Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Country/Region as subject
Language
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35887367

ABSTRACT

Tissue culture methods enable virus elimination from vegetatively propagated crop plants but cannot prevent new infections. Here we used a tissue culture transgenic approach for curing field cultivars of Solanum tuberosum through the stimulation of RNA interference (RNAi)-based antiviral defenses. Expression cassettes carrying inverted repeats of potato virus S (PVS, genus Carlavirus) movement or coat protein sequences were used for the transformation of potato cultivars naturally infected with PVS and/or a related carlavirus potato virus M (PVM), without or with potato virus Y (PVY, genus Potyvirus). A high proportion of transformants PCR-positive for transgenes were cured from both carlaviruses and PVY. After 3-year field trials, 22 transgenic lines representing seven cultivars remained free of any virus or became infected only with PVY. Vegetative progenies of the transgenic lines of cultivar Zeren (initially coinfected with PVS, PVM, and PVY), sampled after in vitro propagation or field trials, and other field cultivars accumulated transgene-derived 21, 22, and 24 nt small interfering (si)RNAs almost exclusively from the PVS inverted repeats. Additionally, some field progenies accumulated 21-22 nt siRNAs from the entire PVY genome, confirming PVY infection. Taken together, transgenic RNAi is effective for virus elimination from naturally infected potato cultivars and their sequence-specific immunization against new infections.


Subject(s)
Potyvirus , Solanum tuberosum , Carlavirus , Plant Diseases/genetics , Plant Diseases/prevention & control , Potyvirus/physiology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
2.
Lett Appl Microbiol ; 73(1): 64-72, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33825200

ABSTRACT

Potato viral disease has been a major problem in potato production worldwide including Russia. Here, we detected Potato Virus M (PVM), P (PVP), S (PVS), Y (PVY), and X (PVX) and Potato Leaf Roll Virus (PLRV) by RT-PCR on potato leaves and tubers from the Northwestern (NW), Volga (VF), and Far Eastern (FE) federal districts of Russia. Each sample was co-infected with up to five viruses. RT-PCR disclosed all six viruses in NW, three in VF, and five in FE. Phylogenetic analyses of PVM and PVS strains resolved all PVM isolates in Group O (ordinary) and all PVS isolates in Group O. Seven PVY strains were detected, and they included only recombinants. PVY recombinants were thus the dominant potato virus strains in Russia, although they widely varied among the regions. Our research provides insights into the geographical distribution and genetic variability of potato viruses in Russia.


Subject(s)
Carlavirus/physiology , Luteoviridae/physiology , Plant Diseases/virology , Plant Viruses/physiology , Solanum tuberosum/virology , Phylogeny , Plant Leaves/virology , Plant Viruses/genetics , Russia
3.
Viruses ; 11(8)2019 08 14.
Article in English | MEDLINE | ID: mdl-31416257

ABSTRACT

Potato virus M (PVM) is a member of the genus Carlavirus of the family Betaflexviridae and causes large economic losses of nightshade crops. Several previous studies have elucidated the population structure, evolutionary timescale and adaptive evolution of PVM. However, the synonymous codon usage pattern of PVM remains unclear. In this study, we performed comprehensive analyses of the codon usage and composition of PVM based on 152 nucleotide sequences of the coat protein (CP) gene and 125 sequences of the cysteine-rich nucleic acid binding protein (NABP) gene. We observed that the PVM CP and NABP coding sequences were GC-and AU-rich, respectively, whereas U- and G-ending codons were preferred in the PVM CP and NABP coding sequences. The lower codon usage of the PVM CP and NABP coding sequences indicated a relatively stable and conserved genomic composition. Natural selection and mutation pressure shaped the codon usage patterns of PVM, with natural selection being the most important factor. The codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of PVM was to pepino, followed by tomato and potato. Moreover, similarity Index (SiD) analysis showed that pepino had a greater impact on PVM than tomato and potato. Our study is the first attempt to evaluate the codon usage pattern of the PVM CP and NABP genes to better understand the evolutionary changes of a carlavirus.


Subject(s)
Carlavirus/genetics , Codon Usage , Plant Diseases/virology , Capsid Proteins/genetics , Carlavirus/physiology , Codon/genetics , Evolution, Molecular , Genome, Viral , Solanum lycopersicum/virology , Phylogeny , Solanum tuberosum/virology
SELECTION OF CITATIONS
SEARCH DETAIL