Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Environ Sci Technol ; 57(48): 19214-19222, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37963111

ABSTRACT

Pacific herring (Clupea pallasii), a cornerstone of marine food webs, generally spawn on marine macroalgae in shallow nearshore areas that are disproportionately at risk from oil spills. Herring embryos are also highly susceptible to toxicity from chemicals leaching from oil stranded in intertidal and subtidal zones. The water-soluble components of crude oil trigger an adverse outcome pathway that involves disruption of the physiological functions of cardiomyocytes in the embryonic herring heart. In previous studies, impaired ionoregulation (calcium and potassium cycling) in response to specific polycyclic aromatic hydrocarbons (PAHs) corresponds to lethal embryolarval heart failure or subtle chamber malformations at the high and low ends of the PAH exposure range, respectively. Sublethal cardiotoxicity, which involves an abnormal outgrowth (ballooning) of the cardiac ventricular chamber soon after hatching, subsequently compromises juvenile heart structure and function, leading to pathological hypertrophy of the ventricle and reduced individual fitness, measured as cardiorespiratory performance. Previous studies have not established a threshold for these sublethal and delayed-in-time effects, even with total (∑)PAH exposures as low as 29 ng/g of wet weight (tissue dose). Here, we extend these earlier findings showing that (1) cyp1a gene expression provides an oil exposure metric that is more sensitive than typical quantitation of PAHs via GC-MS and (2) heart morphometrics in herring embryos provide a similarly sensitive measure of toxic response. Early life stage injury to herring (impaired heart development) thus occurs below the quantitation limits for PAHs in both water and embryonic tissues as a conventional basis for assessing oil-induced losses to coastal marine ecosystems.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Water , Ecosystem , Polycyclic Aromatic Hydrocarbons/toxicity , Petroleum/toxicity , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Fishes/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
2.
Appl Environ Microbiol ; 89(10): e0104723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37728942

ABSTRACT

Many human activities contaminate terrestrial and aquatic environments with numerous chemical pollutants that not only directly alter the environment but also affect microbial communities in ways that are potentially concerning to human health, such as selecting for the spread of antibiotic-resistance genes (ARGs) through horizontal gene transfer. In the present study, metagenomes available in the public domain from polluted (with antibiotics, with petroleum, with metal mining, or with coal-mining effluents) and unpolluted terrestrial and aquatic environments were compared to examine whether pollution has influenced the abundance and composition of ARGs and mobile elements, with specific focus on IS26 and class 1 integrons (intI1). When aggregated together, polluted environments had a greater relative abundance of ARGs than unpolluted environments and a greater relative abundance of IS26 and intI1. In general, chemical pollution, notably with petroleum, was associated with an increase in the prevalence of ARGs linked to multidrug efflux pumps. Included in the suite of efflux pumps were mexK, mexB, mexF, and mexW that are polyspecific and whose substrate ranges include multiple classes of critically important antibiotics. Also, in some instances, ß-lactam resistance (TEM181 and OXA-541) genes increased, and genes associated with rifampicin resistance (RNA polymerases subunits rpoB and rpoB2) decreased in relative abundance. This meta-analysis suggests that different types of chemical pollution can enrich populations that carry efflux pump systems associated with resistance to multiple classes of medically critical antibiotics.IMPORTANCEThe United Nations has identified chemical pollution as being one of the three greatest threats to environmental health, through which the evolution of antimicrobial resistance, a seminally important public health challenge, may be favored. While this is a very plausible outcome of continued chemical pollution, there is little evidence or research evaluating this risk. The objective of the present study was to examine existing metagenomes from chemically polluted environments and evaluate whether there is evidence that pollution increases the relative abundance of genes and mobile genetic elements that are associated with antibiotic resistance. The key finding is that for some types of pollution, particularly in environments exposed to petroleum, efflux pumps are enriched, and these efflux pumps can confer resistance to multiple classes of medically important antibiotics that are typically associated with Pseudomonas spp. or other Gram-negative bacteria. This finding makes clear the need for more investigation on the impact of chemical pollution on the environmental reservoir of ARGs and their association with mobile genetic elements that can contribute to horizontal gene transfer events.


Subject(s)
Metagenome , Petroleum , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Interspersed Repetitive Sequences
3.
Chemosphere ; 340: 139815, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586489

ABSTRACT

In this study, a novel oil-degrading strain Enterobacter kobei DH7 was isolated from petroleum-contaminated soil samples from the industrial park in Taolin Town, Lianyungang, China. The whole genome of the strain was sequenced and analyzed to reveal its genomic potential. The oil degradation and growth conditions including nitrogen, and phosphorus sources, degradation cycle, biological dosing, pH, and oil concentration were optimized to exploit its commercial application. The genome of the DH7 strain contains 4,705,032 bp with GC content of 54.95% and 4653 genes. The genome analysis revealed that there are several metabolic pathways and enzyme-encoding genes related to oil degradation in the DH7 genome, such as the paa gene cluster which is involved in the phenylacetic acid degradation pathway, and complete degradation pathways for fatty acid and benzoate, genes related to chlorinated alkanes and olefins degradation pathway including adhP, frmA, and adhE, etc. The strain DH7 under the optimized conditions has demonstrated a maximum degradation efficiency of 84.6% after 14 days of treatment using synthetic oil, which comparatively displays a higher oil degradation efficiency than any Enterobacter species known to date. To the best of our knowledge, this study presents the first-ever genomic studies related to the oil degradation potential of any Enterobacter species. As Enterobacter kobei DH7 has demonstrated significant oil degradation potential, it is one of the good candidates for application in the bioremediation of oil-contaminated environments.


Subject(s)
Petroleum , Soil Pollutants , Petroleum/analysis , Enterobacter/genetics , Enterobacter/metabolism , Genomics , Soil/chemistry , Biodegradation, Environmental , Soil Microbiology , Soil Pollutants/analysis , Hydrocarbons/metabolism
4.
Environ Sci Pollut Res Int ; 30(21): 60618-60637, 2023 May.
Article in English | MEDLINE | ID: mdl-37036650

ABSTRACT

With the development of industries and excessive use of petroleum compounds, petroleum pollution has become a serious threat to the environment. The aim of this study was to the effect of petroleum levels on the biological activities of soil affected by phytoremediation and bioaugmentation. A surface soil sample was collected from the polluted areas around Bandar Abbas Oil Refinery Company, and the petroleum-degrading bacteria were isolated. M. yunnanensis (native) was selected among the isolated colonies for further experiment. The used soil in this study was a surface soil collected from Baghu region of Bandar Abbas, Sothern Iran, and treatments were added to soil samples. To evaluate removal of petroleum levels (0, 4, and 8%) from the soil by phytoremediation (control, sorghum, barley, and bermudagrass) and bioaugmentation (control, A. brasilense (non-native) and M. yunnanensis) and bioaugmented phytoremediation, a factorial pot experiment with completely randomized design and three replications was performed. The results demonstrated that sorghum and bermudagrass were more resistant than barley to the toxic effects of petroleum. Positive effect of bacteria on dry weight in polluted soil was greater than in the non-polluted soil. The degradation of petroleum reaches 77% in sorghum + M. yunanesis + 4% petroleum. Plants had stronger ability to degrade total petroleum hydrocarbon (TPH), while bacteria could better degrade polyaromatic hydrocarbons (PAHs). Application of bacteria and plants stimulated soil biological characteristics (dehydrogenase, arylsulfatase, lipase, bacterial population, and respiration) in polluted soil. Among measured enzymes, dehydrogenase exhibited a stronger response to petroleum levels. Four-percent level had greater irritating effect on soil biological properties. Plants and bacteria rely on differences in biological properties to attain synergy in petroleum degradation. Results indicated that M. yunnanensis has a high ability to remove petroleum from soil, and plants enhance the efficiency of this bacterium.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Petroleum/metabolism , Soil/chemistry , Oil and Gas Industry , Bacteria/metabolism , Plants/metabolism , Oxidoreductases , Soil Pollutants/analysis , Soil Microbiology , Hydrocarbons/analysis
5.
Environ Res ; 224: 115541, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36828250

ABSTRACT

Heterocyclic hydrocarbons pollution generated by oil spills and oilfield wastewater discharges threatens the ecological environment and human health. Here we described a strategy that combines the greenhouse gas CO2 reduction with microbial remediation. In the presence of nitrate, CO2 can improve the biodegradation efficiency of the resins and asphaltenes in heavy oil, particularly the biodegradation selectivity of the polar heterocyclic compounds by the newly isolated Klebsiella michiganensis. This strain encoded 80 genes for the xenobiotic biodegradation and metabolism, and can efficiently utilize CO2 when degrading heavy oil. The total abundance of resins and asphaltenes decreased significantly with CO2, from 40.816% to 26.909%, to 28.873% with O2, and to 36.985% with N2. The transcripts per million (TPM) value of accA gene was 57.81 under CO2 condition, while respectively 8.86 and 21.23 under O2 and N2 conditions. Under CO2 condition, the total relative percentage of N1-type heterocyclic compounds was selectively decreased from 32.25% to 22.78%, resulting in the heavy oil viscosity decreased by 46.29%. These results demonstrated a novel anaerobic degradation mechanism that CO2 can promote the anaerobic biodegradation of heterocyclic hydrocarbons in heavy oil, which provides a promising biotreatment technology for the oil-contaminated water.


Subject(s)
Petroleum Pollution , Petroleum , Humans , Petroleum/metabolism , Carbon Dioxide , Anaerobiosis , Hydrocarbons , Oil and Gas Fields , Biodegradation, Environmental
6.
Environ Sci Pollut Res Int ; 30(8): 19662-19682, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36648726

ABSTRACT

Oil and gas exploration and development provide important energy sources for the world, and drilling fluid is an essential engineering material for oil and gas exploration and development. During the drilling of oil wells, drilling fluids are eventually discarded as waste products after many cycles. Abandoned drilling fluid constitutes one of the largest wastes generated during oil and gas exploration and development. Drilling fluid contains many chemicals, which turn into pollutants during use. Furthermore, when drilling is carried out to reach reservoir, the drilling fluid becomes contaminated with crude oil. It may also mix with groundwater containing salts and heavy metals. The resulting pollutants and harmful substances threaten the environment, humans, animals, and plants. The variety and complexity of drilling fluid waste have increased in recent years. Various countries and regions are paying more attention to the ecological environment, and effective methods are urgently needed to solve problems associated with of environmental pollution caused by drilling fluid wastes. At present, various physical, chemical, and biological methods have been proposed for the treatment of drilling fluid wastes: safe landfilling, stabilization/solidification treatment, physicochemical treatment, thermal treatment, supercritical fluid treatment, bioremediation, etc. All of these methods show promising characteristics, and they each have advantages and limitations; thus, treatment methods need to be selected according to the actual application scenarios. This critical overview is based on an extensive literature review, and it summarizes and expounds on the current drilling fluid waste treatment technologies and proposes views future potential and outlook.


Subject(s)
Environmental Pollutants , Metals, Heavy , Petroleum , Humans , Environmental Pollution , Oil and Gas Fields
7.
J Appl Microbiol ; 133(6): 3296-3306, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36106420

ABSTRACT

AIM: Biodegradation is a cost-effective and eco-friendly treatment for oil-contaminated materials using microorganisms. Bacteria and fungi can degrade petroleum by using it as an energy source and this may provide an enormous scope to remediate soils contaminated with petroleum and oil. This study aimed to assess the biodegradation of petroleum hydrocarbons by certain Cladosporium species. METHODS AND RESULTS: By using traditional and spectroscopic assessment analysis, qualitative screening was carried out using Cladosporium spores isolated from air and cultured on mineral salt medium supplemented with petroleum hydrocarbon as the sole carbon source, followed by quantitative assessment using gas chromatography-mass spectroscopy. Nineteen Cladosporium strains from a total of 212 isolates exhibited remarkable capability to degrade petroleum hydrocarbon, representing four species (C. herbarum, C. macrocarpum, C. sphaerospermum, and C. cladosporioides). The results were expressed in terms of biodegradation percentage and optical density of hydrocarbon using a standard calibration curve. The highest reduction of petroleum hydrocarbon was observed with five Cladosporium strains belonging to two species (C. sphaerospermum and C. cladosporioides). CONCLUSION: This study succeeded in isolating several Cladosporium strains (from the air) with a high ability to degrade crude oil that can be used as biological agents to control petroleum pollution in soils and seas. The addition of a surfactant (Tween 80) enhanced the degradation of crude oil reaching a final concentration of 0.4%. Based on these results, the present study could indicate some unique prospects in the field of bioremediation and biodegradation of petroleum-contaminated soil. SIGNIFICANCE AND IMPACT OF STUDY: This study gives unique prospects in the field of bioremediation and biodegradation of petroleum-contaminated soil.


Subject(s)
Petroleum , Soil Pollutants , Petroleum/metabolism , Biodegradation, Environmental , Cladosporium/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Hydrocarbons/metabolism , Soil/chemistry
8.
J Environ Manage ; 304: 114265, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34915391

ABSTRACT

It is promising to use indigenous microorganisms for fertility improvement in petroleum-contaminated coastal soil. As a result, the microbial community and physicochemical property are the base for the restoration. For the detailed information, the Phragmites Communis (P), Chinese Tamarisk (C), Suaeda salsa (S), and new Bare Land (B) soil of Yellow River Delta was 90 g in 100 mL sterile bottles simulated at 25 °C with soil: petroleum = 10:1 in the incubator for four months. The samples were detected at 60 and 120 days along with untreated soil and aged Oil Sludge (O) as control. The results showed that all the samples were alkaline (pH 7.99-8.83), which the salinity and NO3- content of incubate soil followed the in situ samples as P (1.09-1.72‰, 8.02-8.17 mg kg-1), C (10.61-13.79‰, 5.99-6.07 mg kg-1), S (10.19-12.43‰, 3.64-4.22 mg kg-1), B (31.85-32.45‰, 3.56-3.72 mg kg-1) and O (31.61-34.30‰, 0.89-0.90 mg kg-1). NO3- and organic carbon decreased after incubation, which the polluted samples (86.63-92.63 g kg-1) still had higher organic carbon than untreated ones with more NH4+ consumption. The high-throughput sequence results showed that the Gammaproteobacteria and Alphaproteobacteria were dominant in all samples, while sulfate reducting bacteria Alphaproteobacteria decreased at 120 days. Meanwhile, the electroactive Gammaproteobacteria might symbiosis with Methanosaetaceae and Methanosarcinaceae, degrading petroleum after electron receptors depletion. Nitrososphaeraceae and Nitrosopumilaceae oxidise NH4+ to NO2- for intra-aerobic anaerobes and denitrifying bacteria producing oxygen for biodegradation in polluted Phragmites Communis soil. The halotolerant Halomicrobiaceae and Haloferacaceae predominated in saline Chinese Tamarisk, Suaeda Salsa and Bare Land, which were potential electroactive degradater. As the ageing sludge formed, the hydrogen trophic methanogens Methanothermobacteraceae (73.90-92.72%) was prevalent with the petroleum pollution. In conclusion, petroleum initiated two-phase in the sludge forming progress: electron acceptor consumption and electron transfer between degradater and methanogens. Based on the results, the domestic sewage N, P removal coupling and electron transport will be the basement for polluted soils fertility improvement.


Subject(s)
Microbiota , Petroleum Pollution , Petroleum , Soil Pollutants , Biodegradation, Environmental , Rivers , Soil , Soil Microbiology
9.
Sheng Wu Gong Cheng Xue Bao ; 37(10): 3622-3635, 2021 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-34708615

ABSTRACT

Bioremediation is considered as a cost-effective, efficient and free-of-secondary-pollution technology for petroleum pollution remediation. Due to the limitation of soil environmental conditions and the nature of petroleum pollutants, the insufficient number and the low growth rate of indigenous petroleum-degrading microorganisms in soil lead to long remediation cycle and poor remediation efficiency. Bioaugmentation can effectively improve the biodegradation efficiency. By supplying functional microbes or microbial consortia, immobilized microbes, surfactants and growth substrates, the remediation effect of indigenous microorganisms on petroleum pollutants in soil can be boosted. This article summarizes the reported petroleum-degrading microbes and the main factors influencing microbial remediation of petroleum contaminated soil. Moreover, this article discusses a variety of effective strategies to enhance the bioremediation efficiency, as well as future directions of bioaugmentation strategies.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Soil , Soil Microbiology
10.
Aquat Toxicol ; 235: 105823, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33906022

ABSTRACT

Oil and gas exploration in the Arctic can result in the release of polycyclic aromatic hydrocarbons (PAHs) into relatively pristine environments. Following the recent spill of approximately 17 500 tonnes of diesel fuel in Norilsk, Russia, May 2020, our study focussed on the effects of phenanthrene, a low molecular weight PAH found in diesel and crude oil, on the isolated atrial and ventricular myocytes from the heart of the polar teleost, the Navaga cod (Eleginus nawaga). Acute exposure to phenanthrene in navaga cardiomyocytes caused significant action potential (AP) prolongation, confirming the proarrhythmic effects of this pollutant. We show AP prolongation was due to potent inhibition of the main repolarising current, IKr, with an IC50 value of ~2 µM. We also show a potent inhibitory effect (~55%) of 1 µM phenanthrene on the transient IKr currents that protects the heart from early-after-depolarizations and arrhythmias. These data, along with more minor effects on inward sodium (INa) (~17% inhibition at 10 µM) and calcium (ICa) (~17% inhibition at 30 µM) currents, and no effects on inward rectifier (IK1 and IKAch) currents, demonstrate the cardiotoxic effects exerted by phenanthrene on the atrium and ventricle of navaga cod. Moreover, we report the first data that we are aware of on the impact of phenanthrene on atrial myocyte function in any fish species.


Subject(s)
Gadiformes/physiology , Myocytes, Cardiac/drug effects , Phenanthrenes/toxicity , Water Pollutants, Chemical/toxicity , Action Potentials/drug effects , Animals , Arctic Regions , Fishes , Myocytes, Cardiac/physiology , Petroleum , Polycyclic Aromatic Hydrocarbons/toxicity , Sodium/pharmacology
11.
Environ Sci Pollut Res Int ; 28(8): 9610-9627, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33155112

ABSTRACT

Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.


Subject(s)
Petroleum Pollution , Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology , Soil Pollutants/analysis
12.
Chinese Journal of Biotechnology ; (12): 3622-3635, 2021.
Article in Chinese | WPRIM | ID: wpr-921452

ABSTRACT

Bioremediation is considered as a cost-effective, efficient and free-of-secondary-pollution technology for petroleum pollution remediation. Due to the limitation of soil environmental conditions and the nature of petroleum pollutants, the insufficient number and the low growth rate of indigenous petroleum-degrading microorganisms in soil lead to long remediation cycle and poor remediation efficiency. Bioaugmentation can effectively improve the biodegradation efficiency. By supplying functional microbes or microbial consortia, immobilized microbes, surfactants and growth substrates, the remediation effect of indigenous microorganisms on petroleum pollutants in soil can be boosted. This article summarizes the reported petroleum-degrading microbes and the main factors influencing microbial remediation of petroleum contaminated soil. Moreover, this article discusses a variety of effective strategies to enhance the bioremediation efficiency, as well as future directions of bioaugmentation strategies.


Subject(s)
Biodegradation, Environmental , Petroleum , Soil , Soil Microbiology , Soil Pollutants
13.
Sci Total Environ ; 719: 134647, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-31837875

ABSTRACT

Crude oil production (COP) is a high-pollution industry but the vast Amazon rainforest has been an active COP zone for South America. Although COP has been associated with a variety of health effects among workers around the world, such effects have not been adequately investigated in the Amazon region, especially at the community level. Therefore, this review was conducted to provide a report about COP in the Amazon of Ecuador and about its association with health status of indigenous human populations. Some epidemiological surveys in the Amazonian Territories indicate that COP has been associated with health problems in the surrounding populations, e.g. cancers in the stomach, rectum, skin, soft tissue, kidney and cervix in adults, and leukemia in children. In addition, some biomarkers and mechanistic studies show exposure effects. However, due to limitations from these studies, contradictory associations have been reported. Our review indicates that COP in the Amazonian territories of northern Ecuador was characterised by contamination which could have affected the indigenous and non-indigenous populations. However, there have not been dedicated investigations to provide relationships between the contamination and the subsequent exposure-health effects. Since indigenous populations have different lifestyle and cultures from regular city dwellers, systematic studies on their potential health hazards need to be conducted. Due to the remote locations and sparse populations, these new studies may involve the use of novel and genomic-based biomarkers as well as using high technology in the remote regions.


Subject(s)
Petroleum , Ecuador , Environmental Exposure , Humans , Public Health
14.
Environ Toxicol Pharmacol ; 67: 61-65, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30716677

ABSTRACT

The induction of CYP1A activity (EROD) and protein expression was compared in liver and gills of rainbow trout from a stream polluted with crude oil, and through laboratory exposures to 1% and 5% of water accommodated fraction of the crude oil (WAF) for 1 and 4 days. Gills EROD increased 1.6-2.7-fold in fish from the polluted stream and during experiments, while liver EROD was induced only by 1% WAF at day 1 (1.5-fold). Contrastingly, crude oil pollution strongly induced both liver and gills CYP1A protein expression in the field (14-36-fold) and in experiments (4-25-fold). This highlights that crude oil induced CYP1A activity markedly in gills but only slightly or not at all in the liver, suggesting that differences between organ EROD activities are related to the modulation of CYP1A enzyme activity but not to the regulation at transcriptional or translational levels.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Fish Proteins/metabolism , Gills/drug effects , Liver/drug effects , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Fresh Water , Gills/enzymology , Liver/enzymology , Oncorhynchus mykiss , Petroleum Pollution/adverse effects
15.
Environ Pollut ; 243(Pt A): 374-382, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30199812

ABSTRACT

Major sources of petroleum hydrocarbons in the south of Caspian Sea (Anzali city) have been investigated through an approach which combines Gas Chromatography-Mass Spectrometry with Principal Component Analysis (PCA) and Multivariate Curve Resolution-Alternating Least Squares chemometric methods. Terpane, catagenetic hopane and sterane hydrocarbons were analyzed in the street dust, filtered sediments of runoff, soluble runoff water and river sediment samples as well as in automobiles exhaust, tires, asphalt, engine oil, gasoline and diesel samples, as possible sources of these hydrocarbons. PCA and MCR-ALS results showed that a large part of the analyzed hydrocarbons in street dust, runoffs and in some of the river sediment samples can be explained by the proposed known sources, while the observed variation of hydrocarbon concentrations in many of the river sediment samples was not much affected by the proposed known sources, and they were most probably receiving other pollution sources not included in our study. This study also has shown that results obtained from hydrocarbon marker molecular ratios, to identify petroleum pollution sources in the environments, are in agreement with those obtained from pollution sources resolved by MCR-ALS simultaneous analysis of all samples and variables.


Subject(s)
Dust/analysis , Geologic Sediments/chemistry , Hydrocarbons/analysis , Petroleum Pollution/analysis , Petroleum/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Automobiles , Caspian Sea , Cities , Gas Chromatography-Mass Spectrometry , Gasoline/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Principal Component Analysis , Triterpenes/analysis , Vehicle Emissions/analysis
16.
Ecotoxicol Environ Saf ; 164: 434-439, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30144703

ABSTRACT

The use of potent microbial mixed cultures is a promising method for the bioremediation of recalcitrant compounds. In this study, eight molds, three yeasts, and four bacterial isolates were screened from an aged oil-polluted area. An oil degradation assay with various combinations including Bacterial Mixed Culture (BMC), Fungal Mixed Culture (FMC), Fungal-Bacterial Mixed Culture (TMC), and Sequential Fungal-Bacterial Mixed Culture (SMC) was investigated. The results indicated that the SMC culture had the highest yield of degradation (65.96%) in comparison with the degradation yields of TMC, FMC and BMC, which were 59.04%, 56.64%, and 47.56%, respectively. The degradation of saturates, aromatics, resins, and asphaltenes in the crude oil found using the Iatroscan system were, as follows: 64.21%, and 67.63% for aromatics, 72.90%, and 73.59% for saturates, and 53.88% and 58.25% for resins with respect to the TMC and SMC cultures as the superior mixed cultures. The growth rates of yeasts, molds, and bacteria in the TMC and SMC cultures were compared for further evaluation of the role of each microorganism in the degradation. Our findings support the use of mixed cultures in the bioremediation of recalcitrant petroleum pollution.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Petroleum Pollution , Petroleum/metabolism , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons/metabolism
17.
J Environ Manage ; 210: 104-113, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29331851

ABSTRACT

Petroleum is currently the world's main energy source, and its demand is expected to increase in coming years. Its intense exploitation can lead to an increase in the number of environmental accidents, such as spills and leaks, and an increase in the generation of environmental liabilities resulting from refining. Due to its hydrophobic characteristics and slow process of biodegradation, petroleum can remain in the environment for a long time and its toxicity can cause a negative impact on both terrestrial and aquatic ecosystems, with the main negative effects related to its carcinogenic potential for both animals and humans. The objective of the present review is to discuss environmental contamination by oil, conventional treatment techniques and bioremediation an alternative tool for recovery petroleum-contaminated soils, focusing on the rhizodegradation process, plant growth-promoting rhizobacteria (PGPR), a phytoremediation strategy in which the microorganisms that colonize the roots of phytoremediatior plants are responsible for the biodegradation of petroleum. These microorganisms can be selected and tested individually or in the form of consortia to evaluate their potential for oil degradation, or even to measure the use of biosurfactants produced by them to constitute tools for the development of environmental recovery strategies and biotechnological application.


Subject(s)
Biodegradation, Environmental , Petroleum , Soil Microbiology , Soil Pollutants , Rhizosphere , Soil
SELECTION OF CITATIONS
SEARCH DETAIL