Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
Phytother Res ; 38(6): 2993-3019, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600725

ABSTRACT

Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.


Subject(s)
Catechin , Neurodegenerative Diseases , Phytotherapy , Humans , Neurodegenerative Diseases/drug therapy , Catechin/analogs & derivatives , Catechin/therapeutic use , Catechin/pharmacology , Curcumin/therapeutic use , Curcumin/pharmacology , Quercetin/pharmacology , Quercetin/therapeutic use , Animals , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Apigenin/pharmacology , Apigenin/therapeutic use , Blood-Brain Barrier/drug effects , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Plant Extracts/pharmacology
2.
Curr Med Chem ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38367263

ABSTRACT

Neurodegenerative diseases (NDDs) comprise a large number of disorders that affect the structure and functions of the nervous system. The major cause of various neurodegenerative diseases includes protein aggregation, oxidative stress and inflammation. Over the last decade, there has been a gradual inclination of neurological research in order to find drugs that can prevent, slow down, or treat these diseases. The most common NDDs are Alzheimer's, Parkinson's, and Huntington's illnesses which claims the lives of 6.8 million people worldwide each year and it is expected to rise by 7.1%. The focus on alternative medicine, particularly plant-based products, has grown significantly in recent years. Plants are considered a good source of biologically active molecules and hence phytochemical screening of plants will pave the way for discovering new drugs. Neurodegeneration has long been linked to oxidative stress, either as a direct cause or as a side effect of other variables. Therefore, it has been proposed that the use of antioxidants to combat cellular oxidative stress within the nervous system may be a viable therapeutic strategy for neurological illnesses. In order to prevent and treat NDDs, this review article covers the therapeutic compounds/ metabolites from plants with the neuroprotective role. However, these exhibit other beneficial molecular functions in addition to antioxidant activity is the potential application in the management or prevention of neurodegenerative disorders. Further, it gives future researchers the significance of considering peptide-based therapeutics through various mechanisms in delaying or curing neurodegenerative diseases.

3.
Environ Res ; 247: 118106, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38224941

ABSTRACT

Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.


Subject(s)
Air Pollutants , Air Pollution , Animals , Air Pollutants/toxicity , Air Pollution/analysis , Caenorhabditis elegans/genetics , Environmental Exposure/analysis , Longevity/genetics , Particulate Matter/analysis , Transcriptome
4.
Drug Deliv Transl Res ; 14(2): 400-417, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37598133

ABSTRACT

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder associated with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (TAN) is a phytomedicine with a documented activity in treating many CNS disorders, particularly PD owing to its unique anti-inflammatory and antioxidant effect. However, its clinical utility is limited by its poor aqueous solubility, short half-life, and hence low concentration reaching targeted cells. This work aimed to develop a biocompatible chitosan-coated nanostructured lipid carriers (CS-NLCs) for effective brain delivery of TAN for PD management. The proposed nanosystem was successfully prepared using a simple melt-emulsification ultra-sonication method, optimized and characterized both in vitro and in vivo in a rotenone-induced PD rat model. The developed TAN-loaded CS-NLCs (CS-TAN-NLCs) showed good colloidal properties (size ≤ 200 nm, PDI ≤ 0.2, and ζ-potential + 20 mV) and high drug entrapment efficiency (> 97%) with sustained release profile for 24 h. Following intranasal administration, CS-TAN-NLCs succeeded to achieve a remarkable antiparkinsonian and antidepressant effect in diseased animals compared to both the uncoated TAN-NLCs and free TAN suspension as evidenced by the conducted behavioral tests and improved histopathological findings. Furthermore, biochemical evaluation of oxidative stress along with inflammatory markers, nuclear factor-kabba ß (NF-Kß) and cathepsin B further confirmed the potential of the CS-TAN-NLCs in enhancing brain delivery and hence the therapeutic effect of TAN of treatment of PD. Accordingly, CS-TAN-NLCs could be addressed as a promising nano-platform for the effective management of PD.


Subject(s)
Chitosan , Nanostructures , Parkinson Disease , Animals , Rats , Brain/metabolism , Cathepsin B/metabolism , Chitosan/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , NF-kappa B/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Particle Size , NF-kappa B p50 Subunit/metabolism
5.
J Ethnobiol Ethnomed ; 19(1): 48, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37884931

ABSTRACT

BACKGROUND: This paper presents a comparative inventory of medicinal plant taxa and their uses by smallholder farming communities of four cultures in the Aswa River catchment of northern Uganda, situated in the eastern Sudanian savanna parkland ecotype of sub-Saharan Africa. The purpose of the study was to document the ethnobotanical use of medicinal plants by the Lango, Acholi, Teso (Atesot) and Ethur (jo Abwor), in an historical moment before civil conflict and mass displacement of the respondent communities disrupted the inter-generational transmission of traditional technical knowledge within the study area. METHODS: Following community consultations in four districts of northern Uganda during 1999-2000, interviews were conducted with holders of specialist knowledge on plants used as medicine on basis of a plant specimen allocated a voucher number and identified by the national herbarium. Use reports reflecting specific medicinal applications were compiled in aggregate to obtain a Relative Importance Index ranking. The commonality of medicinal taxa cited between each cultural interface was assessed by the Jaccard Index of Similarity, and the similarity of specific medicinal usage by taxon using Rahman's Similarity Index. RESULTS: The data collected from 112 respondents comprise 280 medicinal use reports describing 263 applications for 62 medical conditions, citing 108 taxa from 44 botanical families of which Fabaceae comprised 20% of all use reports. No earlier mention could be found to corroborate 72 use reports (27% of the total), representing medicinal indications as yet undocumented, and potentially worthy of investigation. The RI values ranged between 15 and 94%, with 13 taxa having RI values above 50%. The JI ratios indicate the highest degree of similarity in the plant taxa used as medicine (21%) between the Lango and Teso cultures who share a common origin; however, Rahman's Similarity Index indicates the highest similarity of specific medicinal usage by taxon between the Lango and Acholi, who share a common language group through cultural assimilation over time. CONCLUSIONS: As a comparative study, the results imply that cultural exchange and assimilation may be a greater driver of inter-cultural similarity of ethnopharmacological use of a given taxon, as compared to shared historical origins.


Subject(s)
Plants, Medicinal , Uganda , Rivers , Ethnobotany/methods , Ethnopharmacology , Phytotherapy/methods , Health Knowledge, Attitudes, Practice
6.
Pharmacology ; 108(6): 504-520, 2023.
Article in English | MEDLINE | ID: mdl-37748454

ABSTRACT

BACKGROUND: The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY: To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES: The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Nanomedicine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Inflammation/drug therapy
7.
J Pharm Bioallied Sci ; 15(Suppl 1): S98-S100, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37654404

ABSTRACT

The most common sequela of wearing removable dentures is denture stomatitis. This review article uses a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) format to collect data regarding articles that report on the treatment of denture stomatitis using tissue conditioners modified with antifungal drugs, inorganic compound, and phytomedicines. Their advantages, disadvantages, and mechanism of action are discussed.

8.
Int J Nanomedicine ; 18: 5197-5211, 2023.
Article in English | MEDLINE | ID: mdl-37720597

ABSTRACT

Introduction: Silybin (SLB) as an effective hepatoprotective phytomedicine has been limited by its hydrophobicity, poor bioavailability and accumulation at lesion sites. Additionally, present drug loading methods are impeded by their low drug loading capacity, potential hazard of materials and poor therapeutic effects. Consequently, there is a pressing need to devise an innovative approach for preparing nanosuspensions loaded with both SLB and Silybin Meglumine salt (SLB-M), as well as to investigate the therapeutic effects of SLB nanosuspensions against hepatic fibrosis. Methods: The SLB nanosuspension (NS-SLB) was prepared and further modified with a hyaluronic acid-cholesterol conjugate (NS-SLB-HC) to improve the CD44 targeting proficiency of NS-SLB. To validate the accumulation of CD44 and ensure minimal cytotoxicity, cellular uptake and cytotoxicity assessments were carried out for the nanosuspensions. Western blotting was employed to evaluate the anti-hepatic fibrosis efficacy in LX-2 cells by inhibiting the secretion of collagen I. Hepatic fibrosis mouse models were used to further confirm the effectiveness of NS-SLB and NS-SLB-HC against hepatic fibrosis in vivo. Results: Uniform nanosuspensions were prepared through self-assembly, achieving high drug loading rates of 89.44% and 60.67%, respectively. Both SLB nanosuspensions showed minimal cytotoxicity in cellular environments and mitigated hepatic fibrosis in vitro. NS-SLB-HC was demonstrated to target activated hepatic stellate cells by receptor-ligand interaction between HA and CD44. They can reverse hepatic fibrosis in vivo by downregulating TGF-ß and inhibiting the secretion of α-SMA and collagen I. Conclusion: Designed as a medical excipient analogue, SLB-M was aimed to establish an innovative nanosuspension preparation method, characterized by high drug loading capacity and a notable impact against hepatic fibrosis.


Subject(s)
Collagen Type I , Liver Cirrhosis , Animals , Mice , Silybin , Biological Availability , Disease Models, Animal , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Meglumine
9.
Curr Drug Res Rev ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37489778

ABSTRACT

The global shift in lifestyle has prompted health agencies to redirect their focus from poverty-related diseases to the emergence of lifestyle diseases prevalent in privileged regions. As a result, these diseases have been labeled as "neglected diseases," receiving limited research attention, funding, and resources. Neglected Tropical Diseases (NTDs) encompass a diverse group of vector-borne protozoal diseases that are prevalent in tropical areas worldwide. Among these NTDs is leishmaniasis, a disease that affects populations globally and manifests as skin abnormalities, internal organ involvement, and mucous-related abnormalities. Due to the lack of effective and safe medicines and vaccines, it is crucial to explore alternative resources. Phytomedicine, which comprises therapeutic herbal constituents with anti-leishmanial properties, holds promise but is limited by its poor physicochemical properties. The emerging field of nanomedicine has shown remarkable potential in revitalizing the anti-leishmanial efficacy of these phytoconstituents. In this investigation, we aim to highlight and discuss key plant constituents in combination with nanotechnology that have been explored in the fight against leishmaniasis.

10.
Saudi J Biol Sci ; 30(7): 103698, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37485452

ABSTRACT

Glioblastoma (GBM), the most prevalent brain tumor, is one of the least treatable malignancies due to its propensity for intracranial spread, high proliferative potential, and innate resistance to radiation and chemotherapy. Current GBM therapy is limited due to unfavorable, non-specific therapeutic effects in healthy cells and the difficulty of small molecules to penetrate the blood brain barrier (BBB) and reach the tumor microenvironment. Adding PARP-1 inhibitors inhibit DNA repair enzymes thereby increasing the cytotoxicity of anticancer agents. Hence, we aimed to discover potential naturally occurring PARP-1 inhibitors that can be utilized in the treatment of glioma by using multiple in silico tools like molecular docking, absorption, distribution, metabolism, and excretion (ADME) profile, pharmacophore modeling, and molecular dynamic (MD) simulations. Among 43 phytocompounds we screened, two of them (Ellagic acid and Naringin) were discovered to be bound to the catalytic site of PARP-1 with an affinity more remarkable than commercially available PARP-1 inhibitors (Talazoparib, Niraparib, and Rucaparib) except Olaparib. The molecular interactions were analyzed, and data shows that bound entity attained a conserved domain via hydrogen bond interactions, polar interactions, and π-π stacking. Pharmacophore modeling studies showed electronic and steric features of ligands responsible for supramolecular interaction with PARP-1. ADME properties were studied, to assess drug-likeness, hydrophilic nature, hydrophobicity, brain permeability, and oral bioavailability of the natural PARP-1 inhibitors. The simulation study demonstrated the development of a stable complex between Naringin, Ellagic acid, and PARP-1 protein. Moreover, cell culture studies and animal investigations are essential to determine pharmacokinetics and pharmacodynamics.

11.
Plants (Basel) ; 12(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37299109

ABSTRACT

The current study explored the antioxidant and antibacterial capabilities of zinc oxide nanoparticles (ZnONPs) synthetized using methanolic leaf extracts of the medicinal herb Viscum album. Through TEM investigation and UV-Vis analysis, which peaked at 406 nm, the synthesis of ZnONPs was verified. TEM analyses showed that the synthesized ZnONPs had a size distribution with an average of 13.5 nm and a quasi-spherical shape. Forty-four phytoconstituents were found in the methanolic leaf extracts of V. album. Additionally, a comparison of the antibacterial effectiveness and antioxidant capacity of aqueous and methanolic extracts of wild-grown V. album phytomedicine and green-manufactured ZnONPs was conducted. The green-generated ZnONPs were examined against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa and shown to have superior antibacterial activity by 22%, 66%, and 44%, respectively, as compared to wild herbal medicinal extracts. Since the ZnONPs' aqueous extracts had higher concentrations of DNA gyrase-B inhibitory components, they were shown to be more effective in limiting bacterial growth. In contrast to the percentages of 49% and 57% for a wild plant extract, the aqueous- and methanolic-extract-mediated green ZnONPs, with a 100 g/mL concentration, showed 94% and 98% scavenging capacity for DPPH free radicals, respectively. However, methanolic extracts were more effective than aqueous extracts in terms of the antioxidant analyses. This study establishes that greenly produced ZnONPs have the potential to be used in nanomedicine to treat bacteria that are resistant to a variety of drugs, as well as those with reactive oxygen species toxicity.

12.
J Int Soc Prev Community Dent ; 13(1): 9-16, 2023.
Article in English | MEDLINE | ID: mdl-37153928

ABSTRACT

Aims and Objectives: The use of medicinal herbs to prevent gingival and periodontal diseases has become increasingly popular due to their anti-inflammatory and antioxidant properties. This systematic review aims to provide the current literature to validate the traditional use of medicinal herbs in the management of gingival and periodontal diseases. Materials and Methods: An online literature search was conducted to identify research papers published from 2010 to 2022 in three major scientific databases, PubMed, Scopus, and Web of Science, in June 2022. Original research studies, case reports, and systematic reviews on medicinal plants' application in oral health care were selected to be included in this systematic review. Only high-quality articles identified in the quality assessment were included for evidence synthesis. Results: Initial keyword research yielded 726 free-text articles published between 2010 and 2022. Of these, 14 articles (8 research papers and 6 reviews) were included for evidence synthesis. The review's findings indicate that the antibacterial property of medicinal plants is due to their alkaline nature and prevents plaque and calculus formation by maintaining acid-alkali balance in saliva. Various parts of medicinal plants help maintain periodontal health. Glycyrrhiza glabra, Ficus religiosa, and Plantago major effectively inhibit primary plaque colonizers and periodontal pathogens. Medicago sativa, Aloe barbadensis Miller, and Trifolium pratense have excellent applications in treating periodontal diseases. Mangifera indica, Pongamia pinnata, the husk of Cocos nucifera, the root of G. glabra and Curcuma longa, leaves of Psidium guajava and Azadirachta indica, fruits of Citrus medica and Punica granatum, Ocimum Moringa oleifera extract, and pomegranate peel extract can serve as a promising alternative in managing chronic gingivitis. Conclusion: The anti-inflammatory, antioxidant, antibacterial, and astringent action of extracts obtained from various parts of medicinal plants make them effective in reducing gingival and periodontal diseases. Herbal medicine may be a viable alternative to contemporary pharmaceuticals as an adjuvant to scaling and root planning procedures.

13.
Curr Top Med Chem ; 23(12): 1123-1135, 2023.
Article in English | MEDLINE | ID: mdl-37194231

ABSTRACT

Cancer is a disease in which repeated rounds of mutations cause uncontrolled growth of cells, which prospers at the expense of their neighbor cells and then eventually leads to the destruction of the whole cellular community. Chemopreventive drugs either prevent DNA damage, which results in malignancy, or they stop or reverse the division of premalignant cells with DNA damage, which inhibits the growth of cancer. There is an obvious need for an alternate strategy given the ongoing rise in cancer incidence, the ineffectiveness of traditional chemotherapies to control cancer, and the excessive toxicity of chemotherapies. From antiquity to date, the saga of the usage of plants as medicine has been the mainstay among people worldwide. In recent years, extensive studies have been conducted on medicinal plants, spices, and nutraceuticals, as these have gained much popularity in reducing the risk of several cancer types in humans. Extensive studies on cell culture systems and animal models have demonstrated that various medicinal plants and nutraceuticals from various natural resources and their products, such as major polyphenolic constituents, flavones, flavonoids, antioxidants, etc, provide considerable protection against many cancer types. As shown in the literatures, the major aim of studies conducted is to develop preventive/therapeutic agents which can induce apoptosis in cancer cells without affecting normal cells. Projects are going on worldwide to find better ways to eradicate the disease. The study of phytomedicines has shed new light on this topic as research to date has proven that they have antiproliferative and apoptotic capabilities that will aid in the development of novel cancer prevention options. Dietary substances, such as Baicalein, Fisetin, and Biochanin A have shown that they have an inhibitory effect on cancer cells, suggesting that they may work as chemopreventive agents. This review discusses the chemopreventive and anticancer mechanisms of such reported natural compounds.


Subject(s)
Anticarcinogenic Agents , Neoplasms , Animals , Humans , Neoplasms/drug therapy , Neoplasms/prevention & control , Flavonoids/chemistry , Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Phytochemicals/chemistry , Apoptosis
14.
Int J Pharm ; 633: 122614, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36646255

ABSTRACT

Various neurodegenerative diseases (parkinson, huntington, alzheimer, and amyotrophic lateral sclerosis) are becoming serious global health challenges. Despite various treatment options, successful delivery and effective outcomes have been challenged with several physiological-anatomical barriers, formulation related issues, post-administration hurdles, regulatory constraints, physical hurdles, environmental issues, and safety concern. In the present review, we addressed a brief understanding of pathological and normal condition of blood brain barrier (BBB), rational for brain delivery using nanocarriers, major challenges, advantages of nanomedicine, critical aspects of nanomedicine to translate from bed to clinics, and strategic approaches for improved delivery across BBB. The review addressed various mechanistic perspective for delivery of drug loaded nanocarriers across BBB. Moreover, several reports have been published wherein phytomedicine, exosomes, magnetic nanopartilces, functionalized nanocarriers, cationic nanopartilces, and nano-phytomedicine were investigated for remarkable improvement in neurological disorders. These findings are informative for healthcare professionals, researchers, and scientists working in the domains. The successful application and convincing outcomes of nanomedicines were envisaged with clinical trials conducted on various drugs intended to control neurological disorders (NDs). Conclusively, the review addressed comprehensive findings on various aspects of drug loaded nanocarrier delivery across BBB, considerable risks, potential therapeutic benefits, clinical trial based outcomes, and recent advances followed by future perspectives.


Subject(s)
Nanoparticles , Neurodegenerative Diseases , Humans , Blood-Brain Barrier , Brain , Drug Delivery Systems , Nanomedicine , Neurodegenerative Diseases/drug therapy
15.
J Basic Clin Physiol Pharmacol ; 34(5): 577-590, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-34786892

ABSTRACT

Immune cells are important for the healthy function of every organ. The homeostasis of the immune system is selfregulated by T-cells, B-cells, and natural killer cells. The immunomodulation process of immune cells is part of the immunotherapy. According to therapeutic methods of immune responses are categorized as inducing (immunostimulant), amplification (immune booster), attenuation (immunomodulation), and prevention (immunosuppressive) actions. The prevalence of chronic immunological diseases like viral infections, allergies, and cancer is mainly due to the over-activation of the immune system. Further, immunomodulators are reported to manage the severity of chronic immunological disorders. Moreover, these immunomodulator-acting proteins are identified as potential molecular targets for the regulation of the immune system. Moreover, natural compound like phytocompounds are known to bind these targets and modulates the immune system. The specialized phytocompounds like curcumin, quercetin, stilbenes, flavonoids, and lignans are shown the immunomodulatory actions and ameliorate the immunological disorders. The present scenario of a COVID-19 pandemic situation has taught us the need to focus on strengthening the immune system and the development of the most promising immunotherapeutics. This review is focused on an overview of various phytocompounds and their molecular targets for the management of immunological disorders via immunosuppressants and immunostimulants actions.

16.
Infect Disord Drug Targets ; 23(2): e290822208190, 2023.
Article in English | MEDLINE | ID: mdl-36043755

ABSTRACT

Natural teeth are an integral part of the masticatory system. Absence of dentition subjects the individual to compromised oral function, facial appearance and phonetics. Rehabilitation with dental prosthesis is imperative to restore form and masticatory activity. Currently, fabrication of removable and fixed prosthesis has become most predictable. Nonetheless, there is an increased prevalence of oral stomatitis observed over the years in edentulous individuals wearing removable dentures. Amongst the many pathogens that cause denture infections, Candida albicans is assumed to be the most virulent opportunistic agent. Different methods, such as mechanical, chemical, chemicmechanical, and pharmacological are tried to fight such infections. Regardless of various management strategies developed to treat denture stomatitis, the research continues to evolve the most optimal one. Improper oral and or denture hygiene maintenance, surface irregularities on denture, persistence of xerostomia and associated systemic illness pose risk for exaggeration of the disease. In extreme conditions, the development of aspiration pneumonia in geriatric patients is considered a threat to both dental and medical specialists. Therapeutic administration of synthetic anti-microbial drugs, along with meticulous oral hygiene maintenance are recommended protocols till date. However, limitations such as antibiotic resistance, side effects, counter drug reactions, cost of the medicaments predispose to origin of natural herbal products to treat denture stomatitis. Vast array of plant products are studied in previous literature, yet no definitive edge of one over the other is proven. This article intends to provide a mini-review on the different organic plant materials, also called as phytomedicines used for the treatment of candida associated denture stomatitis (CADS).


Subject(s)
Candidiasis, Oral , Stomatitis, Denture , Humans , Aged , Stomatitis, Denture/drug therapy , Stomatitis, Denture/complications , Stomatitis, Denture/epidemiology , Candida , Candida albicans , Dentures/adverse effects , Candidiasis, Oral/drug therapy , Candidiasis, Oral/complications , Candidiasis, Oral/epidemiology
17.
Plants (Basel) ; 11(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36501311

ABSTRACT

Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application.

18.
Curr Alzheimer Res ; 19(6): 420-439, 2022.
Article in English | MEDLINE | ID: mdl-35692129

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a progressive, neurodegenerative disease that severely affects individuals' cognitive abilities, memory, and quality of life. It affects the elderly population, and there is no permanent prevention or cures available to date, treatments mainly aiming to alleviate the symptoms as and when they appear. Alternate therapeutic approaches are being researched constantly, and there is a growing focus on phytomedicine, herbal medicine, organic compounds, and ayurvedic compounds for the treatment of AD. METHODS: The current study aims to provide an extensive review of these plants against AD from the currently existing literature. Most relevant keywords like Alzheimer's Disease, phytomedicines, ethnic medicines, the role of phytomedicine in neuroprotection, common phytomedicines against AD, etc., were used to select the plants and their metabolites effective in treating AD. The study focuses on six plants: Panax ginseng, Ginkgo biloba, Bacopa monnieri, Withania somnifera, Curcuma longa, and Lavandula angustifolia. Their active components have been studied along with neuroprotective properties, and evidence of in-vitro, pre-clinical, and clinical studies conducted to prove their therapeutic potential against the disease have been presented. RESULTS: All plants envisaged in the study show potential for fighting against AD to varying degrees. Their compounds have shown therapeutic effects by reversing the neurological changes such as clearing Aß plaque and neurofibrillary tangle formation, and ameliorative effects against neurodegeneration through processes including improving concentration, memory, cognition and learning, higher working and cue memory, improved spatial memory, inhibition of NF-κB expression, inhibiting the release of pro-inflammatory cytokines, inhibition of AChE and lipid peroxidase enzymes, and reduction of interleukin levels and tumor necrosis factor-alpha. CONCLUSION: The present review is a comprehensive and up-to-date analysis supported by the evidentiary proofs from pre-clinical studies, meta-analyses, and review papers related to natural phytochemicals' impact on neurodegenerative disorders like AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Aged , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neurodegenerative Diseases/drug therapy , NF-kappa B , Tumor Necrosis Factor-alpha , Quality of Life , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Peroxidases/therapeutic use , Lipids
19.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35337076

ABSTRACT

Women's health is an imminent concern worldwide, but it remains an ignored segment of research in most developing countries, and is yet to take the center stage in even developed nations. Some exclusive female health concerns revolve around both pathological and physiological aspects. These gender-specific maladies include breast, cervical, and ovarian cancers, and physiological concerns such as menopause and osteoporosis, which are often coexistent. Recently, women's health issues, including postmenopausal syndrome, have attracted the attention of researchers and practitioners alike, opening newer pharmaceutical research and clinical avenues. Although not counted as a disease, postmenopausal syndrome (PMS) is a female health phenomenon underpinned by hormonal depletion. Enhanced life expectancy in women has added to their suffering, and pharmacological interventions are needed. Amongst the available treatment modalities, the use of numerous botanicals has emerged as an efficient health management tool for women. Cimicifuga racemosa (CR or Black Cohosh) is a plant/herb which has been traditionally exploited and extensively used by women. This review is an attempt to compile and provide a summary of the importance of CR in complementary and alternative therapies for the improvement of various disorders related to women, such as menopausal syndrome, mammary cancer, and osteoporosis. It aims to systematically highlight the bioactive constituents, pharmacology, pharmacokinetics, therapeutic potentials, quality control processes, chromatographic techniques, and possible mechanisms of action of clinically effective phytomedicine for women's health. Various clinical trials and patents relating to CR and women's health have been collated. Furthermore, the plant and its related products have been considered from a regulatory perspective to reveal its commercial feasibility. The present review summarizes the existing data on CR focusing on women's health, which can help to introduce this traditional phytomedicine to the world and provide some reference for future drug development.

20.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35163539

ABSTRACT

Hepatitis B virus infection (HBV) is one of the most common causes of hepatitis, and may lead to cirrhosis or hepatocellular carcinoma. According to the World Health Organization (WHO), approximately 296 million people worldwide are carriers of the hepatitis B virus. Various nucleos(t)ide analogs, which specifically suppress viral replication, are the main treatment agents for HBV infection. However, the development of drug-resistant HBV strains due to viral genomic mutations in genes encoding the polymerase protein is a major obstacle to HBV treatment. In addition, adverse effects can occur in patients treated with nucleos(t)ide analogs. Thus, alternative anti-HBV drugs of plant origin are being investigated as they exhibit excellent safety profiles and have few or no side effects. In this study, phytomedicines/phytochemicals exerting significant inhibitory effects on HBV by interfering with its replication were reviewed based on different compound groups. In addition, the chemical structures of these compounds were developed. This will facilitate their commercial synthesis and further investigation of the molecular mechanisms underlying their effects. The limitations of compounds previously screened for their anti-HBV effect, as well as future approaches to anti-HBV research, have also been discussed.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/physiology , Hepatitis B/drug therapy , Phytochemicals/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Drug Development , Drug Resistance, Viral/drug effects , Hepatitis B/virology , Hepatitis B virus/growth & development , Humans , Molecular Structure , Mutation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL