Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Pharm Biomed Anal ; 240: 115957, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38181555

ABSTRACT

Epimedium is a Chinese herbal medicine commonly used in clinical practice to reinforce yang. Previous studies have shown that Epimedium fried with suet oil based has the best effect on warming kidney and promoting yang. Evidence suggests a relationship between kidney yang deficiency syndrome (KYDS) and metabolic disorders of the intestinal microflora. However, the specific interaction between KYDS and the intestinal microbiome, as well as the internal regulatory mechanism of the KYDS intestinal microbiome regulated by Epimedium fried with suet oil, remain unclear. The purpose of this study was to investigate the regulatory effects of different processed products of Epimedium on intestinal microflora and metabolites in rats with kidney yang deficiency, and to reveal the processing mechanism of Epimedium fried with suet oil warming kidney and helping yang. 16 S rRNA and LC-MS/MS technology were used to detect fecal samples. Combined with multivariate statistical analysis, differential intestinal flora and metabolites were screened. Then the content of differential bacteria was then quantified using quantitative real-time fluorescence PCR. Furthermore, the correlation between differential bacterial flora and metabolites was analyzed using Spearman's method. The study found that the composition of intestinal flora in rats with kidney yang deficiency changed compared to healthy rats. Epimedium fried with suet oil could increase the levels of beneficial bacteria, while significantly reducing the levels of harmful bacteria. Real-time quantitative PCR results were consistent with 16 S rRNA gene sequencing analysis. Fecal metabolomics revealed that KYDS was associated with 30 different metabolites, involving metabolic pathways steroid hormone biosynthesis etc. Moreover, differential bacteria were closely correlated with potential biomarkers. Epimedium could improve metabolic disorders associated with KYDS by acting on the intestinal flora, with Epimedium fried with suet oil demonstrating the most effective regulatory effect. Its potential mechanism may involve the regulation of abnormal metabolism and the impact on the diversity and structure of the intestinal flora.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Gastrointestinal Microbiome , Metabolic Diseases , Rats , Animals , Yang Deficiency/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Epimedium/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Metabolomics , Kidney/metabolism
2.
Genes (Basel) ; 15(1)2024 01 07.
Article in English | MEDLINE | ID: mdl-38254968

ABSTRACT

In traditional Chinese medicine, Angelica dahurica is a valuable herb with numerous therapeutic applications for a range of ailments. There have not yet been any articles on the methodical assessment and choice of the best reference genes for A. dahurica gene expression studies. Real-time quantitative PCR (RT-qPCR) is widely employed as the predominant method for investigating gene expression. In order to ensure the precise determination of target gene expression outcomes in RT-qPCR analysis, it is imperative to employ stable reference genes. In this study, a total of 11 candidate reference genes including SAND family protein (SAND), polypyrimidine tract-binding protein (PTBP), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), TIP41-like protein (TIP41), cyclophilin 2 (CYP2), elongation factor 1 α (EF1α), ubiquitin-protein ligase 9 (UBC9), tubulin ß-6 (TUB6), thioredoxin-like protein YLS8 (YLS8), and tubulin-α (TUBA) were selected from the transcriptome of A. dahurica. Subsequently, three statistical algorithms (geNorm, NormFinder, and BestKeeper) were employed to assess the stability of their expression patterns across seven distinct stimulus treatments. The outcomes obtained from these analyses were subsequently amalgamated into a comprehensive ranking using RefFinder. Additionally, one target gene, phenylalanine ammonia-lyase (PAL), was used to confirm the effectiveness of the selected reference genes. According to the findings of this study, the two most stable reference genes for normalizing the expression of genes in A. dahurica are TIP41 and UBC9. Overall, our research has determined the appropriate reference genes for RT-qPCR in A. dahurica and provides a crucial foundation for gene screening and identifying genes associated with the biosynthesis of active ingredients in A. dahurica.


Subject(s)
Angelica , Angelica/genetics , Tubulin , Actins , Real-Time Polymerase Chain Reaction , Stress, Physiological
3.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 239-251, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258644

ABSTRACT

'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.


Subject(s)
Glutamine/analogs & derivatives , Plant Extracts , Porifera , Prunus , Animals , Anthocyanins , DNA Shuffling , Flowers/genetics , Prunus/genetics
4.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5759-5766, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114171

ABSTRACT

Paeonia veitchii and P. lactiflora are both original plants of the famous Chinese medicinal drug Paeoniae Radix Rubra in the Chinese Pharmacopoeia. They have important medicinal value and great potential in the flower market. The selection of stable and reliable reference genes is a necessary prerequisite for molecular research on P. veitchii. In this study, two reference genes, Actin and GAPDH, were selected as candidate genes from the transcriptome data of P. veitchii. The expression levels of the two candidate genes in different tissues(phloem, xylem, stem, leaf, petiole, and ovary) and different growth stages(bud stage, flowering stage, and dormant stage) of P. veitchii were detected using real-time fluorescence quantitative technology(qRT-PCR). Then, the stability of the expression of the two reference genes was comprehensively analyzed using geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that the expression patterns of Actin and GAPDH were stable in different tissues and growth stages of P. veitchii. Furthermore, the expression levels of eight genes(Pv-TPS01, Pv-TPS02, Pv-CYP01, Pv-CYP02, Pv-CYP03, Pv-BAHD01, Pv-UGT01, and Pv-UGT02) in different tissues were further detected based on the transcriptome data of P. veitchii. The results showed that when Actin and GAPDH were used as reference genes, the expression trends of the eight genes in different tissues of P. veitchii were consistent, validating the reliability of Actin and GAPDH as reference genes for P. veitchii. In conclusion, this study finds that Actin and GAPDH can be used as reference genes for studying gene expression levels in different tissues and growth stages of P. veitchii.


Subject(s)
Paeonia , Real-Time Polymerase Chain Reaction/methods , Paeonia/genetics , Actins/genetics , Reproducibility of Results , Transcriptome , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Reference Standards , Gene Expression Profiling/methods
5.
Mycorrhiza ; 33(5-6): 387-397, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37646822

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and are known to have a positive effect on plant growth and health. Different methodologies have been developed to assess the AMF-plant symbiosis. The most applied method, which involves staining of roots and microscopic observation of the AMF structures, is tedious and time-consuming and the results are highly dependent on the observer. Using quantitative polymerase chain reaction (qPCR) to quantify AMF root colonization represents a reliable, high-throughput technique that allows the assessment of numerous samples. Quantification with qPCR can be performed through two methods: relative quantification and absolute quantification. In relative quantification, the target gene is normalized with a reference gene. On the other hand, absolute quantification involves the use of a standard curve, for which template DNA is serially diluted. In a previous paper, we validated the primer pair AMG1F and AM1 for a relative quantification approach to assess AMF root colonization in Petunia. Here, we tested the same primers with an absolute quantification approach and compared the results with the traditional microscopy method. We evaluated the qPCR method with three different crops, namely, wheat (cv. Colmetta and Wiwa), tomato, and leek. We observed a strong correlation between microscopy and qPCR for Colmetta (r = 0.90, p < 0.001), Wiwa (r = 0.94, p < 0.001), and tomato (r = 0.93, p < 0.001), but no correlation for leek (r = 0.27, p = 0.268). This highlights the importance of testing the primer pair for each specific crop.


Subject(s)
Mycorrhizae , Solanum lycopersicum , Mycorrhizae/genetics , Triticum , Onions , Plant Roots/microbiology , Fungi/genetics
6.
Antioxidants (Basel) ; 12(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37237900

ABSTRACT

Media supplementation has proven to be an effective technique for improving byproduct yield during microbial fermentation. This study explored the impact of different concentrations of bioactive compounds, namely alpha-tocopherol, mannitol, melatonin, sesamol, ascorbic acid, and biotin, on the Aurantiochytrium sp. TWZ-97 culture. Our investigation revealed that alpha-tocopherol was the most effective compound in reducing the reactive oxygen species (ROS) burden, both directly and indirectly. Adding 0.7 g/L of alpha-tocopherol led to an 18% improvement in biomass, from 6.29 g/L to 7.42 g/L. Moreover, the squalene concentration increased from 129.8 mg/L to 240.2 mg/L, indicating an 85% improvement, while the squalene yield increased by 63.2%, from 19.82 mg/g to 32.4 mg/g. Additionally, our comparative transcriptomics analysis suggested that several genes involved in glycolysis, pentose phosphate pathway, TCA cycle, and MVA pathway were overexpressed following alpha-tocopherol supplementation. The alpha-tocopherol supplementation also lowered ROS levels by binding directly to ROS generated in the fermentation medium and indirectly by stimulating genes that encode antioxidative enzymes, thereby decreasing the ROS burden. Our findings suggest that alpha-tocopherol supplementation can be an effective method for improving squalene production in Aurantiochytrium sp. TWZ-97 culture.

7.
Plant Dis ; 107(5): 1550-1556, 2023 May.
Article in English | MEDLINE | ID: mdl-36383993

ABSTRACT

Ilyonectria pseudodestructans, a plant pathogen that is known to cause root rot on fruit trees such as grapevine and apple, has recently been reported to also cause tuber decay in potato. The increasing risk of this pathogen on various horticultural crops makes it essential to develop a rapid and accurate detection method. In this study, an RNase H-dependent PCR (rhPCR) protocol and a modified probe-based rh-quantitative PCR (rhqPCR) protocol for I. pseudodestructans detection were developed. Both the forward and reverse primers for rhPCR and rhqPCR carry an RNA nucleotide at the site where a single-nucleotide polymorphism between I. pseudodestructans and strains of other Ilyonectria spp. is located, and the rhqPCR also contains a fluorescent-labeled target-specific probe. The primers were designed based on the sequence of the histone H3 gene and could amplify a DNA fragment of 73 bp. In the specificity test, by alignment via the BLASTn tool, the RNA nucleotide bases on both the forward and the reverse primers were identical to the corresponding genomic site of 16 of 17 (94.1%) database-available I. pseudodestructans strains, and different from 43 of 44 (97.7%) database-available strains of other Ilyonectria spp. When the rhPCR and rhqPCR protocols were applied on 11 I. pseudodestructans strains and 46 other strains of different species of plant pathogens, all of the I. pseudodestructans strains generated positive reactions whereas all of the other strains were negative, which indicated an excellent specificity of the primers. In the sensitivity test, the lowest DNA template amount for a positive reaction using the rhPCR and rhqPCR methods was 2 pg for I. pseudodestructans genomic DNA. When testing the rhqPCR method on gBlock, the lowest number of molecules for a positive reaction was six. These results indicated a high sensitivity of the protocol for I. pseudodestructans detection. To our knowledge, this is the first report of a probe-based rhqPCR to be applied to plant disease diagnosis; in addition, this is also the first rapid molecular protocol to detect I. pseudodestructans. The new rhPCR and rhqPCR methods have a potential to be applied by plant disease diagnostic labs for their routine work.


Subject(s)
Solanum tuberosum , Ribonuclease H , Polymerase Chain Reaction/methods , Nucleotides
8.
GM Crops Food ; 13(1): 97-111, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-35652435

ABSTRACT

Potato virus Y (PVY) is a deadly environmental constraint that damages productivity of potato (Solanum tuberosum) around the globe. One of the major challenges is to develop resistance against PVY. Emerging clustered regularly short palindromic repeat (CRISPR)/Cas systems have the potential to develop resistance against PVY. In the current research, CRISPR-Cas13 has been exploited to target multiple strains of PVYN, PVYO, and PVYNTN. Multiple genes PI, HC-Pro, P3, Cl1, Cl2, and VPg genes of PVY were targeted by CRISPR/Cas13a. Multiplex gRNA cassettes were developed on the conserved regions of the PVY-genes. Three independent CRISPR/Cas13 transgenic potato lines were developed by applying an optimized concentration of trans-ribo zeatin and indole acetic acid at callus development, rooting, and shooting growth stages. The level of resistance in transgenic plants was confirmed through double-antibody sandwich enzyme-linked immunosorbent assay and real-time quantitative PCR. Our results have shown that efficiency of PVY inhibition was positively correlated with the Cas13a/sgRNA expression. Finding provides the specific functionality of Cas13 with specific gRNA cassette and engineering the potential resistance in potato crop against multiple strains of PVY.


Subject(s)
Potyvirus , Solanum tuberosum , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Potyvirus/genetics , Solanum tuberosum/genetics , RNA, Small Untranslated
9.
Front Public Health ; 10: 787299, 2022.
Article in English | MEDLINE | ID: mdl-35372231

ABSTRACT

Background: Macrolides have been widely used to treat moderate-to-severe acne for more than 50 years. However, the prevalent antibiotic resistance of Propionibacterium acnes, along with the absence of clinically available resistance tests, has made macrolide misuse a frequent occurrence around the globe, with serious consequences. Objective: We developed Cutibacterium acnes quantitative PCR (qPCR)-based antibiotics resistance assay (ACQUIRE) to enable fast and accurate detection of C. acnes macrolide resistance in clinical settings, representing an opportunity to administer antibiotics more wisely and improve the quality of care. Methods: A cross-sectional observational study (n = 915) was conducted to probe into the macrolide resistance of C. acnes in patients with acne. Results: The high sensitivity of ACQUIRE enabled us to reveal a much higher C. acnes 23S recombinant DNA (rDNA) point mutation rate (52%) and thus a higher macrolide resistance (75.5%) compared to previous reports. Carriage of ermX gene was discovered on 472 (53%) subjects, which concurs with previous studies. Conclusion: The macrolide resistance of C. acnes is much higher than previously reported. Integrating ACQUIRE into acne treatment modalities may eliminate macrolide misuse and achieve better clinical improvements.


Subject(s)
Acne Vulgaris , Drug Resistance, Bacterial , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross-Sectional Studies , Drug Resistance, Bacterial/genetics , Humans , Macrolides/pharmacology , Macrolides/therapeutic use , Microbial Sensitivity Tests
10.
Microb Ecol ; 84(3): 935-940, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34599356

ABSTRACT

Soil microorganisms play an essential role in biogeochemical cycles. One approach to study these microbial communities is quantifying functional genes by quantitative PCR (qPCR), in which a melting curve analysis is usually assessed to confirm that a single PCR product is being quantified. However, the high diversity of functional genes in environmental samples could generate more than one peak in those curves, so the presence of two or multiple peaks does not always indicate nonspecific amplification. Here, we analyzed the taxonomic diversity of soil microorganisms harboring functional genes involved in nitrogen (N) and phosphorus (P) cycles, based on a database of genomes and metagenomes, and predicted the melting curve profiles of these genes. These functional genes were spread across many bacterial phyla, but mainly Proteobacteria and Actinobacteria. In general, the melting curves exhibited more than one peak or peaks with shoulders, mainly related to the variation of the nucleotide composition of the genes and the expected size of the amplicons. These results indicate that the melting curves of functional genes from environmental samples should be carefully evaluated, being in silico analyses a cost-effective way to identify inherent sequence diversity and avoid interpreting multiple peaks always as unspecific amplifications.


Subject(s)
Nitrogen , Soil Microbiology , Nitrogen/analysis , Phosphorus , Bacteria/genetics , Soil/chemistry , Real-Time Polymerase Chain Reaction
11.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6587-6595, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36604907

ABSTRACT

Based on the transcriptome data of Isatis indigotica, a total of 110 putative glycosytransferases were identified. Through prokaryotic expression and enzymic activity assay in vitro, a novel lignan glycosyltransferase gene was screened out and named IiUGT349, which catalyzed lariciresinol into lariciresinol-4-O-ß-D-glucoside and lariciresinol-4'-O-ß-D-glucoside. Bioinformatics analysis suggested that IiUGT349 contained an open reading frame(ORF) of 1 401 bp encoding a protein of 467 amino acids. A protein analysis indicated that IiUGT349 have a predecited molecular weight of 52.77 kDa and pI of 5.96. Phylogenetic analysis showed that IiUGT349 belonging to UGT90 family shared low amino acid sequence identity with the reported lignan glycosyltransferases, which may represent a novel type of lignan glycosyltransferases. Quantitative real-time PCR(qRT-PCR) analysis showed that IiUGT349 was expressed in roots, stems, young leaves and leaves, with the highest expression level in stems. Further biochemical analysis showed that the optimal reaction time of IiUGT349 recombinant protein was 12 h and the optimal temperature was 45 ℃. Subcellular localization demonstrated that IiUGT349 was located in the cytoplasm and nucleus of plants. In this study, a new glucosyltransferase gene IiUGT349 from I. indigotica belonging to the UGT90 family was cloned, which laid a foundation to further investigate its' function and elucidate the lignan glycosides biosynthesis pathway and plays an important role for great significance for the synthetic biology of active lignan glycosides.


Subject(s)
Isatis , Lignans , Cloning, Molecular , Glucosides/metabolism , Isatis/genetics , Isatis/chemistry , Lignans/metabolism , Phylogeny , Glycosyltransferases/metabolism
12.
Exp Parasitol ; 229: 108151, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34419412

ABSTRACT

Curcumin (diferuloylmethane) is the main phytochemical of Curcuma longa Linn, an extract of the rhizome turmeric. For thousands of years, turmeric among other natural products has been used as a dietary spice and as a medicinal plant in Asian countries. The present study reports the leishmanicidal activity of curcumin in different concentrations (10 µM, 20 µM, 40 µM). It is also showing the effect of CM11 peptide (8 µM) alone and in combination with curcumin (10 and 20 µM) as a leishmanicidal drug. The experiments were performed with the amastigote form of Leishmania major (MRHO/IR/75/ER) in vitro and the leishmanicidal activity was analyzed after 12 and 24 h of incubation by Giemsa and DAPI staining. Further investigation was done by using semi-quantitative PCR with new designed common primer pair derived from an 18S rRNA gene belonging to the L. major and mouse, which amplified the above-mentioned gene segments simultaneously with different PCR product size. Our findings showed that curcumin had leishmanicidal activity in a dose and time-dependent manner and its lowest effective dose was at concentrations of 40 µM afetr12 h and 10 µM after 24 h. The IC50 value of curcumin against amastigote forms of L. major was 21.12 µM and 11.77 µM after 12 and 24 h, respectively. Treatment of amastigote form with CM11 (8 µM) alone and in combination with curcumin (10 µM and 20 µM) showed less leishmanicidal activity. Interestingly, CM11 in combination with curcumin (10 µM and 20 µM) had even less leishmanicidal effect compared to curcumin alone in the same concentrations (10 µM and 20 µM). The semi-quantitative PCR analysis confirmed the data achieved by Giemsa and DAPI staining and showed that curcumin reduced the PCR product derived from amastigote form in concentration and time-dependent manner compared to the genome of the host cells.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Antiprotozoal Agents/pharmacology , Curcumin/pharmacology , Leishmania major/drug effects , Leishmaniasis, Cutaneous/drug therapy , Pore Forming Cytotoxic Proteins/pharmacology , Analysis of Variance , Animals , Antimicrobial Cationic Peptides/therapeutic use , Antiprotozoal Agents/therapeutic use , Curcumin/therapeutic use , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Iran , Leishmania major/genetics , Leishmania major/growth & development , Mice , Polymerase Chain Reaction , Pore Forming Cytotoxic Proteins/therapeutic use , RAW 264.7 Cells/parasitology
13.
Zhongguo Zhong Yao Za Zhi ; 46(1): 80-85, 2021 Jan.
Article in Chinese | MEDLINE | ID: mdl-33645055

ABSTRACT

To select suitable references gene of Polygonum multiflorum for gene expression analysis in different tissues, five candidate reference genes like Actin,GAPDH,SAND,PP2A,TIP41 were selected from the transcriptome data of P. multiflorum, then the specific primers were designed. The expression stability of the five reference genes in different tissues of P. multiflorum was analyzed by Real-time quantitative PCR through avilable analysis methods such as geNorm, NormFinder, BestKeeper, Delta CT and RefFinder, to ensure the reliability of the analysis results. The results showed that there were significant differences in the expression levels and stability of candidate genes in different tissues of P. multiflorum. Ct distribution analysis of the expression levels of candidate genes showed that the expression levels of Actin and GAPDH genes were relatively high in different tissues, while the expression levels of SAND, PP2A and TIP41 were lower. The stability of each candidate gene was analyzed by different methods. The results of geNorm analysis showed that the expression of PP2A and GAPDH was the most stable, the expression stability of SAND was the worst, the stability of PP2A was the highest in both NormFinder and Delta CT, the stability of SAND was the lowest, and the stability of Actin was the most stable in BestKeeper analysis. Through the comprehensive evaluation and analysis of the stability of candidate genes by RefFinder, it is concluded that the stability of PP2A gene is the highest, followed by GAPDH, Actin, TIP41, SAND, and SAND gene is the worst. Therefore, the PP2A gene is an ideal reference gene for the analysis of gene expression in different tissues of P. multiflorum.


Subject(s)
Fallopia multiflora , Genes, Plant , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/genetics , Real-Time Polymerase Chain Reaction , Reference Standards , Reproducibility of Results
14.
Arch Microbiol ; 203(5): 2365-2371, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33660021

ABSTRACT

Micro-RNA (miRNA) is a short stretch of nucleotides that can regulate many genes associated with the various stages of the hepatitis C virus (HCV) life cycle and disease progression. This study evaluates the expression profiling of miRNA-196a in naïve HCV-infected, and Sofosbuvir plus Daclatasvir-treated patients. MiRNA-196a can inhibit HCV replication by silencing the HCV NS5A protein or downregulating the human BACH-I mRNA. The expression level of miRNA-196a was determined by quantitative reverse transcription PCR (RT-qPCR) using the whole RNA extracted from the recruited participant's serum. Results showed a 0.83-fold decrease in the miRNA-196a level in naïve HCV-infected than controls. On the contrary, an increase in the expression level by 0.06-fold was observed in Sofosbuvir plus Daclatasvir-treated patients. A negative but significant correlation was recorded between the HCV-RNA load and miRNA-196a expression level in the naïve-infected patients. Serum miRNA-196a ROC curve analysis revealed an area under the curve of 0.8278 (95% CI 0.7033-0.9524, p < 0.0001) with 82.05% sensitivity and 76.19% specificity in discriminating the healthy controls from the HCV-infected samples. In conclusion, our study explored the comparative expression levels of miRNA-196a in HCV-infected and Sofosbuvir plus Daclatasvir patients. Further studies are needed to examine the possible role of miR-196a as a therapeutic agent for treating HCV-infected patients.


Subject(s)
Antiviral Agents/therapeutic use , Carbamates/therapeutic use , Hepatitis C/drug therapy , Imidazoles/therapeutic use , MicroRNAs/genetics , Pyrrolidines/therapeutic use , Sofosbuvir/therapeutic use , Valine/analogs & derivatives , Adult , Biomarkers/blood , Blood Chemical Analysis , Drug Therapy, Combination , Female , Hepacivirus , Hepatitis C/genetics , Host Microbial Interactions , Humans , Male , Middle Aged , RNA, Viral , ROC Curve , Real-Time Polymerase Chain Reaction , Valine/therapeutic use , Viral Load
15.
Phytomed Plus ; 1(2): 100027, 2021 May.
Article in English | MEDLINE | ID: mdl-35399819

ABSTRACT

Background: In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose: LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods: Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results: This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion: This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.

16.
Life Sci ; 267: 118878, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33358909

ABSTRACT

PURPOSE: The study aimed at isolating and identifying potential anti-quorum sensing (QS) compounds from Cinnamomum verum leaves against Pseudomonas aeruginosa. METHODOLOGY: Isolation of anti-QS compounds from C. verum leaf ethanol extract was carried out by column chromatography. The bioactive fraction was analysed by UV, IR, and GCMS spectroscopy. Various virulence assays were performed to assess the QS quenching ability of the purified compounds. In vivo toxicity of the purified compounds was examined in zebrafish model. The expression of the virulence genes was evaluated by qPCR analysis and in silico assessment was accomplished to check the binding ability of the compounds with the autoinducer molecule. KEY FINDINGS: The QS inhibitors isolated and identified showed a remarkable ability in reducing the production of elastase, pyocyanin, swarming motility and biofilm formation in P. aeruginosa. In the presence of the characterized compounds, the expression of virulence genes of P. aeruginosa was significantly reduced. Toxicity studies in zebrafish model indicated no effects on development and organogenesis at a concentration below 100 mg/l. Further, in silico analysis demonstrated the binding efficiency of the anti-QS compounds to AHL molecules, thus proving the QS quenching ability of the isolated compounds. SIGNIFICANCE: To the best of our knowledge this is the first report of isolation of anti-QS compounds from C. verum leaves against P. aeruginosa. The identified compounds qualify as potential QS antagonists. Further studies on these compounds can pave way for an effective and attractive anti-pathogenic therapy, to overcome the emergence of antibiotic resistance in bacteria.


Subject(s)
Cinnamomum zeylanicum/metabolism , Plant Extracts/pharmacology , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cinnamomum zeylanicum/chemistry , Cinnamomum zeylanicum/enzymology , Flavonoids/pharmacology , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Quorum Sensing/physiology , Virulence/genetics , Virulence Factors
17.
Methods Mol Biol ; 2223: 133-149, 2021.
Article in English | MEDLINE | ID: mdl-33226592

ABSTRACT

Mouse models of allergic conjunctivitis mimic various aspects of human allergic conjunctivitis. They are useful as acute models of allergic conjunctivitis to study immunological aspects of this condition. In this chapter, we will describe ragweed-pollen-induced experimental allergic conjunctivitis (mostly driven by adaptive immunity), and papain-soaked contact lens-induced experimental allergic conjunctivitis (mostly driven by innate immunity). Giemsa staining of histological sections is used for quantification of the number of infiltrating eosinophils, which is useful to evaluate the severity of the allergic inflammation. Immunohistochemical staining and quantitative PCR are used to clarify spatiotemporal expression of proinflammatory molecules in the conjunctival tissue. Flow cytometric analysis of conjunctival tissue is used for the detection of innate lymphoid cell type 2 (ILC2) in the ocular surface tissues.


Subject(s)
Ambrosia/immunology , Conjunctiva/drug effects , Conjunctivitis, Allergic/immunology , Disease Models, Animal , Lymphocytes/drug effects , Papain/administration & dosage , Adaptive Immunity/drug effects , Adjuvants, Immunologic/administration & dosage , Allergens/administration & dosage , Aluminum Hydroxide/administration & dosage , Ambrosia/chemistry , Animals , Biomarkers/metabolism , Conjunctiva/immunology , Conjunctiva/pathology , Conjunctivitis, Allergic/chemically induced , Conjunctivitis, Allergic/genetics , Conjunctivitis, Allergic/pathology , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/pathology , Female , Flow Cytometry/methods , Gene Expression , Immunity, Innate/drug effects , Immunoglobulin E/genetics , Immunoglobulin E/immunology , Interleukins/genetics , Interleukins/immunology , Lymphocytes/immunology , Lymphocytes/pathology , Mice , Mice, Inbred C57BL , Pollen/adverse effects , Pollen/immunology , Real-Time Polymerase Chain Reaction/methods
18.
Mitochondrial DNA A DNA Mapp Seq Anal ; 31(5): 173-177, 2020 07.
Article in English | MEDLINE | ID: mdl-32378441

ABSTRACT

In this study, a method was established for discriminating the true Cervus antlers from its counterfeits using TaqMan real-time quantitative PCR. The method combines the use of true Cervus antlers-specific primers, that amplify a 226 bp fragment from true Cervus antlers DNA, and mammalian-specific primers amplifying a 146 bp fragment from mammalian species DNA, which are used as endogenous control. A TaqMan probe that hybridizes in the 'Cervus antler' and also in the 'mammalian' DNA fragments is used to monitor the amplification of the target gene. The Cervus antler mitochondrial DNA was used as target gene to design the primers and TaqMan probes. The data revealed that the TaqMan real-time PCR-based assay can be used for identification of the true Cervus antlers from counterfeits in a single step. The limit of detection (LOD) was lower than 1 pg of DNA per reaction.


Subject(s)
Antlers/chemistry , DNA, Mitochondrial/genetics , Deer/classification , Mitochondria/genetics , Animals , Deer/genetics , Limit of Detection , Medicine, Chinese Traditional , Real-Time Polymerase Chain Reaction
19.
Sheng Wu Gong Cheng Xue Bao ; 36(2): 362-371, 2020 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-32148008

ABSTRACT

Solanum tuberosum Zinc transporter 11 (StZnT11) is very important for maintaining zinc homeostasis in cells. The study on the expression of StZnT11 under abiotic stress and biotic stress laid a foundation for verifying the role of potato StZnT11 in the process of biotic stress of Ralstonia solanacearum species complex. According to the designated EST sequence, the homology of the original sequence was analyzed by using the Blast tool in NCBI, and a homologous object sequence with the highest similarity, coverage and e expectation value was selected. StZnT11 gene is obtained by Silico Cloning. The sequence and coding amino acid composition, physicochemical properties, molecular evolution, phosphorylation site and advanced structure of Solanum tuberosum StZnT11 gene were analyzed by bioinformatics method. The results showed that the cDNA gene is 1 300 bp in length, encoding a protein containing 348 amino acid residues, including 23 phosphorylation sites, one signal peptide and nine transmembrane regions, and is a hydrophobic protein located the plasma membrane. Through amino acid sequence alignment, StZnT11 protein has a high homology with zinc transporter from tobacco, tomato, pepper and other plants. The results of real-time fluorescence quantitative polymerase chain reaction showed that, StZnT11 is up-regulated by different concentrations of exogenous plant hormone abscisic acid (ABA). Tissue localization showed that StZnT11 was mainly expressed in specific tissues (phloem and leaf vascular bundles of stem vascular system). These results provide a theoretical basis for further experimental cloning and functional verification of the gene.


Subject(s)
Solanum tuberosum , Amino Acid Sequence , Carrier Proteins , Cloning, Molecular , Computational Biology , Gene Expression Regulation, Plant , Plant Proteins
20.
Gen Comp Endocrinol ; 285: 113250, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31445009

ABSTRACT

Seasonally breeding animals initiate gonadal recrudescence when mechanisms that suppress reproduction give way to mechanisms that stimulate it. However, knowledge of mechanistic changes in hormonal regulation during this transition is limited. Further, most studies of reproductive timing have focused on males, despite the critical role of females in determining breeding phenology. Closely related populations that live in the same environment but differ in reproductive timing provide an opportunity to examine differences in mechanisms during the transition from the pre-reproductive to reproductive state. We studied closely related migrant and resident populations of dark-eyed juncos (Junco hyemalis) that reside in the same environment in spring but differ in breeding phenology. Residents initiate breeding earlier than migrants, which do not breed until after they have migrated. To directly study differences in the hypothalamic mechanisms of reproduction, we captured 16 migrant and 13 resident females from the field on March 25-April 11. We quantified expression of mRNA transcripts and show that resident females had higher abundance of gonadotropin-releasing hormone transcripts than migrant females, indicating greater reproductive development in resident than migrant females living in the same environment. We also found higher transcript abundance of estrogen receptor and androgen receptor in migrant than resident females, suggesting that negative feedback may delay reproductive development in migrant females until after they migrate. These differences in hypothalamic mechanisms may help to explain differences in reproductive timing in populations that differ in migratory strategy.


Subject(s)
Animal Migration/physiology , Neurosecretory Systems/metabolism , Seasons , Songbirds/physiology , Sympatry/physiology , Animals , Female , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Linear Models , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL