Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Mol Biochem Parasitol ; 258: 111617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554736

ABSTRACT

Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.


Subject(s)
Antimalarials , Metalloproteases , Plasmodium falciparum , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Metalloproteases/metabolism , Metalloproteases/genetics , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics
2.
Ann Afr Med ; 23(1): 5-12, 2024.
Article in English | MEDLINE | ID: mdl-38358164

ABSTRACT

Malaria is a disease affecting millions of people, especially in Africa, Asia, and South America, and has become a substantial economic burden. Because malaria is contracted through the bite of a mosquito vector, it is very challenging to prevent. Bed nets and insect repellents are used in some homes; others do not have or use them even when available. Thus, treatment measures are crucial to controlling this disease. Artemisinin-based combination therapy (ACT) is currently the first-line treatment for malaria. ACT has been used for decades, but recently, there has been evidence of potential resistance. This threat of resistance has led to the search for possible alternatives to ACT. In sub-Saharan Africa, Azadirachta indica, or simply neem, is a plant used to treat a variety of ailments, including malaria. Neem is effective against one of the more deadly malaria parasites Plasmodium falciparum. Reports show that neem inhibits microgametogenesis of P. falciparum and interferes with the parasite's ookinete development. Although there is substantial in vitro research on the biological activity of A. indica (neem), there is limited in vivo research. Herein, we discuss the in vivo effects of neem on malaria parasites. With A. indica, the future of malaria treatment is promising, especially for high-risk patients, but further research and clinical trials are required to confirm its biological activity.


Résumé Le paludisme est une maladie qui touche des millions de personnes, notamment en Afrique, en Asie et en Amérique du Sud, et est devenu un problème économique majeur fardeau. Le paludisme étant contracté par la piqûre d'un moustique vecteur, il est très difficile à prévenir. Moustiquaires et insectifuges sont utilisés dans certaines maisons ; d'autres ne les possèdent pas ou ne les utilisent pas même lorsqu'ils sont disponibles. Les mesures thérapeutiques sont donc cruciales pour contrôler cette maladie. La thérapie combinée à base d'artémisinine (ACT) constitue actuellement le traitement de première intention contre le paludisme. L'ACT est utilisé depuis des décennies, mais récemment, il y a eu des preuves d'une résistance potentielle. Cette menace de résistance a conduit à la recherche d'alternatives possibles à l'ACT. En Afrique subsaharienne, Azadirachta indica, ou simplement neem, est une plante utilisée pour traiter diverses maladies, dont le paludisme. Le Neem est efficace contre l'un des des parasites du paludisme plus mortels, Plasmodium falciparum. Des rapports montrent que le neem inhibe la microgamétogenèse de P. falciparum et interfere avec le développement de l'ookinète du parasite. Bien qu'il existe d'importantes recherches in vitro sur l'activité biologique d'A. indica (neem), il existe la recherche in vivo est limitée. Nous discutons ici des effets in vivo du neem sur les parasites du paludisme. Avec A. indica, l'avenir du traitement du paludisme est prometteur, en particulier pour les patients à haut risque, mais des recherches et des essais cliniques supplémentaires sont nécessaires pour confirmer son activité biologique. Mots-clés: Azadirachta indica, paludisme, neem, Plasmodium falciparum.


Subject(s)
Antimalarials , Azadirachta , Malaria, Falciparum , Malaria , Animals , Humans , Plant Extracts/therapeutic use , Malaria/drug therapy , Plasmodium falciparum , Africa South of the Sahara , Antimalarials/therapeutic use , Antimalarials/pharmacology , Malaria, Falciparum/drug therapy
3.
JMIR Res Protoc ; 13: e51660, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252481

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) is recommended by the World Health Organization for the sub-Sahel region in sub-Saharan Africa for preventing malaria in children 3 months old to younger than 5 years. Since 2016, the Malian National Malaria Control Program has deployed SMC countrywide during its high malaria transmission season at a rate of 4 monthly cycles annually. The standard SMC regimen includes sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ). Resistance against SP is suspected to be rising across West Africa; therefore, assessing the effectiveness of an alternative antimalarial drug for SMC is needed to provide a second-line regimen when it is ultimately needed. It is not well understood whether SMC effectively prevents malaria in children aged 5 years or older. OBJECTIVE: The primary goal of the study is to compare 2 SMC regimens (SP-AQ and dihydroartemisinin-piperaquine [DHA-PQ]) in preventing uncomplicated Plasmodium falciparum malaria in children 3 months to 9 years old. Secondly, we will assess the possible use of DHA-PQ as an alternative SMC drug in areas where resistance to SP or AQ may increase following intensive use. METHODS: The study design is a 3-arm cluster-randomized design comparing the SP-AQ and DHA-PQ arms in 2 age groups (younger than 5 years and 5-9 years) and a control group for children aged 5-9 years. Standard SMC (SP-AQ) for children younger than 5 years was provided to the control arm, while SMC with SP-AQ was delivered to children aged 3 months to 9 years (arm 2), and SMC with DHA-PQ will be implemented in study arm 3 for children up to 9 years of age. The study was performed in Mali's Koulikoro District, a rural area in southwest Mali with historically high malaria transmission rates. The study's primary outcome is P falciparum incidence for 2 SMC regimens in children up to 9 years of age. Should DHA-PQ provide an acceptable alternative to SP-AQ, a plausible second-line prevention option would be available in the event of SP resistance or drug supply shortages. A significant byproduct of this effort included bolstering district health information systems for rapid identification of severe malaria cases. RESULTS: The study began on July 1, 2019. Through November 2022, a total of 4556 children 3 months old to younger than 5 years were enrolled. Data collection ended in spring 2023, and the findings are expected to be published later in early 2024. CONCLUSIONS: Routine evaluation of antimalarial drugs is needed to establish appropriate SMC age targets. The study goals here may impact public health policy and provide alternative therapies in the event of drug shortages or resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT04149106, https://clinicaltrials.gov/ct2/show/NCT04149106. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51660.

4.
In Silico Pharmacol ; 12(1): 4, 2024.
Article in English | MEDLINE | ID: mdl-38130691

ABSTRACT

Malaria remains a significant public health challenge, with resistance to available drugs necessitating the development of novel therapies targeting invasion-dependent proteins. Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK-1) is essential for host erythrocyte invasion and parasite asexual development. This study screened a library of 490 compounds using computational methods to identify potential PfCDPK-1 inhibitors. Three compounds; 17-hydroxyazadiradione, Picracin, and Epicatechin-gallate derived from known antimalarial botanicals, showed potent inhibitory effects on PfCDPK-1. These compounds exhibited better binding affinities (-8.8, -9.1, -9.3 kCal/mol respectively), pharmacokinetics, and physicochemical properties than the purported inhibitory standard of PfCDPK-1, Purfalcamine. Molecular dynamics simulations (50 ns) and molecular mechanics analyses confirmed the stability and binding rigidity of these compounds at the active pocket of PfCDPK-1. The results suggest that these compounds are promising pharmacological targets with potential therapeutic effects for malaria treatment/management without undesirable side effects. Therefore, this study provides new insights into the development of effective antimalarial agents targeting invasion-dependent proteins, which could help combat the global malaria burden. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00175-z.

5.
BMC Res Notes ; 16(1): 381, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135870

ABSTRACT

OBJECTIVE: Plants in the Annonaceae family are known for having abundant biologically active secondary metabolites. They have been used in alternative drugs for various diseases in several countries, for instance, the bark of Cananga odorata (Lam.) Hook and Thomson is used for Ophthalmic inflammation and wound healing in Malaysia. Extracts from the leaves and stems of four Annonaceae plants, namely Uvaria longipes (Craib) L.L.Zhou, Y.C.F.Su & R.M.K.Saunders, Dasymaschalon sp., Artabotrys burmanicus A.DC, and Marsypopetalum modestum (Pierre) B.Xue & R.M.K.Saunders were investigated for growth inhibitory activity against blood-stage Plasmodium falciparum growth in vitro and for non-specific cytotoxicity against normal peripheral blood mononuclear cells (PBMCs). Antimalarial activity was assessed by invasion inhibition assay and the percentage of infected red blood cells on blood smears were determined. Cytotoxicity was tested by culturing PBMCs with the extracts, and viabilities were determined by Annexin V/propidium iodide staining. RESULTS: A. burmanicus stem extract and M. modestum leaf extract were capable of inhibiting growth of P. falciparum when used at 200 µg/mL compared to chloroquine. The extracts at effective concentrations, did not affect the viability of PBMCs. These results support further need for characterization of active compounds from specific Annonaceae plants in order to exploit their components for potential malaria treatment.


Subject(s)
Annonaceae , Antimalarials , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Leukocytes, Mononuclear , Malaria/drug therapy , Plasmodium falciparum
6.
Front Pharmacol ; 14: 1268924, 2023.
Article in English | MEDLINE | ID: mdl-37927601

ABSTRACT

Background: Medicinal plants have traditionally been used as remedies against malaria. The present review attempted to compile data on scientific research evidence on antimalarial medicinal plants screened at Kenya Medical Research Institute (KEMRI), Center for Traditional Medicine and Drug (CTMDR) Research from January 2003 to December 2021. Methods: A systematic review was conducted using a predefined protocol based on PRISMA. Search was performed in Google Scholar and PubMed. One hundred and eight journal articles were identified 37 of which published on antimalarial/antiplasmodial work. Thirty journal articles with at least one author from KEMRI-CTMDR and accessible in full were selected for analysis. Relevant data was captured in MS Excel format and descriptive statistics, percentages and tables used to summarize the findings. Results: Assessment of individual plant species was considered as an independent study resulting in 1170 antiplasmodial/antimalarial tests done from 197 plant species. One hundred and fifty plant species were screened in vitro, one in vivo and 46 were both in vivo and in vitro. Three hundred and forty-four of tests reported good activity (IC50 < 10 µg/mL or parasite suppression rate of ≥50%), 414 moderate activity (IC50 values of 10-49 µg/mL or parasite suppression rate of 30%-49%) and 412 were reports of inactivity (IC50 ˃ 50 µg/mL or parasite suppression rate of <30%). Fuerstia africana and Ludwigia erecta were reported to have the highest activities, with IC50 < 1 µg/mL against Plasmodium falciparum D6 strain and chemosuppression in mice at an oral dose of 100 mg/kg, was reported as 61.9% and 65.3% respectively. Fifty five antimalarial/antiplasmodial active compounds isolated from eight plant species were reported with resinone (39) having the best activity (IC50 < 1 µg/mL). Conclusion: Though 344 of tests reported promising antimalarial activity, it was noted that there was limited evaluation of these plants in animal models, with only 9.0% (105/1170) studies and no clinical trials. This highlights an important research gap emphasizing the need for drug development studies that aim to progress study findings from preclinical to clinical studies. There is still need for extensive research on promising plant species aimed at developing new plant based antimalarial drugs.

7.
Heliyon ; 9(9): e20103, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809863

ABSTRACT

Introduction: Fadogiella stigmatoloba, Hygrophylla auriculata, Hylodesmum repandum and Porphyrostemma chevalieri are used against malaria in traditional medicine in the Democratic Republic of the Congo (DRC). To evaluate their potential in the treatment of this disease, the in vitro antiplasmodial property of these four plants was evaluated. All experiments were conducted on methanolic extracts performed on selected organ parts of these plants. Methods: The methanolic extracts, obtained by maceration, were firstly screened in vitro against the chloroquine sensitive (3D7) and resistant (W2) Plasmodium falciparum strains by the measurement of lactate dehydrogenase activity, and on human keratinocytes (HaCat) cells by the MTT assay to determine their selectivity indices (SI). Secondly, the antioxidant activity of the same extracts was evaluated using DPPH and FRAP assays. Finally, the presence of specific phytochemical constituents was evaluated using standard methods and tentatively identified by GC-MS. Results: An optimum antiplasmodial activity (IC50 = 3.4 ± 0.7 µg/mL, for 3D7, SI = 58.2; IC50 = 7 ± 1.0 µg/mL, for W2, SI = 28.3) was obtained with the leave extract of P. chevalieri. The leaves (for F. stigmatoloba and H. repandum), and the aerial part (for H. repandum) extracts showed promising and moderate antiplasmodial activities against respectively the 3D7 strain (IC50: <15 µg/mL), and W2 strain (IC50:15-50 µg/mL). All extracts presented a weak cytotoxic effect (IC50: >100 µg/mL) on HaCat cells. For the antioxidant test, the most interesting activity was obtained with the leaf extract of P. chevalieri. The GC-MS analysis of these four plants species extracts revealed the presence of various compounds, such as Ethyl 2-nonenoate, 2-(2-Hydroxy-2-phenylethyl)-3,5,6-trimethyl pyrazine, Palmitic Acid, Ethyl palmitate, Ethyl linolenate, and N-Acetyltyramine. Conclusion: Based on the obtained results, P. chevalieri could be selected for further investigations or /and for the management of malaria after standardization.

8.
Acta Parasitol ; 68(4): 832-841, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831282

ABSTRACT

BACKGROUND: As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC50 of 4.17 ± 0.22 µg/ml. The toxicity test results showed that the heartbeat, somite formation, tail detachment and hatching of embryos were not affected when Zebra fish embryos were treated with 0.1 to 10 µg/ml of the extract. However, at higher concentrations of the extract, at 48 h (1000 µg/ml) and 96 h (100 µg/ml and 1000 µg/ml, respectively) there was no heartbeat in the fish embryos. In the acute oral toxicity tests performed on mice, the extract showed no toxicity up to 300 mg/kg body weight in mice. CONCLUSION: The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.


Subject(s)
Anacardium , Antimalarials , Malaria, Falciparum , Malaria , Animals , Mice , Antimalarials/toxicity , Plasmodium falciparum , Transketolase/therapeutic use , Zebrafish , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/drug therapy , Plant Extracts/pharmacology
9.
Front Chem ; 11: 1240704, 2023.
Article in English | MEDLINE | ID: mdl-37608862

ABSTRACT

The Phanera splendens (Kunth) Vaz. is a medicinal plant that is used in traditional medicine for the treatment of various diseases, such as malaria. This plant presents highly efficient endophytic bacterial isolates with biocontrol properties. Bacillus sp. is responsible for the production of a variety of non-ribosomal synthesized cyclic lipopeptides which highlight the surfactins. Surfactins have a wide range of antimicrobial activity, including antiplasmodial activity. There is scientific evidence that surfactin structure 2d-01 can be a potent inhibitor against a Plasmodium falciparum sirtuin (Sir2) by acting on the Sir2A protein as the target. The Pf genome encodes two known sirtuins, PfSir2A and PfSir2B, where PfSir2A is a regulator of asexual growth and var gene expression. Herein, we have identified six surfactins produced by endophytic bacteria and performed in silico analysis to elucidate the binding mode of surfactins at the active site of the PfSir2A enzyme. Among the characterized surfactins, 1d-02 showed the highest affinity for the PfSir2A enzyme, with binding energy values equal to -45.08 ± 6.0 and -11.95 ± 0.8 kcal/mol, using MM/GBSA and SIE methods, respectively. We hope that the information about the surfactin structures obtained in this work, as well as the potential binding affinity with an important enzyme from P. falciparum, could contribute to the design of new compounds with antimalarial activity.

10.
Acta Parasitol ; 68(4): 793-806, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37603126

ABSTRACT

PURPOSE: The resistance of parasite to readily affordable antimalarial drugs, the high cost of currently potent drugs, and the resistance of vector mosquitoes to insecticides threaten the possibility of malaria eradication in malaria endemic areas. Due to the fact that quinine and artemisinin were isolated from plants sources, researchers have been encouraged to search for new antimalarials from medicinal plants. This is especially the case in Africa where a large percentage of the population depends on medicinal plant to treat malaria and other ailments. METHOD: In this study, we evaluated previously characterized Plasmodium-cidal compounds obtained from the African flora to identify their likely biochemical targets, for an insight into their possible antimalarial chemotherapy. Molecular docking study was first conducted, after which remarkable compounds were submitted for molecular dynamic (MD) simulations studies. RESULTS: From a total of 38 Plasmodium-cidal compounds docked with confirmed Plasmodium falciparum protein drug targets [plasmepsin II (PMII), histo-aspartic protein (HAP) and falcipain-2 (FP)], two pentacyclic triterpene, cucurbitacin B and 3 beta-O-acetyl oleanolic acid showed high binding affinity relative to artesunate. This implies their capacity to inhibit the three selected P. falciparum target proteins, and consequently, antimalarial potential. From the MD simulations studies and binding free energy outcomes, results confirmed that the two compounds are stable in complex with the selected antimalarial targets; they also showed excellent binding affinities during the 100 ns simulation. CONCLUSION: These results showed that cucurbitacin B and 3 beta-O-acetyl oleanolic acid are potent antimalarials and should be considered for further studies.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Oleanolic Acid , Plasmodium , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Terpenes/pharmacology , Terpenes/therapeutic use , Molecular Docking Simulation , Oleanolic Acid/therapeutic use , Malaria/parasitology , Malaria, Falciparum/drug therapy
11.
Med Trop Sante Int ; 3(2)2023 06 30.
Article in French | MEDLINE | ID: mdl-37525671

ABSTRACT

In 2022 as in 1884, the clinical presentation of uncomplicated malaria is unspecific: fever of variable intensity, continuous or rhythmic, chills, flu syndrome, headache, respiratory and digestive disorders. At any time, it can evolve into a severe form (ex-pernicious attack or cerebral malaria) or even lethal. By reading again Alphonse Laveran's book on malarial fevers, we realized to what extent the observations made at that time allowed for a methodical and orderly description of the clinical forms of malaria, very close to what we can still observe today. No symptom or sign is pathognomonic of the disease. Only the detection of plasmodia or "malaria microbes" by direct or immuno-chromatographic methods allows for diagnostic confirmation, which is a prerequisite for the implementation of a curative treatment.Serendipity, synthetic chemistry and traditional medicine are the three methods that led to the discovery and large-scale production of antimalarial drugs. Serendipity for quinine, synthetic chemistry for chloroquine, and research conducted around traditional Chinese medicine for artemisinin and its derivatives. The latter have marked a real revolution in the management of malaria, both in its uncomplicated and severe forms. However, as with other antimalarial drugs, its medium- and long-term efficacy is compromised by the emergence and spread of resistance in malaria parasites, particularly P. falciparum. The control and eradication of malaria therefore require continued research in both prevention and therapy.The disease so well described by Alphonse Laveran has not yet said its last word….


Subject(s)
Antimalarials , Malaria, Cerebral , Plasmodium , Humans , Antimalarials/therapeutic use , Quinine , Chloroquine , Malaria, Cerebral/drug therapy
12.
Molecules ; 28(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37513343

ABSTRACT

Malaria remains a life-threatening health problem and is responsible for the high rates of mortality and morbidity in the tropical and subtropical regions of the world. The increasing threat of drug resistance to available artemisinin-based therapy warrants an urgent need to develop new antimalarial drugs that are safer, more effective, and have a novel mode of action. Natural plants are an excellent source of inspiration in searching for a new antimalarial agent. This research reports a systematic investigation for determining the antimalarial potential of the seeds of A. squamosa. The study shows that the crude seed extract (CSE), protein, saponin, and the oily fractions of the seeds were nontoxic at a 2000 mg/kg body weight dose when tested in Wistar rats, thus revealing high safety is classified as class 5. The oily fraction, Annomaal, demonstrated pronounced antimalarial activity with low IC50 (1.25 ± 0.183 µg/mL) against P. falciparum in vitro. The CSE and Annomaal significantly inhibited the growth of P. berghei parasites in vivo with 58.47% and 61.11% chemo suppression, respectively, while the standard drug artemether showed chemo suppression of 66.75%. Furthermore, the study demonstrated that oral administration of Annomaal at a daily dose of 250 mg/kg/day for 3 days was adequate to provide a complete cure to the P. berghei-infected mice. Annomaal thus holds promise as being patient-compliant due to the shorter treatment schedule, eliminating the need for frequent dosing for extended time periods as required by several synthetic antimalarial drugs. Further studies are needed to determine the active compounds in the oily fraction responsible for antimalarial activity.


Subject(s)
Annona , Antimalarials , Malaria, Falciparum , Rats , Animals , Mice , Antimalarials/pharmacology , Plasmodium falciparum , Plasmodium berghei , Plant Extracts/pharmacology , Rats, Wistar , Seeds
13.
Fitoterapia ; 170: 105627, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517558

ABSTRACT

Two new 30-norfriedelane triterpenoids namely glaucalactone C (1) and glaucanoic acid (2) along with sixteen known compounds (3-18) have been isolated from the methanolic extracts of the stem bark and fruits of Caloncoba glauca (P.Beauv.) Gilg (Achariaceae). The structures of all the isolated compounds have been established with the aid of their extensive spectroscopic analyses (1D and 2D-NMR) as well as mass spectrometry. Six compounds (1-5, 9) were screened for antiplasmodial activity against two strains P. falciparum Dd2 and P. falciparum 3D7. The results showed that glaucanoic acid (2) was the most active one with IC50 values of (3.5 ± 0.1 µg/mL) and (4.6 ± 0.7 µg/mL) against PfDd2 and Pf3D7, respectively, while glaucalactone C (1) moderately inhibited PfDd2 (9.4 ± 0.1 µg/mL) and weakly Pf3D7 (15.9 ± 2.3 µg/mL). The molecular docking analyses of the isolated compounds showed that compounds 1-4 and 9-11 are potential drug targets and were further supported by their ADMET studies that revealed welwitschiilactones B and C (4 and 5) as well as ß-sitosterol (10) as the most qualified compounds to be safe as drugs. The results indicate that C. glauca is an important source of good candidates in new antiplasmodial drug development.


Subject(s)
Antimalarials , Malpighiales , Antimalarials/pharmacology , Antimalarials/chemistry , Plant Extracts/chemistry , Fruit , Molecular Docking Simulation , Plant Bark/chemistry , Molecular Structure , Plasmodium falciparum , Structure-Activity Relationship
14.
J Ethnopharmacol ; 317: 116804, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37352945

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a leading cause of death in many developing countries, especially in sub-Saharan Africa. Nigeria is endowed with an abundance of medicinal plants, many of which are used to treat malaria. Celtis durandii Engl. is one such plant used as a traditional antimalarial remedy in southeast Nigeria. However, its antiplasmodial potential is poorly explored. AIM OF THE STUDY: The study aimed at identifying the antiplasmodial components of C. durandii root extract through antiplasmodial activity-guided fractionation. MATERIALS AND METHODS: Dichloromethane/methanol mixture extract (1:1 v/v) of C. durandii root was prepared and partitioned against water to obtain the organic phase, which was further separated by column chromatography into nine (C1 - C9) fractions. The antiplasmodial activity was evaluated by in vitro screening of the different fractions against drug-sensitive and drug-resistant Plasmodium falciparum strains. Further purification of the active column fractions resulted in a potent anti-Plasmodial compound that was subsequently investigated for its effect on ß-hematin formation. Additionally, the isolated compound was characterized and identified as marmesin using mass spectrometry and nuclear magnetic resonance spectroscopy. RESULTS: Celtis durandii root extract exhibited promising antiplasmodial activity {IC50 (µg/ml) 5.92, 6.04, and 6.92} against PfW2mef, PfINDO, and Pf3D7 respectively. Pooled fractions with good antiplasmodial activity {IC50 (µg/ml) Pf3D7: 3.99; PfINDO: 2.24} and selectivity for the parasites (SI: 21) yielded a compound that was fourteen-fold potent in antiplasmodial activity against Pf3D7(IC50: 0.28 µg/ml). It also inhibited ß-hematin formation with an IC50 = 150 µM. Further studies using spectral data, literature, and chemical databases identified the purified compound as marmesin. CONCLUSION: This work has demonstrated that Celtis durandii root extract has good antiplasmodial activity against drug-sensitive and drug-resistant P. falciparum. The inhibition of ß-hematin formation by marmesin accounts in part for this activity.


Subject(s)
Antimalarials , Malaria , Humans , Plant Extracts/chemistry , Malaria/drug therapy , Plasmodium falciparum
15.
BMC Pharmacol Toxicol ; 24(1): 30, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37170269

ABSTRACT

BACKGROUND: The plants Aloe weloensis, Lepidium sativum, and Lobelia gibberoa have been used in Ethiopian folklore medicine to treat various diseases including malaria. METHOD: The in vitro anti-plasmodial activity of the three crude extracts was evaluated using parasite lactate dehydrogenase assay against the chloroquine (CQ)-sensitive D10 and the chloroquine (CQ)-resistant W2 strains. RESULT: The methanolic extract of L. gibberoa roots showed the highest in vitro anti-plasmodial effect against both D10 and W2 Plasmodium falciparum strains with IC50 value of 103.83 ± 26.17 µg/mL and 47.11 ± 12.46 µg/mL, respectively. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis were not active with an IC50 value > 200 µg/mL against both D10 and W2 strains. CONCLUSION: The methanolic extract of L. gibberoa roots showed a promising in vitro anti-plasmodial activity against the CQ-sensitive (D10) and CQ-resistant (W2) strains of P. falciparum. Thus, the anti-plasmodial activity of this plant partly justifies and may also support the traditional use against malaria. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis did not exert suppressive activity on the growth of P. falciparum strains.


Subject(s)
Antimalarials , Malaria , Plants, Medicinal , Ethiopia , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Antimalarials/pharmacology , Latex/therapeutic use , Malaria/drug therapy , Malaria/parasitology , Medicine, Traditional , Chloroquine/therapeutic use
16.
BMC Complement Med Ther ; 23(1): 144, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143036

ABSTRACT

BACKGROUND: Kheaw Hom remedy is a traditional Thai medicine used to treat fever. Some plants used in the Kheaw Hom remedy show promising in vitro antimalarial activity. This study prepared novel formulations of plants from the Kheaw Hom remedy and evaluated their antimalarial and toxicological activities. METHODS: Seven new formulations were prepared by combining at least three herbs of six selected plants from the Kheaw Hom remedy, namely Mammea siamensis Kosterm., Mesua ferrea L., Dracaena loureiroi Gagnep., Pogostemon cablin (Blanco) Benth., Kaempferia galanga L, and Eupatorium stoechadosmum Hance. In vitro antimalarial activities of each formulation's aqueous and ethanolic extracts were evaluated using the parasite lactate dehydrogenase (pLDH) assay. Cytotoxicity in Vero and HepG2 cells was assessed using the MTT assay. An extract with good antimalarial potency and selectivity index (SI) was selected for in vivo antimalarial activity using Peter's 4-day suppressive test and acute oral toxicity test in mice. In addition, bioactive compounds were identified using Gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Among the seven new formulations, ethanolic extracts of CPF-1 (Formulation 1) showed the highest activity with an IC50 value of 1.32 ± 0.66 µg/ml, followed by ethanolic extracts of Formulation 4 and Formulation 6 with an IC50 value of 1.52 ± 0.28 µg/ml and 2.48 ± 0.34 µg/ml, respectively. The highest SI values were obtained for the ethanolic extract of CPF-1 that was selected to confirm its in vivo antimalarial activity and toxicity. The results demonstrated a significant dose-dependent reduction in parasitemia. Maximum suppressive effect of the extract (72.01%) was observed at the highest dose administered (600 mg/kg). No significant toxicity was observed after the administration of 2000 mg/kg. Using GC-MS analysis, the most abundant compound in the ethanolic extract of CPF-1 was ethyl p-methoxycinnamate (14.32%), followed by 2-propenoic acid, 3-phenyl-, ethyl ester, (E)- (2.50%), and pentadecane (1.85%). CONCLUSION: The ethanolic extract of CPF-1 showed promising in vitro and in vivo antimalarial efficacy, with no toxic effects at a dose of 2000 mg/kg, suggesting that the ethanolic extract of CPF-1 may serves as a new herbal formulation for the treatment of malaria. Additional research is required for safety and clinical pharmacology studies.


Subject(s)
Antimalarials , Malaria , Animals , Mice , Antimalarials/toxicity , Plant Extracts/chemistry , Malaria/drug therapy , Malaria/parasitology , Medicine, Traditional
17.
Front Bioeng Biotechnol ; 11: 1109841, 2023.
Article in English | MEDLINE | ID: mdl-36926684

ABSTRACT

Purpose: The recent emergence of Plasmodium falciparum (Pf) parasites resistant to current artemisinin-based combination therapies in Africa justifies the need to develop new strategies for successful malaria control. We synthesized, characterized and evaluated medical applications of optimized silver nanoparticles using Alchornea cordifolia (AC-AgNPs), a plant largely used in African and Asian traditional medicine. Methods: Fresh leaves of A. cordifolia were used to prepare aqueous crude extract, which was mixed with silver nitrate for AC-AgNPs synthesis and optimization. The optimized AC-AgNPs were characterized using several techniques including ultraviolet-visible spectrophotometry (UV-Vis), scanning/transmission electron microscopy (SEM/TEM), powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), Fourier transformed infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Zeta potential. Thereafter, AC-AgNPs were evaluated for their hemocompatibility and antiplasmodial activity against Pf malaria strains 3D7 and RKL9. Finally, lethal activity of AC-AgNPs was assessed against mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti which are vectors of neglected diseases such as dengue, filariasis and chikungunya. Results: The AC-AgNPs were mostly spheroidal, polycrystalline (84.13%), stable and polydispersed with size of 11.77 ± 5.57 nm. FTIR revealed the presence of several peaks corresponding to functional chemical groups characteristics of alkanoids, terpenoids, flavonoids, phenols, steroids, anthraquonones and saponins. The AC-AgNPs had a high antiplasmodial activity, with IC50 of 8.05 µg/mL and 10.31 µg/mL against 3D7 and RKL9 Plasmodium falciparum strains. Likewise, high larvicidal activity of AC-AgNPs was found after 24 h- and 48 h-exposure: LC50 = 18.41 µg/mL and 8.97 µg/mL (Culex quinquefasciatus), LC50 = 16.71 µg/mL and 7.52 µg/mL (Aedes aegypti) and LC50 = 10.67 µg/mL and 5.85 µg/mL (Anopheles stephensi). The AC-AgNPs were highly hemocompatible (HC50 > 500 µg/mL). Conclusion: In worrying context of resistance of parasite and mosquitoes, green nanotechnologies using plants could be a cutting-edge alternative for drug/insecticide discovery and development.

18.
Chem Biodivers ; 20(4): e202200271, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36890112

ABSTRACT

The root extract of Nauclea xanthoxylon (A.Chev.) Aubrév. displayed significant 50 % inhibition concentration (IC50 s) of 0.57 and 1.26 µg/mL against chloroquine resistant and sensitive Plasmodium falciparum (Pf) Dd2 and 3D7 strains, respectively. Bio-guided fractionation led to an ethyl acetate fraction with IC50 s of 2.68 and 1.85 µg/mL and subsequently, to the new quinovic acid saponin named xanthoxyloside (1) with IC50 s of 0.33 and 1.30 µM, respectively against the tested strains. Further compounds obtained from ethyl acetate and hexane fractions were the known clethric acid (2), ursolic acid (3), quafrinoic acid (4), quinovic acid (5), quinovic acid 3-O-ß-D-fucopyranoside (6), oleanolic acid (7), oleanolic acid 3-acetate (8), friedelin (9), ß-sitosterol (10a), stigmasterol (10b) and stigmasterol 3-O-ß-D-glucopyranoside (11). Their structures were characterised with the aid of comprehensive spectroscopic methods (1 and 2D NMR, Mass). Bio-assays were performed using nucleic acid gel stain (SYBR green I)-based fluorescence assay with chloroquine as reference. Extracts and compounds exhibited good selectivity indices (SIs) of >10. Significant antiplasmodial activities measured for the crude extract, the ethyl acetate fraction and xanthoxyloside (1) from that fraction can justify the use of the root of N. xanthoxylon in ethnomedicine to treat malaria.


Subject(s)
Antimalarials , Rubiaceae , Saponins , Antimalarials/pharmacology , Antimalarials/chemistry , Chloroquine/pharmacology , Oleanolic Acid , Plant Extracts/chemistry , Plasmodium falciparum/metabolism , Rubiaceae/chemistry , Saponins/chemistry , Saponins/pharmacology , Ursolic Acid
19.
BMC Complement Med Ther ; 23(1): 47, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788545

ABSTRACT

BACKGROUND: Malaria continues to be a global problem due to the limited efficacy of current drugs and the natural products are a potential source for discovering new antimalarial agents. Therefore, the aims of this study were to investigate phytochemical properties, cytotoxic effect, antioxidant, and antiplasmodial activities of Sonchus arvensis L. leaf extracts both in vitro and in vivo. METHODS: The extracts from S. arvensis L. leaf were prepared by successive maceration with n-hexane, ethyl acetate, and ethanol, and then subjected to quantitative phytochemical analysis using standard methods. The antimalarial activities of crude extracts were tested in vitro against Plasmodium falciparum 3D7 strain while the Peter's 4-day suppressive test model with P. berghei-infected mice was used to evaluate the in vivo antiplasmodial, hepatoprotective, nephroprotective, and immunomodulatory activities. The cytotoxic tests were also carried out using human hepatic cell lines in [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. RESULT: The n-hexane, ethyl acetate, and ethanolic extracts of S. arvensis L. leaf exhibited good in vitro antiplasmodial activity with IC50 values 5.119 ± 3.27, 2.916 ± 2.34, and 8.026 ± 1.23 µg/mL, respectively. Each of the extracts also exhibited high antioxidant with low cytotoxic effects. Furthermore, the ethyl acetate extract showed in vivo antiplasmodial activity with ED50 = 46.31 ± 9.36 mg/kg body weight, as well as hepatoprotective, nephroprotective, and immunomodulatory activities in mice infected with P. berghei. CONCLUSION: This study highlights the antiplasmodial activities of S. arvensis L. leaf ethyl acetate extract against P. falciparum and P. berghei as well as the antioxidant, nephroprotective, hepatoprotective, and immunomodulatory activities with low toxicity. These results indicate the potential of Sonchus arvensis L. to be developed into a new antimalarial drug candidate. However, the compounds and transmission-blocking strategies for malaria control of S. arvensis L. extracts are essential for further study.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Sonchus , Humans , Animals , Mice , Antimalarials/therapeutic use , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Malaria/drug therapy , Ethanol , Malaria, Falciparum/drug therapy , Phytochemicals/therapeutic use
20.
J Biomol Struct Dyn ; 41(22): 13383-13403, 2023.
Article in English | MEDLINE | ID: mdl-36744465

ABSTRACT

Polygala boliviensis is found in the Brazilian semiarid region. This specie is little chemically and biologically studied. Polygala spp. have different metabolites, especially coumarins. Studies indicate that coumarins have antimalarial potential, denoting the importance of researching new active compounds from plants, since the resistance of Plasmodium strains to conventional therapy has increased. The present study aimed to evaluate the antiplasmodial activity of auraptene and poligalen against a chloroquine-resistant strain of Plasmodium falciparum. Coumarins were isolated from P. boliviensis by open column chromatography and identified by Nuclear Magnetic Resonance Spectroscopy. A cytotoxicity assay was carried out using MTT test, and the in vitro antiplasmodial activity was evaluated using the W2 strain. The antiplasmodial activity results found were IC50=0.171 ± 0.016 for auraptene and 0.164 ± 0.012 for poligalen; the selectivity indexes were 78.71 and 609.76, respectively. Inverse virtual screening in the BRAMMT database by OCTOPUS 1.2 was applied to coumarins to find potential P. falciparum targets and showed higher affinity energy of auraptene for purine nucleoside phosphorylase (PfPNP) and of poligalen for dihydroorotate dehydrogenase (PfDHODH). Molecular Dynamics studies (MD and MM-GBSA) approach were applied to calculate binding energies against selected P. falciparum targets and showed that all coumarins were stable at the binding site during simulations. Furthermore, energies were favorable for complexation. This is the first report of auraptene in P. boliviensis species and of in vitro antiplasmodial activity of auraptene and poligalen. In silico studies indicated that the mechanism of action of coumarins is the inhibition of PfPNP and PfDHODH.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antimalarials , Plasmodium , Polygala , Antimalarials/pharmacology , Antimalarials/chemistry , Plasmodium falciparum , Plant Extracts/chemistry , Coumarins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL