Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Biol Macromol ; 161: 875-890, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32535205

ABSTRACT

This study reports a ≅12.5 kDa protein tetrachloro-1,4-benzoquinone reductase (CpsD) from Bacillus cereus strain AOA-CPS1 (BcAOA). CpsD is purified to homogeneity with a total yield of 35% and specific activity of 160 U·mg-1 of protein. CpsD showed optimal activity at pH 7.5 and 40 °C. The enzyme was found to be functionally stable between pH 7.0-7.5 and temperature between 30 °C and 35 °C. CpsD activity was enhanced by Fe2+ and inhibited by sodium azide and SDS. CpsD followed Michaelis-Menten kinetic exhibiting an apparent vmax, Km, kcat and kcat/Km values of 0.071 µmol·s-1, 94 µmol, 0.029 s-1 and 3.13 × 10-4 s-1·µmol-1, respectively, for substrate tetrachloro-1,4-benzoquinone. The bioinformatics analysis indicated that CpsD belongs to the PCD/DCoH superfamily, with specific conserved protein domains of pterin-4α-carbinolamine  dehydratase (PCD). This study proposed that CpsD catalysed the reduction of tetrachloro-1,4-benzoquinone to tetrachloro-p-hydroquinone and released the products found in phenylalanine hydroxylation system (PheOHS) via a Ping-Pong or atypical ternary mechanism; and regulate expression of phenylalanine 4-monooxygenase by blocking reverse flux in BcAOA PheOHS using a probable Yin-Yang mechanism. The study also concluded that CpsD may play a catalytic and regulatory role in BcAOA PheOHS and pentachlorophenol degradation pathway.


Subject(s)
Bacillus cereus/metabolism , Bacterial Proteins/immunology , Chloranil/metabolism , Galactosyltransferases/immunology , Hydroxylation/physiology , Pentachlorophenol/metabolism , Phenylalanine/metabolism , Kinetics , Oxidoreductases/metabolism
2.
Methods Enzymol ; 573: 139-60, 2016.
Article in English | MEDLINE | ID: mdl-27372752

ABSTRACT

Lysine acetylation is a posttranslational modification that is carried out by acetyltransferases. The MYST proteins form the largest and most diverse family of acetyltransferases, which regulate gene expression, DNA repair, and cell cycle homeostasis, among other activities, by acetylating both histone and nonhistone proteins. This chapter will describe methods for the preparation and biochemical characterization of MYST family acetyltransferases, including protocols for the preparation of recombinant protein, enzyme assays for measuring steady-state parameters, and binding assays to measure cofactor and inhibitor binding. We also provide details on adapting these assays for high-throughput screening for small molecule MYST inhibitors. This chapter seeks to prepare researchers for some hurdles that they may encounter when studying the MYST proteins so that there may be better opportunity to plan appropriate controls and obtain high-quality data.


Subject(s)
Drug Evaluation, Preclinical/methods , Enzyme Assays/methods , Enzyme Inhibitors/pharmacology , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/metabolism , Acetyl Coenzyme A/metabolism , High-Throughput Screening Assays/methods , Histone Acetyltransferases/chemistry , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL