Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Amino Acids ; 54(11): 1491-1504, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36083345

ABSTRACT

Dietary supplementation with branched-chain amino acids (BCAAs) to lactating sows has been reported to enhance their milk production, but the underlying mechanisms remain largely unknown. This study was conducted with porcine mammary epithelial cells (PMECs) to test the hypothesis that individual BCAAs or their mixture stimulates protein synthesis and inhibit proteolysis in PMECs. Cells were cultured at 37 °C in customized Dulbecco's modified Eagle medium containing 5 mmol/L D-glucose, 1 mmol/L L-phenylalanine, L-[ring-2,4-3H]phenylalanine, 0.1 (control), 0.25, 0.5, 1, or 2 mmol/L L-leucine, L-isoleucine or L-valine or an equimolar mixture of the three BCAAs. The culture medium also contained physiological concentrations of other amino acids found in the plasma of lactating sows. Proliferation, protein synthesis, proteolysis, ß-casein production, the mechanistic target of rapamycin (mTOR) signaling, and the ubiquitin-proteasome pathway were determined for PMECs. Cell proliferation and abundances of phosphorylated mTOR, eukaryotic translation initiation factor 4E-binding protein 1, and ribosomal protein S6 kinase ß-1 proteins increased (P < 0.05), but abundances of ubiquitinated protein and 20S proteasome decreased (P < 0.05) when extracellular concentrations of L-leucine, L-isoleucine, L-valine, or an equimolar mixture of BCAAs were increased from 0.1 to 2 mmol/L. Compared with the control, 0.25, 0.5, 1 or 2 mmol/L BCAAs enhanced (P < 0.01) protein (including ß-casein) synthesis, while decreasing (P < 0.05) proteolysis in PMECs in a dose-dependent manner. Collectively, our results indicate that physiological concentrations of BCAAs regulate protein turnover in mammary epithelial cells to favor net protein synthesis through stimulating the mTOR signaling pathway and inhibiting the ubiquitin-proteasome pathway.


Subject(s)
Amino Acids, Branched-Chain , Mammary Glands, Animal , Swine , Female , Animals , Amino Acids, Branched-Chain/metabolism , Proteolysis , Leucine/pharmacology , Leucine/metabolism , Caseins , Isoleucine/metabolism , Lactation , Proteasome Endopeptidase Complex/metabolism , TOR Serine-Threonine Kinases/metabolism , Epithelial Cells/metabolism , Valine/metabolism , Ubiquitin/metabolism
2.
Int J Mol Sci ; 23(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36077132

ABSTRACT

Our previous study shows that an essential amino acid (EAA)-enriched diet attenuates dexamethasone (DEX)-induced declines in muscle mass and strength, as well as insulin sensitivity, but does not affect endurance. In the present study, we hypothesized that the beneficial effects will be synergized by adding resistance exercise training (RET) to EAA, and diet-free EAA would improve endurance. To test hypotheses, mice were randomized into the following four groups: control, EAA, RET, and EAA+RET. All mice except the control were subjected to DEX treatment. We evaluated the cumulative rate of myofibrillar protein synthesis (MPS) using 2H2O labeling and mass spectrometry. Neuromuscular junction (NMJ) stability, mitochondrial contents, and molecular signaling were demonstrated in skeletal muscle. Insulin sensitivity and glucose metabolism using 13C6-glucose tracing during oral glucose tolerance tests were analyzed. We found that EAA and RET synergistically improve muscle mass and/or strength, and endurance capacity, as well as insulin sensitivity, and glucose metabolism in DEX-treated muscle. These improvements are accomplished, in part, through improvements in myofibrillar protein synthesis, NMJ, fiber type preservation, and/or mitochondrial biogenesis. In conclusion, free EAA supplementation, particularly when combined with RET, can serve as an effective means that counteracts the adverse effects on muscle of DEX that are found frequently in clinical settings.


Subject(s)
Insulin Resistance , Resistance Training , Amino Acids, Essential/metabolism , Animals , Dexamethasone/pharmacology , Glucose/metabolism , Humans , Mice , Muscle Strength , Muscle, Skeletal/metabolism
3.
Nutrients ; 14(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35215448

ABSTRACT

Sarcopenia is prevalent as the aging population grows. Therefore, the need for supplements for the elderly is increasing. This study aimed to investigate the efficacy and mechanism of a Panax ginseng berry extract (GBE) and soluble whey protein hydrolysate (WPH) mixture on a sarcopenia-related muscular deterioration in aged mice. Ten-month-old male C57BL/6J mice were administered three different doses of the GBE + WPH mixture for 8 weeks; 700 mg/kg, 900 mg/kg, and 1100 mg/kg. Grip strength, serum inflammatory cytokines level, and mass of muscle tissues were estimated. The deteriorating function of aging muscle was investigated via protein or gene expression. Grip strength and mass of three muscle tissues were increased significantly in a dose-dependent manner, and increased anti-inflammatory cytokine alleviated systemic inflammatory state. The mixture resolved the imbalance of muscle protein turnover through activation of the PI3K/Akt pathway and increased gene expression of the muscle regeneration-related factors, while decreasing myostatin, which interferes with muscle protein synthesis and regeneration. Furthermore, we confirmed that increased mitochondria number in muscle with the improvement of mitochondrial biogenesis. These physiological changes were similar to the effects of exercise.


Subject(s)
Panax , Sarcopenia , Animals , Fruit/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Protein Hydrolysates/metabolism , Protein Hydrolysates/pharmacology , Protein Hydrolysates/therapeutic use , Whey/metabolism , Whey Proteins/metabolism , Whey Proteins/pharmacology
4.
J Int Soc Sports Nutr ; 18(1): 4, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413462

ABSTRACT

BACKGROUND: The effects of ingesting varying essential amino acid (EAA)/protein-containing food formats on protein kinetics during energy deficit are undetermined. Therefore, recommendations for EAA/protein food formats necessary to optimize both whole-body protein balance and muscle protein synthesis (MPS) during energy deficit are unknown. We measured protein kinetics after consuming iso-nitrogenous amounts of free-form essential amino acid-enriched whey (EAA + W; 34.7 g protein, 24 g EAA sourced from whey and free-form EAA), whey (WHEY; 34.7 g protein, 18.7 g EAA), or a mixed-macronutrient meal (MEAL; 34.7 g protein, 11.4 g EAA) after exercise during short-term energy deficit. METHODS: Ten adults (mean ± SD; 21 ± 4 y; 25.7 ± 1.7 kg/m2) completed a randomized, double-blind crossover study consisting of three, 5 d energy-deficit periods (- 30 ± 3% of total energy requirements), separated by 14 d. Whole-body protein synthesis (PS), breakdown (PB), and net balance (NET) were determined at rest and in response to combination exercise consisting of load carriage treadmill walking, deadlifts, and box step-ups at the end of each energy deficit using L-[2H5]-phenylalanine and L-[2H2]-tyrosine infusions. Treatments were ingested immediately post-exercise. Mixed-muscle protein synthesis (mixed-MPS) was measured during exercise through recovery. RESULTS: Change (Δ postabsorptive + exercise to postprandial + recovery [mean treatment difference (95%CI)]) in whole-body (g/180 min) PS was 15.8 (9.8, 21.9; P = 0.001) and 19.4 (14.8, 24.0; P = 0.001) greater for EAA + W than WHEY and MEAL, respectively, with no difference between WHEY and MEAL. ΔPB was - 6.3 (- 11.5, - 1.18; P = 0.02) greater for EAA + W than WHEY and - 7.7 (- 11.9, - 3.6; P = 0.002) greater for MEAL than WHEY, with no difference between EAA + W and MEAL. ΔNET was 22.1 (20.5, 23.8; P = 0.001) and 18.0 (16.5, 19.5; P = 0.00) greater for EAA + W than WHEY and MEAL, respectively, while ΔNET was 4.2 (2.7, 5.6; P = 0.001) greater for MEAL than WHEY. Mixed-MPS did not differ between treatments. CONCLUSIONS: While mixed-MPS was similar across treatments, combining free-form EAA with whey promotes greater whole-body net protein balance during energy deficit compared to iso-nitrogenous amounts of whey or a mixed-macronutrient meal. TRIAL REGISTRATION: ClinicalTrials.gov, Identifier no. NCT04004715 . Retrospectively registered 28 June 2019, first enrollment 6 June 2019.


Subject(s)
Amino Acids, Essential/metabolism , Exercise/physiology , Nutrients/metabolism , Postprandial Period , Proteins/metabolism , Whey/metabolism , Adult , Amino Acids, Essential/administration & dosage , Amino Acids, Essential/blood , Body Mass Index , Cross-Over Studies , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Double-Blind Method , Energy Intake , Female , Food, Fortified , Humans , Insulin/blood , Male , Meals , Muscle Proteins/biosynthesis , Nutrients/administration & dosage , Phenylalanine/administration & dosage , Time Factors , Tyrosine/administration & dosage , Whey/administration & dosage , Whey/chemistry , Young Adult
5.
Br J Nutr ; 125(7): 721-731, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-32778191

ABSTRACT

Se, an essential biological trace element, is required for fish growth. However, the underlying mechanisms remain unclear. Protein deposition in muscle is an important determinant for fish growth. This study was conducted on juvenile rainbow trout (Oncorhynchus mykiss) to explore the nutritional effects of Se on protein deposition in fish muscle by analysing the postprandial dynamics of both protein synthesis and protein degradation. Trout were fed a basal diet supplemented with or without 4 mg/kg Se (as Se yeast), which has been previously demonstrated as the optimal supplemental level for rainbow trout growth. After 6 weeks of feeding, dietary Se supplementation exerted no influence on fish feed intake, whereas it increased fish growth rate, feed efficiency, protein retention rate and muscle protein content. Results of postprandial dynamics (within 24 h after feeding) of protein synthesis and degradation in trout muscle showed that dietary Se supplementation led to a persistently hyperactivated target of rapamycin complex 1 pathway and the suppressive expression of numerous genes related to the ubiquitin-proteasome system and the autophagy-lysosome system after the feeding. However, the ubiquitinated proteins and microtubule-associated light chain 3B (LC3)-II:LC3-I ratio, biomarkers for ubiquitination and autophagy activities, respectively, exhibited no significant differences among the fish fed different experimental diets throughout the whole postprandial period. Overall, this study demonstrated a promoting effect of nutritional level of dietary Se on protein deposition in fish muscle by accelerating postprandial protein synthesis. These results provide important insights about the regulatory role of dietary Se in fish growth.

6.
Food Sci Biotechnol ; 29(12): 1619-1640, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33282430

ABSTRACT

Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.

7.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1540-1550, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32557872

ABSTRACT

L-Carnitine is critical for protection against bioaccumulation, long-chain fatty acid transportation and energy production. Energy production becomes important as the body maintains lean mass, repairs muscles and recovers from oxidative stress. The aim was to investigate the effects of supplemented L-carnitine on protein turnover (PT), energy expenditure (EE) and carnitine metabolism in muscle/serum of Labrador Retrievers. In a series of experiments, all dogs were fed a low-carnitine diet and sorted into one of two groups: L-carnitine (LC) supplemented daily with 125 mg L-carnitine and 3.75 g sucrose or placebo (P) supplemented with 4 g sucrose daily. The experiments consisted of analyses of muscle/serum for L-carnitine content (EXP1), a protein turnover experiment (EXP2) and analysis of substrate utilization via indirect calorimetry (EXP3). EXP1: 20 Labradors (10 M/10 F) performed a 13 week running regimen. L-Carnitine content was analysed in the serum and biceps femoris muscle before/after a 24.1 km run. LC serum had higher total (p < .001; p = .001), free (p < .001; p = .001) and esterified (p = .001; p = .003) L-carnitine pre- and post-run respectively. LC muscle had significantly higher free L-carnitine post-run (p = .034). EXP2: 26 Labs (13 M/13 F) performed a 60-day running regimen. For the final run, half of the Labradors from each treatment rested and half ran 24.1 km. Twenty-four Labradors received isotope infusion, and then, a biopsy of the biceps femoris of all 26 Labradors was taken to determine PT. Resting/exercised LC had a lower fractional breakdown rate (FBR) versus P group (p = .042). LC females had a lower FBR v. P females (p = .046). EXP3: Respiration of 16 Labradors (8 M/8 F) was measured via indirect calorimetry over 15 week. All dogs ran on a treadmill for 30 min at 30% VO2 max (6.5 kph), resulting in higher maximum and mean EE in LC females v. P females (p = .021; p = .035). Implications for theory, practice and future research are discussed.


Subject(s)
Carnitine/pharmacology , Dietary Proteins/metabolism , Dogs/physiology , Energy Metabolism/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Body Composition , Carnitine/administration & dosage , Carnitine/metabolism , Diet/veterinary , Dogs/metabolism , Female , Male , Oxygen Consumption , Physical Conditioning, Animal
8.
Acta Physiol (Oxf) ; 229(3): e13460, 2020 07.
Article in English | MEDLINE | ID: mdl-32125770

ABSTRACT

AIM: Interventions that decrease atrophy during disuse are desperately needed to maintain muscle mass. We recently found that massage as a mechanotherapy can improve muscle regrowth following disuse atrophy. Therefore, we aimed to determine if massage has similar anabolic effects when applied during normal weight bearing conditions (WB) or during atrophy induced by hindlimb suspension (HS) in adult rats. METHODS: Adult (10 months) male Fischer344-Brown Norway rats underwent either hindlimb suspension (HS, n = 8) or normal WB (WB, n = 8) for 7 days. Massage was applied using cyclic compressive loading (CCL) in WB (WBM, n = 9) or HS rats (HSM, n = 9) and included four 30-minute bouts of CCL applied to gastrocnemius muscle every other day. RESULTS: Massage had no effect on any anabolic parameter measured under WB conditions (WBM). In contrast, massage during HS (HSM) stimulated protein turnover, but did not mitigate muscle atrophy. Atrophy from HS was caused by both lowered protein synthesis and higher degradation. HS and HSM had lowered total RNA compared with WB and this was the result of significantly higher ribosome degradation in HS that was attenuated in HSM, without differences in ribosomal biogenesis. Also, massage increased protein turnover in the non-massaged contralateral limb during HS. Finally, we determined that total RNA degradation primarily dictates loss of muscle ribosomal content during disuse atrophy. CONCLUSION: We conclude that massage is an effective mechanotherapy to impact protein turnover during muscle disuse in both the massaged and non-massaged contralateral muscle, but it does not attenuate the loss of muscle mass.


Subject(s)
Massage , Muscle Proteins/biosynthesis , Muscle, Skeletal , Muscular Atrophy , Ribosomes/metabolism , Animals , Hindlimb Suspension , Male , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Atrophy/prevention & control , Rats , Rats, Inbred BN , Rats, Inbred F344
9.
J Med Food ; 23(1): 29-36, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31532323

ABSTRACT

Muscle atrophy, which is characterized by a decrease in muscle mass, function, and protein content, can be caused by aging, disease, and physical inactivity. Red bean or Adzuki bean (Vigna angularis) has been consumed as an edible legume. Red bean possesses various functional properties, such as antidiabetes, antiaging, anti-inflammatory, anticancer, and hepatoprotective activities. However, little is known about its potential inhibitory effect on muscle atrophy. In this study, we investigated the inhibitory effect of red bean extract (RBE) on muscle atrophy in an immobilized hindlimb muscle of C57BL/6J mice. RBE dose-dependently increased grip strength, exercise endurance, muscle weight, and myofiber area. At the molecular level, RBE significantly reduced the mRNA expression of proteolysis-related genes, such as muscle ring finger and muscle atrophy F-box by preventing the translocation of Forkhead box 3. RBE also activated the phosphatidylinositol 3 kinase/Akt pathway, subsequently stimulating the mammalian target of rapamycin/70-kDa ribosomal protein S6 kinase/eukaryotic initiation factor 4E binding protein 1 pathway involved in protein synthesis. Overall, red bean could be used as a functional food ingredient or therapeutic agent to inhibit muscle atrophy.


Subject(s)
Muscle, Skeletal/drug effects , Muscular Atrophy/drug therapy , Plant Extracts/therapeutic use , Vigna/chemistry , Amino Acids, Branched-Chain , Animals , Biomarkers/analysis , Eukaryotic Initiation Factor-4E/metabolism , Mice , Mice, Inbred C57BL , Random Allocation , Restraint, Physical , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism
10.
Zhen Ci Yan Jiu ; 45(12): 973-9, 2020 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-33415855

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture(EA) on proangiogenesis process and protein turn-over in a mouse model of sarcopenia, so as to explore its potential molecular mechanism anti-aging. METHODS: Fourteen 30-week-old male SAMP8 mice were randomly divided into a model group (n=7) and an EA group (n=7). Seven anti-rapidly aging SAMR1 mice of the same age were used as the control group (n=7). EA (1 mA, 4 Hz) was applied to bilateral "Zusanli"(ST36) and "Yanglingquan"(GB34) for 20 minutes each time once a day, 6 times a week for 4 weeks. The exhausted running platform was used to test the sports function. Gastrocnemius muscle mass and relative ratio of gastrocnemius muscle mass to body mass were measured. HE staining and transmission electron microscope were used to observe the morphology, and the cross-sectional area of gastrocnemius muscle was calculated. Relative protein expressions of protein kinase B (AKT) , phosphorylated (p) -AKT, mammalian target of rapamycin (mTOR) , p-mTOR, p70 ribosomal protein S6 kinase (p70S6K) , p-p70S6K,hypoxia inducible factor-1α (HIF-1α) and relative mRNA expressions of HIF-1α, vascular endothelial growth factor A (VEGF-A) , muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx) were detected by Western blot and real-time fluorescence quantitative PCR, seperatively. RESULTS: Compared with the control group, the running time and distance, body mass and gastrocnemius mass, and the ratio of gastrocnemius mass to body mass decreased(P<0.01, P<0.05), cross-sectional area of gastrocnemius, related protein expression of p-AKT,p-mTOR, p-p70S6K and HIF-1α, mRNA expression of HIF-1α and VEGF-A decreased (P<0.01), while mRNA expression of MuRF1 and MAFbx increased (P<0.01) in the model group. Following EA intervention, the running time and distance, body mass and gastrocnemius mass and the ratio of gastrocnemius mass to body mass increased (P<0.05), cross-sectional area of gastrocnemius, related protein expression of p-AKT,p-mTOR, p-p70S6K and HIF-1α, mRNA expression of HIF-1α and VEGF-A were significantly up-regulated (P<0.01), mRNA expression of MuRF1 and MAFbx down-regulated (P<0.01, P<0.05) in the EA group compared with the model group. CONCLUSION: EA may delay the aging muscle atrophy in mice by regulating the gastrocnemius muscle's proangiogenesis process and protein turnover.


Subject(s)
Electroacupuncture , Sarcopenia , Animals , Male , Mice , Muscular Atrophy , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/genetics
11.
Trials ; 20(1): 561, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31511044

ABSTRACT

BACKGROUND: Critically ill patients lose up to 2% of muscle mass per day. We assessed the feasibility of administering a leucine-enriched essential amino acid (L-EAA) supplement to mechanically ventilated trauma patients with the aim of assessing the effect on skeletal muscle mass and function. METHODS: A randomised feasibility study was performed over six months in intensive care (ICU). Patients received 5 g L-EAA five times per day in addition to standard feed (L-EAA group) or standard feed only (control group) for up to 14 days. C-reactive protein, albumin, IL-6, IL-10, urinary 3-MH, nitrogen balance, protein turnover ([1-13C] leucine infusion), muscle depth change (ultrasound), functional change (Katz and Barthel indices) and muscle strength Medical Research Council (MRC) sum score to assess ICU Acquired Weakness were measured sequentially. RESULTS: Eight patients (9.5% of screened patients) were recruited over six months. L-EAA doses were provided on 91/124 (73%) occasions. Inflammatory and urinary marker data were collected; serial muscle depth measurements were lacking due to short length of stay. Protein turnover studies were performed on five occasions. MRC sum score could not be performed as patients were not able to respond to the screening questions. The Katz and Barthel indices did not change. L-EAA delivery was achievable, but meaningful functional and muscle mass outcome measures require careful consideration in the design of a future randomised controlled trial. CONCLUSION: L-EAA was practical to provide, but we found significant barriers to recruitment and measurement of the chosen outcomes which would need to be addressed in the design of a future, large randomised controlled trial. TRIAL REGISTRATION: ISRCTN Registry, ISRCTN79066838 . Registered on 25 July 2012.


Subject(s)
Amino Acids, Essential/administration & dosage , Dietary Supplements , Leucine/administration & dosage , Respiration, Artificial , Wounds and Injuries/therapy , Adult , Aged , Aged, 80 and over , Critical Illness , Feasibility Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Outcome Assessment, Health Care , Prospective Studies
12.
Biomolecules ; 9(6)2019 06 13.
Article in English | MEDLINE | ID: mdl-31200474

ABSTRACT

Cachexia syndrome can affect cancer patients and new prevention strategies are required. Maternal nutritional supplementation can modify metabolic programming in the offspring, which lasts until adulthood. This could be a good approach against diseases such as cancer. A 3% leucine-rich diet treatment improved muscle protein turnover by modifying the mTOR and proteolytic pathways, thus we analysed whether maternal supplementation could ameliorate muscle protein turnover in adult offspring tumour-bearing rats. Pregnant Wistar rats received a control diet or 3% leucine-rich diet during pregnancy/lactation, and their weaned male offspring received a control diet until adulthood when they were distributed into following groups (n = 7-8 per group): C, Control; W, tumour-bearing; L, without tumour with a maternal leucine-rich diet; and WL, tumour-bearing with a maternal leucine-rich diet. Protein synthesis and degradation were assessed in the gastrocnemius muscle, focusing on the mTOR pathway, which was extensively altered in W group. However, the WL adult offspring showed no decrease in muscle weight, higher food intake, ameliorated muscle turnover, activated mTOR and p70S6K, and maintained muscle cathepsin H and calpain activities. Maternal leucine nutritional supplementation could be a positive strategy to improve muscle protein balance in cancer cachexia-induced muscle damage in adult offspring rats.


Subject(s)
Cachexia/complications , Diet , Leucine/analysis , Mothers , Muscle Proteins/biosynthesis , Muscle Proteins/metabolism , Muscles/drug effects , Animals , Body Weight/drug effects , Cachexia/metabolism , Cachexia/pathology , Eating/drug effects , Female , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscles/metabolism , Muscles/pathology , Neoplasms/complications , Organ Size/drug effects , Pregnancy , Proteolysis/drug effects , Rats , Rats, Wistar
13.
J Nutr ; 149(7): 1149-1158, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31095313

ABSTRACT

BACKGROUND: Muscle protein synthesis (MPS) can be stimulated by ingestion of protein sources, such as whey, casein, or soy. Protein supplementation can enhance muscle protein synthesis after exercise and may preserve skeletal muscle mass and function in aging adults. Therefore, identifying protein sources with higher anabolic potency is of high significance. OBJECTIVE: The aim of this study was to determine the anabolic potency and efficacy of a novel whey protein hydrolysate mixture (WPH) on mechanistic target of rapamycin complex 1 (mTORC1) signaling and skeletal MPS in healthy young subjects. METHODS: Ten young men (aged 28.7 ± 3.6 y, 25.2 ± 2.9 kg/m2 body mass index [BMI]) were recruited into a double-blind two-way crossover trial. Subjects were randomized to receive either 0.08 g/kg of body weight (BW) of WPH or an intact whey protein (WHEY) mixture during stable isotope infusion experiments. Fractional synthetic rate, leucine and phenylalanine kinetics, and markers of amino acid sensing were assessed as primary outcomes before and 1-3 h after protein ingestion using a repeated measures mixed model. RESULTS: Blood leucine concentration, delivery of leucine to muscle, transport of leucine from blood into muscle and intracellular muscle leucine concentration significantly increased to a similar extent 1 h after ingestion of both mixtures (P < 0.05). Phosphorylation of S6K1 (i.e. a marker of mTORC1 activation) increased equally by ∼20% 1-h postingestion (P < 0.05). Ingestion of WPH and WHEY increased mixed MPS similarly in both groups by ∼43% (P < 0.05); however, phenylalanine utilization for synthesis increased in both treatments 1-h postingestion but remained elevated 3-h postingestion only in the WPH group (P < 0.05). CONCLUSIONS: We conclude that a small dose of WPH effectively increases leucine transport into muscle, activating mTORC1 and stimulating MPS in young men. WPH anabolic potency and efficacy for promoting overall muscle protein anabolism is similar to WHEY, an intact protein source. This trial was registered at clinicaltrials.gov as NCT03313830.


Subject(s)
Amino Acids/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Proteins/biosynthesis , Muscle, Skeletal/drug effects , Signal Transduction/drug effects , Whey Proteins/pharmacology , Adult , Amino Acids/blood , Blood Glucose/metabolism , Cross-Over Studies , Double-Blind Method , Humans , Hydrolysis , Insulin/metabolism , Lactic Acid/metabolism , Male , Muscle, Skeletal/metabolism
14.
Appl Physiol Nutr Metab ; 44(9): 997-1004, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30768366

ABSTRACT

Many forms of cancer are associated with loss of lean body mass, commonly attributed to decreased protein synthesis and stimulation of proteolytic pathways within the skeletal muscle. Leucine has been shown to improve protein synthesis, insulin signaling, and mitochondrial biogenesis, which are key signaling pathways influenced by tumor signaling. The purpose of this study was to examine the effects of leucine supplementation on mitochondrial biogenesis and protein turnover in tumor-bearing mice. Twenty male C57BL/6 mice were divided into 4 groups (n = 5): Chow, leucine (Leu), Lewis lung carcinoma (LLC) implant, and LLC+Leu. At 9-10 weeks of age, mice were inoculated and supplemented with 5% leucine (w/w) in the diet. C2C12 myotubes were treated with 2.5 mmol/L leucine and 25% LLC conditioned media to further elucidate the direct influence of the tumor and leucine on the muscle. Measures of protein synthesis, mitochondrial biogenesis, and inflammation in the gastrocnemius were assessed via Western blot analysis. Gastrocnemius mass was decreased in LLC+Leu relative to LLC (p = 0.040). Relative protein synthesis rate was decreased in LLC mice (p = 0.001). No change in protein synthesis was observed in myotubes. Phosphorylation of STAT3 was decreased in the Leu group relative to the control in both mice (p = 0.019) and myotubes (p = 0.02), but did not significantly attenuate the inflammatory effect of LLC implantation (p = 0.619). LLC decreased markers of mitochondrial content; however, PGC-1α was increased in LLC+Leu relative to LLC (p = 0.001). While leucine supplementation was unable to preserve protein synthesis or mitochondrial content associated with LLC implantation, it was able to increase mitochondrial biogenesis signaling. Novelty This study provides novel insights on the effect of leucine supplementation on mitochondrial biogenesis and protein turnover in tumor-bearing mice. Leucine increased signaling for mitochondrial biogenesis in the skeletal muscle. Leucine supplementation decreased inflammatory signaling in skeletal muscle.


Subject(s)
Dietary Supplements , Leucine/pharmacology , Mitochondria/physiology , Muscle, Skeletal/drug effects , Proteins/metabolism , Animals , Carcinoma, Lewis Lung/metabolism , Leucine/administration & dosage , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Neoplasms, Experimental
15.
Article in English | MEDLINE | ID: mdl-30502472

ABSTRACT

The functional role of amino acids as regulators of protein degradation was investigated using primary myogenic precursor cell culture as in vitro model of rainbow trout white muscle. Seven-day old myocytes were starved of amino acids for two hours then exposed to media that contained amino acid treatments, during which protein degradation rates were analyzed over five hours by measuring cellular release of 3H-tyrosine. Increasing concentrations of essential amino acids (EAA) reduced protein degradation rates; this effect was dose-dependent within the physiological range found in plasma. Addition of leucine or phenylalanine at 5 mM and 2.5 mM, respectively, decreased rates of protein degradation compared to media without amino acid supplementation, suggesting that these amino acids directly regulate muscle proteolysis. Protein degradation rates were similar in cells exposed to media without EAA and media lacking only leucine, further supporting a role for leucine as a central regulator of protein turnover. Addition of 5 mM lysine or valine to media without amino acids increased protein degradation; this response was attenuated as EAA were added back into media, supporting that a lysine or valine imbalance is costly for muscle protein retention. In summary, there is evidence for amino acids as both positive and negative regulators of protein turnover in rainbow trout muscle. These findings suggest that there may be an optimal plasma amino acid profile that minimizes protein turnover and that this could be achieved through diet formulation.


Subject(s)
Amino Acids, Essential/metabolism , Fish Proteins/metabolism , Muscle Cells/metabolism , Muscle Proteins/metabolism , Oncorhynchus mykiss/metabolism , Amino Acids, Essential/blood , Animals , Proteolysis
16.
Int J Sport Nutr Exerc Metab ; 29(2): 165-174, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30507259

ABSTRACT

Track and field athletes engage in vigorous training that places stress on physiological systems requiring nutritional support for optimal recovery. Of paramount importance when optimizing recovery nutrition are rehydration and refueling which are covered in other papers in this volume. Here, we highlight the benefits for dietary protein intake over and above requirements set out in various countries at ∼0.8-1.0 g·kg body mass (BM)-1·day-1 for training adaptation, manipulating body composition, and optimizing performance in track and field athletes. To facilitate the remodeling of protein-containing structures, which are turning over rapidly due to their training volumes, track and field athletes with the goal of weight maintenance or weight gain should aim for protein intakes of ∼1.6 g·kg BM-1·day-1. Protein intakes at this level would not necessarily require an overemphasis on protein-containing foods and, beyond convenience, does not suggest a need to use protein or amino acid-based supplements. This review also highlights that optimal protein intakes may exceed 1.6 g·kg BM-1·day-1 for athletes who are restricting energy intake and attempting to minimize loss of lean BM. We discuss the underpinning rationale for weight loss in track and field athletes, explaining changes in metabolic pathways that occur in response to energy restriction when manipulating protein intake and training. Finally, this review offers practical advice on protein intakes that warrant consideration in allowing an optimal adaptive response for track and field athletes seeking to train effectively and to lose fat mass while energy restricted with minimal (or no) loss of lean BM.


Subject(s)
Adaptation, Physiological , Body Composition , Dietary Proteins/administration & dosage , Nutritional Requirements , Sports Nutritional Physiological Phenomena , Track and Field/physiology , Athletes , Athletic Performance/physiology , Body Weight , Dietary Supplements , Humans , Weight Loss
17.
Metabolism ; 69: 120-129, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28285641

ABSTRACT

BACKGROUND: The development of effective nutritional strategies in support of muscle growth for patients with chronic obstructive pulmonary disease (COPD) remains challenging. Dietary essential amino acids (EAAs) are the main driver of postprandial net protein anabolism. In agreement, EAA supplements in healthy older adults are more effective than supplements with the composition of complete proteins. In patients with COPD it is still unknown whether complete protein supplements can be substituted with only EAAs, and whether they are as effective as in healthy older adults. METHODS: According to a double-blind randomized crossover design, we examined in 23 patients with moderate to very severe COPD (age: 65±2 years, FEV1: 40±2% of predicted) and 19 healthy age-matched subjects (age: 64±2 years), whether a free EAA mixture with a high proportion (40%) of leucine (EAA mixture) stimulated whole body net protein gain more than a similar mixture of balanced free EAAs and non-EAAs as present in whey protein (TAA mixture). Whole body net protein gain and splanchnic extraction of phenylalanine (PHE) were assessed by continuous IV infusion of L-[ring-2H5]-PHE and L-[ring-2H2]-tyrosine, and enteral intake of L-[15N]-PHE (added to the mixtures). RESULTS: Besides an excellent positive linear relationship between PHE intake and net protein gain in both groups (r=0.84-0.91, P<0.001), net protein gain was 42% higher in healthy controls and 49% higher in COPD patients after intake of the EAA mixture compared to the TAA mixture (P<0.0001). These findings could not be attributed to the high LEU content, as in both groups net protein gain per gram EAA intake was lower for the EAA mixture (P<0.0001). Net protein gain was higher in COPD patients for both mixtures due to a 40% lower splanchnic extraction (P<0.0001), but was similarly related to dietary PHE (i.e. EAA) plasma appearance. CONCLUSIONS: In COPD patients, similarly to healthy older adults, free EAA supplements stimulate whole body protein anabolism more than free amino acid supplements with the composition of complete proteins. Therefore, free EAA supplements may aid in the prevention and treatment of muscle wasting in this patient population.


Subject(s)
Amino Acids, Essential/therapeutic use , Dietary Supplements , Protein Biosynthesis/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism , Aged , Amino Acids/blood , Cross-Over Studies , Double-Blind Method , Female , Forced Expiratory Volume , Healthy Volunteers , Humans , Insulin/metabolism , Leucine/therapeutic use , Male , Middle Aged , Phenylalanine/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Whey Proteins/metabolism
18.
Amino Acids ; 49(5): 957-964, 2017 05.
Article in English | MEDLINE | ID: mdl-28260165

ABSTRACT

L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated   for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 µmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 µmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 µmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70S6K and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.


Subject(s)
Adipocytes, Brown/drug effects , Arginine/pharmacology , Gene Expression Regulation, Developmental , Obesity/genetics , TOR Serine-Threonine Kinases/genetics , Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Animals , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism , Cell Differentiation , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Female , Fetus , Obesity/metabolism , Obesity/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sheep, Domestic , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Zinc Fingers/genetics
19.
J Nutr ; 147(1): 45-51, 2017 01.
Article in English | MEDLINE | ID: mdl-27798336

ABSTRACT

BACKGROUND: Immune system stimulation (ISS) adversely affects protein metabolism and reduces pig productivity. Leu has a regulatory role in skeletal muscle and whole-body protein turnover, which may be affected by ISS. OBJECTIVE: We sought to determine the effect of supplemental Leu intake on whole-body protein turnover in pigs before and during ISS. METHODS: Pigs [mean ± SD initial body weight (BW): 10.6 ± 1.1 kg] were surgically fitted with jugular vein catheters and assigned to 1 of 3 treatments: 1.36% standardized ileal-digestible (SID) Leu (CON; n = 13); 2.04% SID Leu (LEU-M; n = 8); and 2.72% SID Leu (LEU-H; n = 7). Pigs were infused continuously with 0.66 ± 0.05 mmol 15N ⋅ kg BW-1 ⋅ d-1 to determine whole-body protein kinetics. The study consisted of a 72-h prechallenge period followed by a 36-h challenge period. At the start of the challenge period, ISS was induced in all LEU-M and LEU-H pigs and half of the CON pigs with LPS (ISS+); the remaining CON pigs were administered saline (ISS-). RESULTS: Whole-body protein synthesis (309, 273, and 260 ± 14 mmol N ⋅ kg BW-1 ⋅ d-1 for CON, LEU-M, and LEU-H pigs, respectively) and protein degradation (233, 203, and 185 ± 14 mmol N ⋅ kg BW-1 ⋅ d-1 for CON, LEU-M, and LEU-H pigs, respectively) were reduced with increasing Leu intake during the prechallenge period (P < 0.05). ISS reduced whole-body protein synthesis (203 compared with 169 ± 12 mmol N ⋅ kg BW-1 ⋅ d-1 for ISS- and ISS+ pigs fed CON, respectively; P < 0.05) and protein deposition (PD) (64.9 compared with 45.0 ± 2.9 mmol N ⋅ kg BW-1 ⋅ d-1 for ISS- and ISS+ pigs fed CON, respectively; P < 0.01), whereas ISS did not affect whole-body protein degradation. Leu intake did not affect whole-body protein synthesis or degradation in ISS+ pigs. CONCLUSIONS: Our results indicate that supplemental Leu intake improves the efficiency of PD rather than PD directly in healthy pigs but did not affect whole-body protein turnover during ISS.


Subject(s)
Leucine/administration & dosage , Lipopolysaccharides/toxicity , Proteins/metabolism , Swine/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Male , Nitrogen Isotopes
20.
Amino Acids ; 49(1): 33-47, 2017 01.
Article in English | MEDLINE | ID: mdl-27807658

ABSTRACT

Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2-1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.


Subject(s)
Aging/metabolism , Dietary Proteins/administration & dosage , Dietary Supplements , Muscle, Skeletal/metabolism , Sarcopenia/diet therapy , Whey Proteins/administration & dosage , Activities of Daily Living , Aged , Aging/pathology , Amino Acids, Essential/administration & dosage , Amino Acids, Essential/metabolism , Body Composition , Dietary Proteins/metabolism , Humans , Muscle, Skeletal/pathology , Recommended Dietary Allowances , Resistance Training , Sarcopenia/metabolism , Sarcopenia/pathology , Sarcopenia/prevention & control , Whey Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL