Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Plant Dis ; 106(6): 1566-1572, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35072502

ABSTRACT

Potato virus Y (PVY) is one of the most economically important pathogens of potato. PVY exhibits different phenotypes in dissimilar potato cultivars. Previously, we observed that two recombinant isolates, PVYN-Wi-HLJ-BDH-2 (BDH) and PVYNTN-NW(SYR-II)-INM-W-369-12 (369), exhibited different virulence levels in potato cultivar Kexin 13 despite high genome sequence identity. Indeed, 369 induced severe necrosis and plant death in severe cases in Kexin 13 and severe mosaic in cultivar Yanshu 8, whereas BDH caused mainly mosaic symptoms on the plants of both cultivars. We hypothesized that preinfection of plants with BDH could cross-protect them from 369 infection, and not vice versa. Challenge inoculation, either by mechanical wounding or through grafting, with 369 on plants that were preinfected with BDH did not augment the symptom expression in both cultivars. Reverse transcription quantitative PCR analysis showed that, after challenge inoculation with 369, the titer of the isolate on BDH-preinfected plants remained at a low level (about 3 × 104 copy/µl) during the tested time course (0 h to 30 days). In contrast, in plants that were preinoculated with buffer (mock) and challenge inoculated with 369, the titer of 369 increased continuously until reaching its highest level of about 2 × 107 (Yanshu 8) and about 4 × 108 (Kexin 13) during the time course. Surprisingly, in plants that were preinfected with 369 and challenge inoculated with BDH, the accumulation of BDH reached nearly the same level as that in plants that were preinoculated with buffer and challenge inoculated with BDH. Taken together, these results suggest that PVYN-Wi mediated cross-protection against PVYNTN-NW(SYR-II) by superior competition and better fitness.


Subject(s)
Potyvirus , Solanum tuberosum , Phenotype , Plant Diseases , Potyvirus/genetics
2.
Plant Dis ; 106(3): 891-900, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34705492

ABSTRACT

In-field management of Potato virus Y (PVY) faces challenges caused by the changing availability and environmental acceptability of chemical agents to control aphid vectors of the virus and by proliferation of PVY strains with different symptoms and rates of spread. From 2018 to 2020, foliar spray treatments were compared in field experiments in New Brunswick, Canada, to measure effectiveness at reducing spread of PVYO, PVYN:O, and PVYNTN strains. Mineral oil, insecticide, combined oil and insecticide spray, and a biopesticide (i.e., LifeGard WG) were compared. Insecticide-only and mineral oil-only treatments were not effective, but several combined oil and insecticide treatments and biopesticide treatments significantly reduced PVY spread. The biopesticide was proportionately more effective with recombinant PVYN:O and PVYNTN strains, possibly by exciting the plant's hypersensitive resistance response, caused naturally only in cultivar 'Goldrush' by PVYO. Pesticide residue analysis showed that mineral oil increased the retention of pyrethroid insecticide in the potato foliage longer than with insecticide applied alone, which may explain the beneficial synergistic effect of combined sprays for reducing PVY spread. Tuber yields were generally unchanged in chemical insecticide treatments but were slightly lower in biopesticide treatment. The cost per PVY treatment was competitive across all effective treatments, including biopesticide; however, there was some revenue loss from lower yield with the biopesticide. This biopesticide is certified organic, however, and thus a small premium on the price for organic production could offset this yield deficit.


Subject(s)
Insecticides , Potyvirus , Solanum tuberosum , Biological Control Agents/pharmacology , Insecticides/pharmacology , Mineral Oil/pharmacology , Plant Diseases/prevention & control , Potyvirus/physiology
3.
Plant Dis ; 103(9): 2221-2230, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31287755

ABSTRACT

Potato virus Y (PVY) exists as several strains with distinct symptomology and tuber yield effects in different potato varieties. Recently, new recombinant strains have proliferated and dominated local populations around the world. In this study, PVYO, PVYN:O, PVYN-Wi, and PVYNTN strains were tracked across Canada from 2014 to 2017, showing rapid evolution of populations away from the traditionally dominant PVYO to recombinants PVYN-Wi (western Canada) and PVYNTN (eastern Canada). Simultaneously, 30 potato varieties were inoculated with PVYO, PVYN:O, and PVYNTN in controlled greenhouse experiments. Foliar symptoms of primary (mechanical inoculation mimicking aphid infection) and secondary (tuber seedborne) infection were cataloged, and tuber yield measured. On average, and generally similar in primary and secondary infection, symptom expression and yield reduction were most severe with PVYO, followed by PVYN:O and PVYNTN. Strong mosaic symptoms were most commonly expressed with PVYO infection, and only seen with PVYN:O or PVYNTN in 15 and 3 varieties, respectively. Across variety-strain combinations, yield reduction was correlated with symptom severity, most strongly in PVYO-infected plants (e.g., AC Chaleur, Beljade, Envol, Norland, and Pacific Russet), and four varieties exhibited tuber necrotic ringspot disease with PVYNTN (AC Chaleur, Envol, Pacific Russet, and Yukon Gold).


Subject(s)
Plant Diseases , Potyvirus , Reassortant Viruses , Solanum tuberosum , Virus Replication , Animals , Breeding , Canada , Plant Diseases/virology , Potyvirus/genetics , Potyvirus/physiology , Reassortant Viruses/physiology , Solanum tuberosum/virology
SELECTION OF CITATIONS
SEARCH DETAIL