT

The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.

2.
Phytomedicine ; 128: 155516, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547625

ABSTRACT

BACKGROUND: Recently, osteoblast pyroptosis has been proposed as a potential pathogenic mechanism underlying osteoporosis, although this remains to be confirmed. Luteolin (Lut), a flavonoid phytochemical, plays a critical role in the anti-osteoporosis effects of many traditional Chinese medicine prescriptions. However, its protective impact on osteoblasts in postmenopausal osteoporosis (PMOP) has not been elucidated. PURPOSE: This research aimed to determine the effect of Lut in ameliorating PMOP by alleviating osteoblast pyroptosis and sustaining osteogenesis. STUDY DESIGN: This research was designed to investigate the novel mechanism of Lut in alleviating PMOP both in cell and animal models. METHODS: Ovariectomy-induced PMOP models were established in mice with/without daily gavaged of 10 or 20 mg/kg body weight Lut. The impact of Lut on bone microstructure, metabolism and oxidative stress was evaluated with 0.104 mg/kg body weight Estradiol Valerate Tablets daily gavaged as positive control. Network pharmacological analysis and molecular docking were employed to investigate the mechanisms of Lut in PMOP treatment. Subsequently, the impacts of Lut on the PI3K/AKT axis, oxidative stress, mitochondria, and osteoblast pyroptosis were assessed. In vitro, cultured MC3T3-E1(14) cells were exposed to H2O2 with/without Lut to examine its effects on the PI3K/AKT signaling pathway, osteogenic differentiation, mitochondrial function, and osteoblast pyroptosis. RESULTS: Our findings demonstrated that 20 mg/kg Lut, similar to the positive control drug, effectively reduced systemic bone loss and oxidative stress, and enhanced bone metabolism induced by ovariectomy. Network pharmacological analysis and molecular docking indicated that the PI3K/AKT axis was a potential target, with oxidative stress response and nuclear membrane function being key mechanisms. Consequently, the effects of Lut on the PI3K/AKT axis and pyroptosis were investigated. In vivo data revealed that the PI3K/AKT axis was deactivated following ovariectomy, and Lut restored the phosphorylation of key proteins, thereby reactivating the axis. Additionally, Lut alleviated osteoblast pyroptosis and mitochondrial abnormalities induced by ovariectomy. In vitro, Lut intervention mitigated the inhibition of the PI3K/AKT axis and osteogenesis, as well as H2O2-induced pyroptosis. Furthermore, Lut attenuated ROS accumulation and mitochondrial dysfunction. The effects of Lut, including osteogenesis restoration, anti-pyroptosis, and mitochondrial maintenance, were all reversed with LY294002 (a PI3K/AKT pathway inhibitor). CONCLUSION: In summary, Lut could improve mitochondrial dysfunction, alleviate GSDME-mediated pyroptosis and maintain osteogenesis via activating the PI3K/AKT axis, offering a new therapeutic strategy for PMOP.


Subject(s)
Luteolin , Molecular Docking Simulation , Osteoblasts , Osteogenesis , Osteoporosis, Postmenopausal , Ovariectomy , Oxidative Stress , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pyroptosis , Signal Transduction , Animals , Female , Pyroptosis/drug effects , Osteoporosis, Postmenopausal/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Osteoblasts/drug effects , Signal Transduction/drug effects , Oxidative Stress/drug effects , Luteolin/pharmacology , Osteogenesis/drug effects , Disease Models, Animal , Humans , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Network Pharmacology , Cell Line
3.
Phytomedicine ; 128: 155501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471318

ABSTRACT

BACKGROUND: The discovering of an osteoclast (OC) coupling active agent, capable of suppressing OC-mediated bone resorption while concurrently stimulating osteoblast (OB)-mediated bone formation, presents a promising strategy to overcome limitations associated with existing antiresorptive agents. However, there is a lack of research on active OC coupling agents. PURPOSE: This study aims to investigate the potential of Jiangu Formula (JGF) in inhibiting OCs while maintaining the OCOB coupling function. METHODS: The anti-osteoporosis efficacy of JGF was evaluated in osteoporosis models induced by ovariectomy in C57BL/6 mouse and SD rats. The effect of JGF on OCs was evaluated by detecting its capacity to inhibit OC differentiation and bone resorption in an in vitro osteoclastogenesis model induced by RANKL. The OCOB coupling activity of JGF was evaluated by measuring the secretion levels of OC-derived coupling factors, OB differentiation activity of MC3T3-E1 interfered with conditioned medium, and the effect of JGF on OC inhibition and OB differentiation in a C3H10T1/2-RAW264.7 co-culture system. The mechanism of JGF was studied by network pharmacology and validated using western blot, immunofluorescence (IF), and ELISA. Following that, the active ingredients of JGF were explored through a chemotype-assembly approach, activity evaluation, and LC-MS/MS analysis. RESULTS: JGF inhibited bone resorption in murine osteoporosis without compromising the OCOB coupling effect on bone formation. In vitro assays showed that JGF preserved the coupling effect of OC on OB differentiation by maintaining the secretion of OC-derived coupling factors. Network analysis predicted STAT3 as a key regulation point for JGF to exert anti-osteoporosis effect. Further validation assays confirmed that JGF upregulated p-STAT3(Ser727) and its regulatory factors IL-2 in RANKL-induced RAW264.7 cells. Moreover, 23 components in JGF with anti-OC activity identified by chemotype-assembly approach and verification experiments. Notably, six compounds, including ophiopogonin D, ginsenoside Re, ginsenoside Rf, ginsenoside Rg3, ginsenoside Ro, and ononin were identified as OC-coupling compounds. CONCLUSION: This study first reported JGF as an agent that suppresses bone loss without affecting bone formation. The potential coupling mechanism of JGF involves the upregulation of STAT3 by its regulators IL-2. Additionally, the chemotype-assembly approach elucidated the activity compounds present in JGF, offering a novel strategy for developing an anti-resorption agent that preserves bone formation.


Subject(s)
Bone Resorption , Cell Differentiation , Drugs, Chinese Herbal , Mice, Inbred C57BL , Osteoblasts , Osteoclasts , Osteoporosis , Rats, Sprague-Dawley , Animals , Osteoclasts/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Osteoporosis/drug therapy , Osteoblasts/drug effects , Female , RAW 264.7 Cells , Cell Differentiation/drug effects , Bone Resorption/drug therapy , Ovariectomy , RANK Ligand , Rats , Osteogenesis/drug effects , Disease Models, Animal , STAT3 Transcription Factor/metabolism
4.
Biomed Pharmacother ; 173: 116346, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428312

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS: Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS: 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS: These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.


Subject(s)
Drugs, Chinese Herbal , Ligustrum , Osteoporosis , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Ligustrum/chemistry , Ligustrum/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1/metabolism , Hydrogen Peroxide/pharmacology , Tumor Suppressor Protein p53/metabolism , TOR Serine-Threonine Kinases/metabolism , Osteoporosis/drug therapy , Osteoblasts , Apoptosis , Autophagy , Chloroquine/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism
5.
Aging (Albany NY) ; 16(5): 4832-4840, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461437

ABSTRACT

Osteoporosis is a usual bone disease in aging populations, principally in postmenopausal women. Anti-resorptive and anabolic drugs have been applied to prevent and cure osteoporosis and are associated to a different of adverse effects. Du-Zhong is usually applied in Traditional Chinese Medicine to strengthen bone, regulate bone metabolism, and treat osteoporosis. Chlorogenic acid is a major polyphenol in Du-Zhong. In the current study, chlorogenic acid was found to enhance osteoblast proliferation and differentiation. Chlorogenic acid also inhibits the RANKL-induced osteoclastogenesis. Notably, ovariectomy significantly decreased bone volume and mechanical properties in the ovariectomized (OVX) rats. Administration of chlorogenic acid antagonized OVX-induced bone loss. Taken together, chlorogenic acid seems to be a hopeful molecule for the development of novel anti-osteoporosis treatment.


Subject(s)
Osteoclasts , Osteoporosis , Humans , Rats , Female , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chlorogenic Acid/metabolism , Osteogenesis , Osteoporosis/metabolism , Osteoblasts/metabolism , Cell Differentiation
6.
Phytomedicine ; 124: 155282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176266

ABSTRACT

BACKGROUND: Ferroptosis is a crucial contributor to impaired osteoblast function in osteoporosis. Mangiferin, a xanthonoid glucoside isolated from mangoes, exhibits anti-osteoporosis effects. However, its potential mechanism is not fully understood. PURPOSE: This study explores the potencies of mangiferin on osteoblastic ferroptosis and deciphers its direct target in the context of solute carrier family 7-member 11 (SLC7A11)/glutathione peroxidases 4 (GPX4) pathway. METHODS: In vivo models include bilateral ovariectomy induced osteoporosis mice, iron-dextran induced iron-overloaded mice, and nuclear factor-erythroid 2-related factor 2 (Nrf2)-knockout mice. Mice are orally administrated mangiferin (10, 50 or 100 mg.kg-1.d-1) for 12 weeks. In vitro osteoblast models include iron-dextran induced iron-overloaded cells, erastin induced ferroptosis cells, and gene knockout cells. RNA sequencing is applied for investigating the underlying mechanisms. The direct target of mangiferin is studied using a cellular thermal shift assay, silico docking, and surface plasmon resonance. RESULTS: Mangiferin promotes bone formation and inhibits ferroptosis in vivo models (osteoporosis mice, iron-overloaded mice) and in vitro models (ferroptosis osteoblast, iron-overloaded osteoblasts). Mechanismly, mangiferin directly binds to the kelch-like ECH-associated protein 1 (Keap1) and activates the downstream Nrf2/SLC7A11/GPX4 pathway in both the in vivo and in vitro models. Mangiferin failed to restore the osteoporosis and ferroptosis in Nrf2-knockout mice. Silencing Nrf2, SLC7A11 or GPX4 abolished the anti-ferroptosis effect of mangiferin in erastin-induced cells. Addition of the ferroptosis agonist RSL-3 also blocked the protective effects of mangiferin on iron-overloaded cells. Furthermore, mangiferin had better effects on osteogenesis than the ferroptosis inhibitor (ferrostatin-1) and the Nrf2 agonists (sulforaphane, dimethyl fumarate, and bardoxolone). CONCLUSIONS: We identify for the first time mangiferin as a ferroptosis inhibitor and a direct Keap1 conjugator that promotes bone formation and alleviates osteoporosis. This work also provides a potentially practical pharmacological approach for treating ferroptosis-driven diseases.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Xanthones , Female , Animals , Mice , Kelch-Like ECH-Associated Protein 1 , Phospholipid Hydroperoxide Glutathione Peroxidase , Dextrans , Mice, Knockout , Iron
7.
Chem Biodivers ; 21(2): e202301383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212902

ABSTRACT

Herba Epimedii is widely used to promote bone healing, and their active ingredients are total flavonoids of Epimedium (TFE). Ras homolog gene family member A / Rho-associated protein kinase (RhoA/Rock), an important pathway regulating the cytoskeleton, has been proven to affect bone formation. However, whether TFE promotes bone healing via this pathway remains unclear. In this study, the therapeutic effects of TFE were estimated using micro-computed tomography and hematoxylin and eosin staining of pathological sections. F-actin in osteoblasts was stained to investigate the protective effects of TFE on the cytoskeleton. Its regulatory effects on the RhoA/Rock1 pathway were explored using RT-qPCR and Western blot analysis. Besides, flow cytometry, alkaline phosphatase and nodule calcification staining were performed to evaluate the effects on osteogenesis. The bone healing in rats was improved, the cytoskeletal damage in osteoblasts was reduced, the RhoA/Rock1 pathway was downregulated, and osteogenesis was enhanced after TFE treatment. Thus, TFE can promote bone formation at least partially by regulating the expression of key genes and proteins in the cytoskeleton. The findings of this study provided evidence for clinical applications and would contribute to a better understanding of Epimedium's mechanisms in treating bone defects.


Subject(s)
Drugs, Chinese Herbal , Rats , Animals , X-Ray Microtomography , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Osteogenesis , Cytoskeleton
8.
J Tradit Complement Med ; 14(1): 1-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223808

ABSTRACT

Background: Osteoporosis is a chronic and systemic skeletal disease that is defined by low bone mineral density (BMD) along with an increase in bone fragility and susceptibility to fracture. This study aimed to overview clinical evidence on the use of herbal medicine for management of osteoporosis. Methods: Electronic databases including Pubmed, Medline, Cochrane library, and Scopus were searched until November 2022 for any clinical studies on the efficacy and/or safety of plant-derived medicines in the management of osteoporosis. Results: The search yielded 57 results: 19 on single herbs, 16 on multi-component herbal preparations, and 22 on plant-derived secondary metabolites. Risk of fracture, bone alkaline phosphatase, BMD, and specific bone biomarkers are investigated outcomes in these studies. Medicinal plants including Acanthopanax senticosus, Actaea racemosa, Allium cepa, Asparagus racemosus, Camellia sinensis, Cissus quadrangularis, Cornus mas, Nigella sativa, Olea europaea, Opuntia ficus-indica, Pinus pinaster, Trifolium pretense and phytochemicals including isoflavones, ginsenoside, Epimedium prenyl flavonoids, tocotrienols are among plant-derived medicines clinically investigated on osteoporosis. It seems that multi-component herbal preparations were more effective than single-component ones; because of the synergistic effects of their constituents. The investigated herbal medicines demonstrated their promising results in osteoporosis via targeting different pathways in bone metabolism, including balancing osteoblasts and osteoclasts, anti-inflammatory, immunomodulatory, antioxidant, and estrogen-like functions. Conclusion: It seems that plant-derived medicines have beneficial effects on bone and may manage osteoporosis by affecting different targets and pathways involved in osteoporosis; However, Future studies are needed to confirm the effectiveness and safety of these preparations.

10.
Int J Mol Sci ; 24(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38069425

ABSTRACT

Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3ß, ß-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.


Subject(s)
Glucosides , Osteogenesis , Cell Differentiation , Glucosides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Bone Morphogenetic Proteins/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Osteoblasts/metabolism
11.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139307

ABSTRACT

Plants contain a large number of small-molecule compounds that are useful for targeting human health and in drug discovery. Healthy bone metabolism depends on the balance between bone-forming osteoblast activity and bone-resorbing osteoclast activity. In an ongoing study searching for 22 plant extracts effective against osteoporosis, we found that the crude extract of Euptelea polyandra Sieb. et Zucc (E. polyandra) had osteogenic bioactivity. In this study, we isolated two compounds, isoquercitrin (1) and astragalin (2), responsible for osteogenic bioactivity in osteoblastic MC3T3-E1 cells from the leaf of E. polyandra using column chromatography and the spectroscopic technique. This is the first report to isolate astragalin from E. polyandra. Compounds (1) and (2) promoted osteoblast differentiation by increasing alkaline phosphatase (ALP) activity and alizarin red S stain-positive calcium deposition, while simultaneously suppressing tartrate-resistant acid phosphatase (TRAP)-positive osteoclast differentiation in RAW264.7 cells at non-cytotoxic concentrations. Isoquercitrin (1) and astragalin (2) increased the expression of osteoblastic differentiation genes, Osterix, ALP, and Osteoprotegerin in the MC3T3-E1 cells, while suppressing osteoclast differentiation genes, TRAP, Cathepsin K, and MMP 9 in the RAW264.7 cells. These compounds may be ideal targets for the treatment of osteoporosis due to their dual function of promoting bone formation and inhibiting bone resorption.


Subject(s)
Bone Resorption , Osteoporosis , Humans , Osteoclasts/metabolism , Osteogenesis , Osteoblasts/metabolism , Bone Resorption/metabolism , Cell Differentiation , Osteoporosis/drug therapy , Osteoporosis/metabolism
12.
Front Pharmacol ; 14: 1235854, 2023.
Article in English | MEDLINE | ID: mdl-38027015

ABSTRACT

Bone metabolic homeostasis is dependent on coupled bone formation dominated by osteoblasts and bone resorption dominated by osteoclasts, which is a process of dynamic balance between bone formation and bone resorption. Notably, the formation of bone relies on the development of bone vasculature. Previous studies have shown that oxidative stress caused by disturbances in the antioxidant system of the whole organism is an important factor affecting bone metabolism. The increase in intracellular reactive oxygen species can lead to disturbances in bone metabolism, which can initiate multiple bone diseases, such as osteoporosis and osteoarthritis. Traditional Chinese medicine is considered to be an effective antioxidant. Cumulative evidence shows that the traditional Chinese medicine can alleviate oxidative stress-mediated bone metabolic disorders by modulating multiple signaling pathways, such as Nrf2/HO-1 signaling, PI3K/Akt signaling, Wnt/ß-catenin signaling, NF-κB signaling, and MAPK signaling. In this paper, the potential mechanisms of traditional Chinese medicine to regulate bone me-tabolism through oxidative stress is summarized to provide direction and theoretical basis for future research related to the treatment of bone diseases with traditional Chinese medicine.

13.
JCI Insight ; 8(24)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37943605

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Osteomalacia , Animals , Mice , Calcification, Physiologic/genetics , Extracellular Matrix Proteins/metabolism , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factors , Hypophosphatemia/genetics , Mice, Knockout , Minerals/metabolism , Osteomalacia/genetics , Osteomalacia/metabolism
14.
Front Pharmacol ; 14: 1249418, 2023.
Article in English | MEDLINE | ID: mdl-37790808

ABSTRACT

Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.

15.
Eur J Pharmacol ; 960: 176121, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37866743

ABSTRACT

Osteoporosis, a systemic bone disease defined by decreased bone mass and deterioration of bone microarchitecture, is becoming a global concern. Nodakenin (NK) is a furanocoumarin-like compound isolated from the traditional Chinese medicine Radix Angelicae biseratae (RAB). NK has been reported to have various pharmacological activities, but osteoporosis has not been reported to be affected by NK. In this study, we used network pharmacology, molecular docking and molecular dynamics simulation techniques to identify potential targets and pathways of NK in osteoporosis. We found that NK treatment significantly promoted osteogenic differentiation of BMSCs while activating the PI3K/AKT/mTOR signalling pathway by measuring alkaline phosphatase activity and the expression of various osteogenic markers. In contrast, LY294002, an inhibitor of PI3K, reversed these changes and inhibited the osteogenic differentiation-enabling effect of NK. Meanwhile, prevent the Akt and NFκB signalling pathways by down-regulating c-Src and TRAF6 thereby effectively inhibiting RANKL-induced osteoclastogenesis. In addition, oral administration of NK to mice significantly elevated bone mass and ameliorated ovariectomized (OVX)-mediated bone microarchitectural disorders. In conclusion, these data suggest that NK attenuates OVX-induced bone loss by enhancing osteogenesis and inhibiting osteoclastogenesis.


Subject(s)
Osteogenesis , Osteoporosis , Female , Mice , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/metabolism , Ovariectomy/adverse effects , Osteoclasts , Cell Differentiation , RANK Ligand/pharmacology
16.
Cells ; 12(20)2023 10 18.
Article in English | MEDLINE | ID: mdl-37887326

ABSTRACT

Complex lymphatic anomalies (CLAs) are a set of rare diseases with unique osteopathic profiles. Recent efforts have identified how lymphatic-specific somatic activating mutations can induce abnormal lymphatic formations that are capable of invading bone and inducing bone resorption. The abnormal bone resorption in CLA patients has been linked to overactive osteoclasts in areas with lymphatic invasions. Despite these findings, the mechanism associated with progressive bone loss in CLAs remains to be elucidated. In order to determine the role of osteoblasts in CLAs, we sought to assess osteoblast differentiation and bone formation when exposed to the lymphatic endothelial cell secretome. When treated with lymphatic endothelial cell conditioned medium (L-CM), osteoblasts exhibited a significant decrease in proliferation, differentiation, and function. Additionally, L-CM treatment also inhibited bone formation through a neonatal calvaria explant culture. These findings are the first to reveal how osteoblasts may be actively suppressed during bone lymphatic invasion in CLAs.


Subject(s)
Bone Resorption , Osteogenesis , Infant, Newborn , Humans , Secretome , Osteoblasts , Cell Differentiation , Skull , Endothelial Cells
17.
Adv Sci (Weinh) ; 10(33): e2303015, 2023 11.
Article in English | MEDLINE | ID: mdl-37857552

ABSTRACT

Postmenopausal osteoporosis (PMO) is often accompanied by neuroendocrine changes in the hypothalamus, which closely associates with the microbial diversity, community composition, and intestinal metabolites of gut microbiota (GM). With the emerging role of GM in bone metabolism, a potential neuroendocrine signal neuropeptide Y (NPY) mediated brain-gut-bone axis has come to light. Herein, it is reported that exogenous overexpression of NPY reduced bone formation, damaged bone microstructure, and up-regulated the expressions of pyroptosis-related proteins in subchondral cancellous bone in ovariectomized (OVX) rats, but Y1 receptor antagonist (Y1Ra) reversed these changes. In addition, it is found that exogenous overexpression of NPY aggravated colonic inflammation, impaired intestinal barrier integrity, enhanced intestinal permeability, and increased serum lipopolysaccharide (LPS) in OVX rats, and Y1Ra also reversed these changes. Most importantly, NPY and Y1Ra modulated the microbial diversity and changed the community composition of GM in OVX rats, and thereby affecting the metabolites of GM (e.g., LPS) entering the blood circulation. Moreover, fecal microbiota transplantation further testified the effect of NPY-mediated GM changes on bone. In vitro, LPS induced pyroptosis, reduced viability, and inhibited differentiation of osteoblasts. The study demonstrated the existence of NPY-mediated brain-gut-bone axis and it might be a novel emerging target to treat PMO.


Subject(s)
Gastrointestinal Microbiome , Osteoporosis, Postmenopausal , Female , Humans , Rats , Animals , Neuropeptide Y/metabolism , Lipopolysaccharides , Hypothalamus/metabolism
18.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686232

ABSTRACT

Thiazolidinediones (TZD) significantly improve insulin sensitivity via action on adipocytes. Unfortunately, TZDs also degrade bone by inhibiting osteoblasts. An extract of Artemisia dracunculus L., termed PMI5011, improves blood glucose and insulin sensitivity via skeletal muscle, rather than fat, and may therefore spare bone. Here, we examine the effects of PMI5011 and an identified active compound within PMI5011 (2',4'-dihydroxy-4-methoxydihydrochalcone, DMC-2) on pre-osteoblasts. We hypothesized that PMI5011 and DMC-2 will not inhibit osteogenesis. To test our hypothesis, MC3T3-E1 cells were induced in osteogenic media with and without PMI5011 or DMC-2. Cell lysates were probed for osteogenic gene expression and protein content and were stained for osteogenic endpoints. Neither compound had an effect on early stain outcomes for alkaline phosphatase or collagen. Contrary to our hypothesis, PMI5011 at 30 µg/mL significantly increases osteogenic gene expression as early as day 1. Further, osteogenic proteins and cell culture mineralization trend higher for PMI5011-treated wells. Treatment with DMC-2 at 1 µg/mL similarly increased osteogenic gene expression and significantly increased mineralization, although protein content did not trend higher. Our data suggest that PMI5011 and DMC-2 have the potential to promote bone health via improved osteoblast maturation and activity.


Subject(s)
Artemisia , Calcinosis , Insulin Resistance , Coloring Agents , Osteoblasts , Cell Proliferation , Plant Extracts/pharmacology
19.
J Trace Elem Med Biol ; 80: 127293, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37677921

ABSTRACT

BACKGROUND: Out of all measure systemic exposure to fluorides can cause defect of skeletal and dental fluorosis. Endoplasmic reticulum (ER) stress is caused by fluorine-induced oxidative stress and importance of vitamin D in its prevention is not known enough in bone cells. This study was carried out to investigate fluorine-induced oxidative stress, ER stress, and death pathways and the effect of vitamin D on them. METHODS: MC3T3-E1 mouse osteoblast cell line was used as the material of the study. The NaF and vitamin D concentrations were determined by the MTT assay. NaF treatments and vitamin D supplementation (pre-add, co-add, and post-add) was administered in the cell line at 24th and 48th hours. The expression of the genes in oxidative stress, ER stress, and death pathways was determined using RT-qPCR and Western blotting techniques. RESULTS: Vitamin D significantly reduced mRNA expression levels of SOD2, CYGB, ATF6, PERK, IRE1, ATG5 and BECN1 whereas caused an increase in levels GPX1, SOD1, NOS2 and Caspase-3 in MC3T3-E1 mouse osteoblast cell line of NaF-induced. In addition, GPX1, SOD1, ATF6, PERK, IRE1, BECN1, Caspase-3 and RIPK1 protein levels were examined by Western blot analysis, and it was determined that vitamin D decreased IRE1 and PERK protein levels, but increased GPX1, SOD1, ATF6 and Caspase-3 protein levels. CONCLUSION: The findings of the study suggest that vitamin D has protective potential against NaF-induced cytotoxicity reasonably through the attenuation of oxidative stress, ER stress, ATG5, IRE1 and by increasesing caspase-3 in vitro conditions.


Subject(s)
Sodium Fluoride , Vitamin D , Mice , Animals , Sodium Fluoride/toxicity , Vitamin D/metabolism , Caspase 3/metabolism , Fluorine , Superoxide Dismutase-1/metabolism , Cell Line , Endoplasmic Reticulum Stress , Osteoblasts/metabolism , Oxidative Stress , Apoptosis
20.
Heliyon ; 9(8): e18599, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576189

ABSTRACT

Bone disorders are major health issues requiring specialized care; however, the traditional bone grafting method had several limitations. Thus, bone tissue engineering has become a potential alternative. In therapeutic treatments, using fetal bovine serum (FBS) as a culture supplement may result in the risk of contamination and host immunological response; therefore, human platelet lysate (hPL) has been considered a viable alternative source. This study attempted to compare the effectiveness and safety of different culture supplements, either FBS or hPL, on the osteoblastic differentiation potential of mesenchymal stem cells derived from human amniotic fluid (hAF-MSCs) under a three-dimensional gelatin scaffold. The results indicate that hAF-MSCs have the potential to be used in clinical applications as they meet the criteria for mesenchymal stem cells based on their morphology, the expression of a particular surface antigen, their proliferation ability, and their capacity for multipotent differentiation. After evaluation by MTT and Alamar blue proliferation assay, 10% of hPL was selected. The osteogenic differentiation of hAF-MSCs under three-dimensional gelatin scaffold using osteogenic-induced media supplemented with hPL was achievable and markedly stimulated osteoblast differentiation. Moreover, the expressions of osteoblastogenic related genes, including OCN, ALP, and COL1A1, exhibited the highest degree of expression under hPL-supplemented circumstances when compared with the control and the FBS-supplemented group. The induced cells under hPL-supplemented conditions also presented the highest ALP activity level and the greatest degree of calcium accumulation. These outcomes would indicate that hPL is a suitable substitute for animal derived serum. Importantly, osteogenic differentiation of human amniotic fluid derived mesenchymal stem cells using hPL-supplemented media and three-dimensional scaffolds may open the door to developing an alternative construct for repairing bone defects.

SELECTION OF CITATIONS
SEARCH DETAIL