Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Purinergic Signal ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305986

ABSTRACT

Acupuncture is a traditional medicinal practice in China that has been increasingly recognized in other countries in recent decades. Notably, several reports have demonstrated that acupuncture can effectively aid in pain management. However, the analgesic mechanisms through which acupuncture provides such benefits remain poorly understood. Purinergic signaling, which is mediated by purine nucleotides and purinergic receptors, has been proposed to play a central role in acupuncture analgesia. On the one hand, acupuncture affects the transmission of nociception by increasing adenosine triphosphate dephosphorylation and thereby decreasing downstream P2X3, P2X4, and P2X7 receptors signaling activity, regulating the levels of inflammatory factors, neurotrophic factors, and synapsin I. On the other hand, acupuncture exerts analgesic effects by promoting the production of adenosine, enhancing the expression of downstream adenosine A1 and A2A receptors, and regulating downstream inflammatory factors or synaptic plasticity. Together, this systematic overview of the field provides a sound, evidence-based foundation for future research focused on the application of acupuncture as a means of relieving pain.

2.
J Nutr Biochem ; 127: 109602, 2024 May.
Article in English | MEDLINE | ID: mdl-38373509

ABSTRACT

This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1ß, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulins , Rats , Male , Animals , Rats, Wistar , Cholecalciferol/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat/adverse effects , Vitamins , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism
3.
Purinergic Signal ; 20(1): 83-89, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37074620

ABSTRACT

ATP is a ubiquitous extracellular messenger released in a wide number of pathophysiological conditions. ATP is known to be present in minute amounts in the extracellular space in healthy tissues and in the blood, and to modulate a multiplicity of cell responses. Cell culture systems are widely used to explore purinergic signaling. We show here that currently used fetal bovine sera contain ATP in the 300-1300 pmol/L range. Serum ATP is associated with albumin as well as with microparticle/microvesicle fraction. Serum microparticles/microvesicles affect in vitro cell responses due to their content of miRNAs, growth factors, and other bioactive molecules. ATP is likely to be one of these bioactive factors found in a variable amount in sera of different commercial sources. ATP in serum supports ATP-dependent biochemical reactions such as the hexokinase-dependent phosphorylation of glucose to glucose 6-phosphate, and affects purinergic signaling. These findings show that cells growing in vitro in serum-supplemented media are exposed to varying levels of extracellular ATP, and thus to varying degrees of purinergic stimulation.


Subject(s)
Extracellular Space , Serum Albumin, Bovine , Cells, Cultured , Extracellular Space/metabolism , Adenosine Triphosphate/metabolism , Glucose
4.
Brain Res Bull ; 204: 110800, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37913850

ABSTRACT

Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.


Subject(s)
Neuralgia , Receptors, Purinergic P2 , Humans , Medicine, Chinese Traditional , Receptors, Purinergic P2/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Receptors, Purinergic , Signal Transduction
5.
Purinergic Signal ; 19(4): 651-662, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36596963

ABSTRACT

Neutrophils (PMNs) require extracellular ATP and adenosine (ADO) to fight bacterial infections, which often have life-threatening consequences in pediatric patients. We wondered whether the ATP and ADO levels in the plasma of children change with age and if these changes influence the antimicrobial efficacy of the PMNs of these children. We measured plasma concentrations of ATP and ADO and the activities of the enzymes responsible for the breakdown of these mediators in plasma samples from healthy children and adolescents (n = 45) ranging in age from 0.2 to 15 years. In addition, using blood samples of these individuals, we compared how effective their PMNs were in the phagocytosis of bacteria. In an experimental sepsis model with young (10 days) and adolescent mice (10 weeks), we studied how age influenced the resilience of these animals to bacterial infections and whether addition of ATP could improve the antimicrobial capacity of their PMNs. We found that plasma ATP levels correlated with age and were significantly lower in infants (< 1 year) than in adolescents (12-15 years). In addition, we observed significantly higher plasma ATPase and adenosine deaminase activities in children (< 12 years) when compared to the adolescent population. The activities of these ATP and ADO breakdown processes correlated inversely with age and with the ability of PMNs to phagocytize bacteria. Similar to their human counterparts, young mice also had significantly lower plasma ATP levels when compared to adolescent animals. In addition, we found that mortality of young mice after bacterial infection was significantly higher than that of adolescent mice. Moreover, bacterial phagocytosis by PMNs of young mice was weaker when compared to that of older mice. Finally, we found that ATP supplementation could recover bacterial phagocytosis of young mice to levels similar to those of adolescent mice. Our findings suggest that rapid ATP hydrolysis in the plasma of young children lowers the antimicrobial functions of their PMNs and that this may contribute to the vulnerability of pediatric patients to bacterial infections.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Adolescent , Humans , Mice , Child , Animals , Child, Preschool , Infant , Neutrophils/metabolism , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Bacterial Infections/metabolism , Anti-Infective Agents/metabolism , Phagocytosis
6.
Biomed Pharmacother ; 159: 114263, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36652732

ABSTRACT

Leukemia is among the most common types of hematological cancers and the use of herbal medicines to prevent and treat leukemia are under quick development. Among several molecular pathways involved in leukemia pathogenesis and exacerbations, purinergic signaling is revealed as a key component. In the present study, the effects of two doses (5 ug/mL and 10 ug/mL) of Immunity-6™, a phytocomplex composed by beta-glucan, green tea (Camelia sinensis), chamomile (Matricaria chamomilla), and ascorbic acid (vitamin C) was tested in vitro, using chronic myelogenous leukemia cell line (K-562; 5 ×104/mL/well), which were challenged with lipopolysaccharide (LPS; 1 ug/mL) for 24 h. The results demonstrated that both doses of Immunity-6™ inhibited ATP release (p < 0.001) and P2×7 receptor at mRNA levels expression (p < 0.001). Purinergic inhibition by Immunity-6™ was followed by reduced release of proinflammatory cytokines IL-1beta (p < 0.001) and IL-6 (p < 0.001), while only 5 ug/mL of Immunity-6™ reduced the release of TNF-alpha (p < 0.001). Beyond to inhibit the release of pro-inflammatory cytokines, both doses of Immunity-6™ induced the release of anti-inflammatory cytokine IL-10 (p < 0.001), while only the higher dose (10 ug/mL) of Immunity-6™ induced the release of anti-inflammatory IL-1ra (p < 0.05) and klotho (p < 0.001). Thus, Immunity-6™ may be a promising adjuvant in the treatment of leukemia and further clinical trials are guaranteed.


Subject(s)
Cytokines , Leukemia , Phytotherapy , Humans , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cytokines/metabolism , Interleukin-1beta/metabolism , Leukemia/drug therapy , Lipopolysaccharides/pharmacology , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
7.
J Pharm Anal ; 13(12): 1562-1576, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38223448

ABSTRACT

Chaigui granules (CG) are a compound composed of six herbal medicines with significant antidepressant effects. However, the antidepressant mechanism of CG remains unclear. In the present study, we attempted to elucidate the antidepressant mechanism of CG by regulating purine metabolism and purinergic signaling. First, the regulatory effect of CG on purine metabolites in the prefrontal cortex (PFC) of chronic unpredictable mild stress (CUMS) rats was analyzed by ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) targeted quantitative analysis. Meanwhile, purinergic receptors (P2X7 receptor (P2X7R), A1 receptor (A1R) and A2A receptor (A2AR)) and signaling pathways (nod-like receptor protein 3 (NLRP3) inflammasome pathway and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway) associated with purine metabolism were analyzed by western blotting and enzyme-linked immunosorbent assay (ELISA). Besides, antidepressant mechanism of CG by modulating purine metabolites to activate purinergic receptors and related signaling pathways was dissected by exogenous supplementation of purine metabolites and antagonism of purinergic receptors in vitro. An in vivo study showed that the decrease in xanthine and the increase in four purine nucleosides were closely related to the antidepressant effects of CG. Additionally, purinergic receptors (P2X7R, A1R and A2AR) and related signaling pathways (NLRP3 inflammasome pathway and cAMP-PKA pathway) were also significantly regulated by CG. The results of exogenous supplementation of purine metabolites and antagonism of purinergic receptors showed that excessive accumulation of xanthine led to activation of the P2X7R-NLRP3 inflammasome pathway, and the reduction of adenosine and inosine inhibited the A1R-cAMP-PKA pathway, which was significantly ameliorated by CG. Overall, CG could promote neuroprotection and ultimately play an antidepressant role by inhibiting the xanthine-P2X7R-NLRP3 inflammasome pathway and activating the adenosine/inosine-A1R-cAMP-PKA pathway.

8.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769429

ABSTRACT

(1) Background: Artemia salina is a brine shrimp containing high concentrations of dinucleotides, molecules with properties for dry eye treatment. For this reason, the purpose of the study was to evaluate the effect of the artificial tears based on an extract of Artemia salina in a rabbit dry eye model. (2) Methods: A prospective and randomized study was carried out. Twenty rabbits were divided into 4 groups (n = 5, each group): healthy rabbits, dry eye rabbits, dry eye rabbits treated with hypromellose (HPMC), and dry eye rabbits treated with Artemia salina. Dry eye was induced by the topical instillation of 0.2% benzalkonium chloride. The measurements were performed before and after the treatment for 5 consecutive days. (3) Results: The topical instillation of artificial tears containing Artemia salina showed beneficial effects on tear secretion, tear break-up time, corneal staining, the density of Goblet cells, heigh of mucin cloud secreted by these cells, and mRNA levels of IL-1ß and MMP9 in conjunctival cells. Compared with the HPMC, there was a statistically significant improvement (p < 0.05) with the Artemia salina in all the variables under study, except for the conjunctival hyperemia, density of Goblet cells, and mRNA levels of IL-6. (4) Conclusions: The potential of artificial tears based on Artemia salina as a secretagogue agent for dry eye treatment was confirmed, opening the door for future clinical trials and studies to extrapolate the findings for dry eye patients.


Subject(s)
Artemia/chemistry , Dinucleoside Phosphates/pharmacology , Dry Eye Syndromes/drug therapy , Hypromellose Derivatives/pharmacology , Lubricant Eye Drops/administration & dosage , Plant Extracts/pharmacology , Tears/drug effects , Animals , Disease Models, Animal , Dry Eye Syndromes/metabolism , Male , Rabbits , Tears/metabolism
9.
Purinergic Signal ; 17(4): 607-618, 2021 12.
Article in English | MEDLINE | ID: mdl-34018139

ABSTRACT

Tanycytes are hypothalamic radial glial-like cells with an important role in the regulation of neuroendocrine axes and energy homeostasis. These cells have been implicated in glucose, amino acids, and fatty acid sensing in the hypothalamus of rodents, where they are strategically positioned. While their cell bodies contact the cerebrospinal fluid, their extensive processes contact neurons of the arcuate and ventromedial nuclei, protagonists in the regulation of food intake. A growing body of evidence has shown that purinergic signaling plays a relevant role in this homeostatic role of tanycytes, likely regulating the release of gliotransmitters that will modify the activity of satiety-controlling hypothalamic neurons. Connexin hemichannels have proven to be particularly relevant in these mechanisms since they are responsible for the release of ATP from tanycytes in response to nutritional signals. On the other hand, either ionotropic or metabotropic ATP receptors are involved in the generation of intracellular Ca2+ waves in response to hypothalamic nutrients, which can spread between glial cells and towards neighboring neurons. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes, highlighting the participation of purinergic signaling in this process.


Subject(s)
Adenosine Triphosphate/metabolism , Energy Metabolism/physiology , Ependymoglial Cells/metabolism , Hypothalamus/metabolism , Receptors, Purinergic/metabolism , Animals , Glucose/metabolism , Neurons/metabolism , Signal Transduction/physiology
10.
Purinergic Signal ; 17(2): 229-240, 2021 06.
Article in English | MEDLINE | ID: mdl-33751327

ABSTRACT

Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Receptors, Purinergic P2/drug effects , Signal Transduction/drug effects , Adenosine Triphosphate/metabolism , Animals , Humans , Purinergic P2 Receptor Agonists/therapeutic use , Purinergic P2 Receptor Antagonists/therapeutic use
11.
Front Immunol ; 11: 603942, 2020.
Article in English | MEDLINE | ID: mdl-33584673

ABSTRACT

Nlrp3 inflammasome plays a pleiotropic role in hematopoietic cells. On the one hand, physiological activation of this intracellular protein complex is crucial to maintaining normal hematopoiesis and the trafficking of hematopoietic stem progenitor cells (HSPCs). On the other hand, its hyperactivation may lead to cell death by pyroptosis, and prolonged activity is associated with sterile inflammation of the BM and, as a consequence, with the HSPCs aging and origination of myelodysplasia and leukemia. Thus, we need to understand better this protein complex's actions to define the boundaries of its safety window and study the transition from being beneficial to being detrimental. As demonstrated, the Nlrp3 inflammasome is expressed and active both in HSPCs and in the non-hematopoietic cells that are constituents of the bone marrow (BM) microenvironment. Importantly, the Nlrp3 inflammasome responds to mediators of purinergic signaling, and while extracellular adenosine triphosphate (eATP) activates this protein complex, its metabolite extracellular adenosine (eAdo) has the opposite effect. In this review, we will discuss and focus on the physiological consequences of the balance between eATP and eAdo in regulating the trafficking of HSPCs in an Nlrp3 inflammasome-dependent manner, as seen during pharmacological mobilization from BM into peripheral blood (PB) and in the reverse mechanism of homing from PB to BM and engraftment. We propose that both mediators of purinergic signaling and the Nlrp3 inflammasome itself may become important therapeutic targets in optimizing the trafficking of HSPCs in clinical settings.


Subject(s)
Adenosine Triphosphate/metabolism , Adenosine/metabolism , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cell Survival , Hematopoietic Stem Cell Mobilization/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Signal Transduction , Stem Cell Niche , Treatment Outcome
12.
Int J Mol Sci ; 20(6)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909368

ABSTRACT

BACKGROUND: Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. METHODS: In a hypoxic model on endothelial cells, we quantified the extracellular concentration of ATP and adenosine. The expression of mRNA (ectonucleotidases, adenosine, and P2 receptors) was measured. Apoptosis was evaluated by the expression of cleaved caspase 3. The involvement of P2 and adenosine receptors and signaling pathways was investigated using selective inhibitors. RESULTS: Hypoxic stress induced a significant increase in extracellular ATP and adenosine. After a 2-h hypoxic injury, an increase of cleaved caspase 3 was observed. ATP anti-apoptotic effect was prevented by suramin, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and CGS15943, as well as by selective A2A, A2B, and A3 receptor antagonists. P2 receptor-mediated anti-apoptotic effect of ATP involved phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases (ERK1/2), mitoKATP, and nitric oxide synthase (NOS) pathways whereas adenosine receptor-mediated anti-apoptotic effect involved ERK1/2, protein kinase A (PKA), and NOS. CONCLUSIONS: These results suggest a complementary role of P2 and adenosine receptors in ATP-induced protective effects against hypoxia injury of endothelial. This could be considered therapeutic targets to limit the development of ischemic injury of organs such as heart, brain, and kidney.


Subject(s)
Adenosine Triphosphate/metabolism , Apoptosis , Human Umbilical Vein Endothelial Cells/metabolism , Hypoxia/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2/metabolism , Adenosine/metabolism , Apoptosis/genetics , Biomarkers , Extracellular Space/metabolism , Gene Expression , Humans , Hypoxia/genetics , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide Synthase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RNA, Messenger/genetics , Receptors, Purinergic P1/genetics , Receptors, Purinergic P2/genetics , Signal Transduction , Stress, Physiological/genetics
13.
Brain Res Bull ; 151: 144-152, 2019 09.
Article in English | MEDLINE | ID: mdl-30458249

ABSTRACT

Purinergic signaling has recently been suggested to constitute the cellular mechanism underlying acupuncture-induced analgesia (AA). By extending the original hypothesis on endogenous opioids being released during AA, Geoffrey Burnstock and Maiken Nedergaard supplied evidence for the involvement of purinoceptors (P2 and P1/A1 receptors) in the beneficial effects of AA. In view of certain pain states (e.g. neuropathic pain) which respond only poorly to therapy with standard analgesics, as well as with respect to the numerous unwanted effects of opioids and non-steroidal anti-inflammatory drugs, it is of great significance to search for alternative therapeutic options. Because clinical studies on AA yielded sometimes heterogeneous results, it is of eminent importance to relay on experiments carried out on laboratory animals, by evaluating the data with stringent statistical methods including comparison with a sufficient number of control groups. In this review, we summarize the state of the art situation with respect to the participation of P2 receptors in AA and try to forecast how the field is likely to move forward in the future.


Subject(s)
Acupuncture Analgesia/methods , Adenosine Triphosphate/pharmacology , Receptors, Purinergic P2X/metabolism , Adenosine Triphosphate/metabolism , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Humans , Pain/drug therapy , Receptors, Purinergic P2X/physiology , Signal Transduction/physiology
14.
Neuroscience ; 349: 253-263, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28279755

ABSTRACT

Increases in plasma osmolality activates the paraventricular nucleus of the hypothalamus (PVN) which in turn mounts a physiological response by increasing the release of arginine vasopressin and sympathetic nerve activity to end organs such as the kidney. The PVN expresses an abundance of purinergic receptors including P2X2 receptors. In the present study, we sought to determine (1) whether P2X2-expressing PVN neurons are activated by hypertonic saline or hypertonic mannitol and (2) what effects P2X receptor blockade has on sympathetic nerve activation mediated by a hyperosmotic stimulus. Male Wistar rats were randomly assigned to three groups and intravenously infused with either isotonic saline (0.154M, 0.5mL), hypertonic saline (3M, 0.5mL) or hypertonic mannitol (10% w/v, 0.5mL). Significantly greater numbers of Fos-positive cells were observed in the hypertonic saline (393±29)- and hypertonic mannitol (141±11)-infused rats compared with control, saline-treated, rats (47±2 neurons/PVN section). Furthermore, there was a significant increase in the number of activated (Fos-positive) P2X2 expressing PVN neurons in the hypertonic saline (65±7) and hypertonic mannitol (37±7)-treated rats compared with controls (16±2). Microinjection of a P2X receptor antagonist, PPADS, within the PVN significantly attenuated sympathetic nerve activation driven by a hyperosmotic stimulus. The hyperosmotically induced increase in lumbar sympathetic nerve activity was significantly blunted after PPADS pre-treatment. Collectively, our findings indicate that hyperosmotic stimulation activates a subset of P2X2 expressing PVN neurons that might facilitate increased sympathetic drive.


Subject(s)
Hypothalamus/drug effects , Neurons/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Receptors, Purinergic P2/metabolism , Saline Solution, Hypertonic/pharmacology , Animals , Arginine Vasopressin/metabolism , Hypothalamus/metabolism , Male , Neurons/metabolism , Rats, Wistar
15.
Neurotoxicology ; 56: 107-117, 2016 09.
Article in English | MEDLINE | ID: mdl-27450719

ABSTRACT

Although some findings have reported the medicinal properties of Jimson weed (Datura stramonium L.), there exist some serious neurological effects such as hallucination, loss of memory and anxiety, which has been reported in folklore. Consequently, the modulatory effect of alkaloid extracts from leaf and fruit of Jimson weed on critical enzymes of the purinergic [ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-NTDase), alkaline phosphatase (ALP) and Na+/K+ ATPase] system of neurotransmission was the focus of this study. Alkaloid extracts were prepared by solvent extraction method and their interaction with the activities of these enzymes were assessed (in vitro) in rat brain tissue homogenate and in vivo in rats administered 100 and 200mg/kg body weight (p.o) of the extracts for thirty days, while administration of single dose (1mg/kg body weight; i.p.) of scopolamine served as the positive control. The extracts were also investigated for their Fe2+ and Cu2+ chelating abilities and GC-MS characterization of the extracts was also carried out. The results revealed that the extracts inhibited activates of E-NTPDase, E-NTDase and ALP in a concentration dependent manner, while stimulating the activity of Na+/K+ ATPase (in vitro). Both extracts also exhibited Fe2+ and Cu2+ chelating abilities. Considering the EC50 values, the fruit extract had significantly higher (P<0.05) modulatory effect on the enzymes' activity as well as metal chelating abilities, compared to the leaf extract; however, there was no significant difference (P>0.05) in both extracts' inhibitory effects on E-NTDase. The in vivo study revealed reduction in the activities of ENTPDase, E-NTDase, and Na+/K+ ATPase in the extract-administered rat groups compared to the control group, while an elevation in ALP activity was observed in the extract-administered rat groups compared to the control group. GC-MS characterization revealed the presence of atropine, scopolamine, amphetamine, 3-methyoxyamphetamine, 3-ethoxyamhetamine cathine, spermine, phenlyephirine and 3-piperidinemethanol, among others in the extracts. Hence, alterations of activities of critical enzymes of purinergic signaling (in vitro and in vivo) by alkaloid extracts from leaf and fruit of Jimson weed suggest one of the mechanisms behind its neurological effects as reported in folklore.


Subject(s)
Alkaloids/pharmacology , Brain/drug effects , Datura stramonium/chemistry , Hydrolases/metabolism , Plant Extracts/pharmacology , 5'-Nucleotidase/metabolism , Adenosine Triphosphate/metabolism , Alkaline Phosphatase/metabolism , Alkaloids/analysis , Animals , Brain/enzymology , Copper/metabolism , Dose-Response Relationship, Drug , Iron/metabolism , Pyrophosphatases/metabolism , Rats , Rats, Wistar , Scopolamine/pharmacology , Signal Transduction/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism
16.
Neuroscientist ; 22(6): 563-578, 2016 12.
Article in English | MEDLINE | ID: mdl-27343858

ABSTRACT

Chronic pain is a debilitating and rather common health problem. The present shortage in analgesic drugs with a favorable spectrum but without remarkable side effects furthered the search for alternative therapeutic manipulations. Increasing evidence from both basic and clinical research on acupuncture, a main alternative therapy of traditional Chinese medicine, suggests that chronic pain is sensitive to acupuncture procedures. Clarification of the underlying mechanisms is a challenge of great theoretical and practical significance. The seminal hypothesis of Geoffrey Burnstock and the astounding findings of Maiken Nedergaard on the involvement of purinergic signaling in the beneficial effects of acupuncture fertilized the field and led to an intensification of research on acupurines. In this review, we will summarize the state-of-the-art situation and try to forecast how the field is likely to develop in the future.


Subject(s)
Acupuncture , Pain Management , Pain/surgery , Receptors, Purinergic P2X/metabolism , Analgesia/methods , Brain/physiopathology , Humans , Pain/physiopathology
17.
J Cell Sci ; 128(24): 4615-28, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26542019

ABSTRACT

Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell-matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca(2+) signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions.


Subject(s)
Adenosine Triphosphate/metabolism , Calcium Signaling , GTP-Binding Proteins/metabolism , Membrane Potentials , Receptors, Purinergic P2X7/metabolism , Transglutaminases/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Cell Line, Tumor , Female , GTP-Binding Proteins/genetics , HEK293 Cells , Humans , Male , Mutation , Protein Glutamine gamma Glutamyltransferase 2 , Receptors, Purinergic P2X7/genetics , Transglutaminases/genetics
18.
Osteoarthritis Cartilage ; 22(9): 1327-36, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25042551

ABSTRACT

OBJECTIVE: Bisphosphonates are commonly used anti-osteoporotic drugs which have controversial effects on joint diseases including osteoarthritis. Certain bisphosphonates have been shown to have anabolic effects on cartilage which could have important ramifications for their proposed effects in vivo; however, the underlying mechanisms are poorly understood. Thus, the purpose of this study was to characterize the effects of clodronate on primary articular chondrocyte metabolism and to determine the underlying signaling pathways responsible. DESIGN: The effects of clodronate and pamidronate on extracellular matrix (ECM) biosynthesis, accumulation and MMP-13 activity were observed in high density, 3D cultures of bovine articular chondrocytes for up to 4 weeks were evaluated. Mechanisms were delineated by measuring intracellular Ca(2+) signaling and the effects of pharmacologic inhibition of the purinergic receptor pathway. RESULTS: Clodronate (100 µM) induced an anabolic effect (increased biosynthesis by 13-14%) which resulted in an 89-90% increase in ECM accumulation after 4 weeks of culture and without an associated effect on matrix turn-over. Stimulation by clodronate resulted in a 3.3-fold increase in Ca(2+) signaling and pharmacological inhibitor experiments suggested that the anabolic effects exerted by clodronate are transduced through the purinergic receptor pathway. CONCLUSIONS: These findings support the previous notion that certain bisphosphonates may be useful as adjunctive therapies to potentially ameliorate progression of cartilage degeneration and improve arthritis management.


Subject(s)
Anabolic Agents/pharmacology , Bone Density Conservation Agents/pharmacology , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Clodronic Acid/pharmacology , Receptors, Purinergic/physiology , Anabolic Agents/administration & dosage , Animals , Bone Density Conservation Agents/administration & dosage , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Cattle , Cells, Cultured , Chondrocytes/metabolism , Clodronic Acid/administration & dosage , Diphosphonates/administration & dosage , Diphosphonates/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Extracellular Matrix/metabolism , Matrix Metalloproteinase 13/metabolism , Pamidronate , Signal Transduction/drug effects , Signal Transduction/physiology
19.
Purinergic Signal ; 6(2): 221-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20806014

ABSTRACT

UNLABELLED: Gap junction-mediated K(+) recycling in the cochlear supporting cell has been proposed to play a critical role in hearing. However, how potassium ions enter into the supporting cells to recycle K(+) remains undetermined. In this paper, we report that ATP can mediate K(+) sinking to recycle K(+) in the cochlear supporting cells. We found that micromolar or submicromolar levels of ATP could evoke a K(+)-dependent inward current in the cochlear supporting cells. At negative membrane potentials and the resting membrane potential of -80 mV, the amplitude of the ATP-evoked inward current demonstrated a linear relationship to the extracellular concentration of K(+), increasing as the extracellular concentration of K(+) increased. The inward current also increased as the concentration of ATP was increased. In the absence of ATP, there was no evoked inward current for extracellular K(+) challenge in the cochlear supporting cells. The ATP-evoked inward current could be inhibited by ionotropic purinergic (P2X) receptor antagonists. Application of pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 50 microM) or pre-incubation with an irreversible P2X7 antagonist oxidized ATP (oATP, 0.1 mM) completely abolished the ATP-evoked inward current at the negative membrane potential. ATP also evoked an inward current at cell depolarization, which could be inhibited by intracellular Cs(+) and eliminated by positive holding potentials. Our data indicate that ATP can activate P2X receptors to recycle K(+) in the cochlear supporting cells at the resting membrane potential under normal physiological and pathological conditions. This ATP-mediated K(+) recycling may play an important role in the maintenance of cochlear ionic homeostasis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-010-9184-9) contains supplementary material, which is available to authorized users.

SELECTION OF CITATIONS
SEARCH DETAIL