ABSTRACT
This study aims to investigate the impact of Kuntai Capsules(KTC) on polycystic ovarian syndrome(PCOS) rat models and explore the underlying mechanism. Fifty female SD rats were randomly divided into five groups(10 rats in each group), including control group, model group, low-, medium-, and high-dose KTC group. Except for the control group, the other groups were injected with dehydroepiandrosterone(DHEA) combined with a high-fat diet(HFD) to induce the PCOS rat model for 28 days. 0.315, 0.63, and 1.26 g·kg~(-1)·d~(-1) KTC was dissolved in the same amount of normal saline and given to low-, medium-, and high-dose KTC groups by gavage. Both control group and model group were given the same amount of normal saline for 15 days. After administration, fasting blood glucose(FBG) was measured by a glucose meter. Fasting insulin(FINS), luteinizing hormone(LH), testosterone(T), and follicle-stimulating hormone(FSH) were detected by enzyme-linked immunosorbent assay(ELISA), and LH/FSH ratio and insulin resistance index(HOMA-IR) were calculated. The pathological morphology of ovarian tissue was observed by hematoxylin-eosin(HE) staining. The expression levels of collagen α type â ¢ 1 chain(COL3A1), apoptotic factors Bax, and Bcl-2 were detected using Western blot and immunofluorescence. The mRNA expressions of COL3A1, Bax, and Bcl-2 in ovarian tissue were performed by real-time PCR(RT-PCR). The results show that compared with the control group, the body weight, serum levels of FBG, FINS, LH, T, LH/FSH, and HOMA-IR are higher in model group(P<0.05 or P<0.01), and the level of FSH is lower(P<0.05). In model group, a large number of white blood cells are found in the vaginal exfoliated cells, mainly in the interictal phase. There are more cystic prominences on the surface of the ovary. The thickness of the granular cell layer is reduced, and oocytes are absent. COL3A1 and Bax protein expression levels are increased(P<0.01), while Bcl-2 protein expression levels are decreased(P<0.05) in the ovarian tissue COL3A1 and Bax mRNA expression levels are increased in ovarian tissue(P<0.05). Compared with the model group, the body weight, FBG, FINS, LH, T, LH/FSH, and HOMA-IR in low-, medium-, and high-dose KTC groups are decreased(P<0.05 or P<0.01), while the levels of FSH in medium-, and high-dose KTC groups are increased(P<0.05 or P<0.01). Low-, medium-, and high-dose KTC groups gradually show a stable interictal phase. The surface of the ovary is smooth. Oocytes and mature follicles can be seen in ovarian tissue, and the thickness of the granular cell layer is increased. The expression level of COL3A1 protein decreases in low-and medium-dose KTC groups(P<0.05 or P<0.01), and that of Bax protein decreases in low-dose KTC group(P<0.05 or P<0.01), and the expression level of Bcl-2 protein increases in low-dose KTC group(P<0.01). The expression levels of COL3A1 and Bax mRNA decreased in the low-dose KTC group(P<0.05), while the expression levels of Bcl-2 mRNA increased(P<0.05). In summary, KTC can inhibit ovarian granulosa cell apoptosis and reduce follicular atresia by regulating the AGE-RAGE signaling pathway. It can promote insulin secretion, reduce blood sugar and body weight, restore serum hormone levels, improve symptoms of PCOS, alleviate morphological damage of the ovary, and restore ovarian function, which is of great value in the treatment of PCOS.
Subject(s)
Polycystic Ovary Syndrome , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , bcl-2-Associated X Protein , Saline Solution , Rats, Sprague-Dawley , Follicular Atresia , Signal Transduction , Body Weight , Follicle Stimulating Hormone , RNA, MessengerABSTRACT
OBJECTIVES: The herbs in Tao Hong Si Wu Decoction (THSWD) are beneficial in the treatment of cognitive impairment. However, the underlying mechanisms of THSWD in treating diabetes-associated cognitive dysfunction (DACD) are not entirely explored. This study is aimed to investigate the therapeutic effects of THSWD in DACD model rats and the underlying mechanism. METHODS: Ultra-high-phase liquid chromatography was employed to identify the main compounds contained in the THSWD extract. DACD rat model was induced by feeding with a high-sugar and high-fat diet and injecting streptozotocin (35 mg/kg). DACD rats were gavaged with THSWD for 1 week. The learning and memory abilities of the rats were measured by using the Morris water maze. Western blotting was used to detect the changes in DACD rat targets. Statistical methods were used to evaluate the correlation between proteins. RESULTS: The results show that THSWD effectively reduced the escape latency, hippocampal neuron damage, glycosylated hemoglobin, type A1C, and blood lipid levels in DACD rats. Furthermore, DACD rats showed significantly increased amyloid precursor protein, ß-secretase, Aß1-40 , Aß1-42 , Tau phosphorylation, and advanced glycation end products (AGEs) expression. However, THSWD treatment can reverse this phenomenon. CONCLUSIONS: THSWD can improve the learning and memory abilities of DACD rats by inhibiting the expression of AEGs-AGE receptors pathway, which provides an experimental basis for the clinical application of THSWD. In addition, the experiment combines pharmacological and statistical methods, which offers a new perspective for the study of Chinese herbal medicine.
Subject(s)
Cognitive Dysfunction , Diabetes Mellitus , Drugs, Chinese Herbal , Humans , Rats , Animals , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Plaque, Amyloid , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiologyABSTRACT
Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.
Subject(s)
Spirulina , Male , Mice , Animals , Spirulina/chemistry , Mice, Obese , Zinc , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Diet, High-Fat/adverse effects , Disease Models, AnimalABSTRACT
Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.
Subject(s)
Diabetes Mellitus, Type 2 , Vitamin D Deficiency , Humans , Glycated Hemoglobin , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/epidemiology , Cross-Sectional Studies , Vitamin D/therapeutic use , Vitamins , Dietary Supplements , Observational Studies as TopicABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE: This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS: The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-ß1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS: TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION: The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.
Subject(s)
Glycosides , Proteomics , Mice , Animals , Glycosides/pharmacology , Glycosides/metabolism , Liver Cirrhosis/metabolism , Liver , Gene Expression Profiling , Hepatic Stellate Cells , Transforming Growth Factor beta1/metabolismABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Alpinia officinarum Hance is a perennial natural medicine herbivorous plant, has been used in the management of treat stomach pain and diabetes, it is abundantly cultivated in Qiongzhong, Baisha and other places. P. cablin (Blanco) Benth, one of the most important traditional Chinese plants, which plays functions in antioxidant and gastrointestinal regulation, has been extensively planted in Hainan, Guangdong and other regions. AIM OF THE STUDY: In this study, we investigated the role and underlying molecular mechanism of AP on diabetic gastroparesis (DGP) in vitro and in vivo. MATERIALS AND METHODS: In this study, using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS) to identify active compounds in A. officinarum Hance-P. cablin (Blanco) Benth drug pair (AP). Molecular docking were utilized to explore the potential mechanism of AP treatment of DGP. In in vitro assays, gastric smooth muscle cells (GSMCs) were treated with 35 mM glucose to promote apoptosis and construct the DGP model, which was treated with different concentrations of AP. Furthermore, transfection technology was used to overexpress RAGE in GSMCs and elucidate the underlying mechanisms of alleviation of DGP by AP. RESULTS: Using UPLC-MS/MS analysis, nine components of AP were identified. We found that AP effectively blocked the increase in apoptosis, oxidative stress, and intracellular Ca2+ concentrations. For in vivo experiments, mice were fed with a high-fat irregular diet to construct DGP model, and AP was co-administered via oral gavage daily to prevent the development of DGP. Compared with DGP mice, AP significantly decreased fasting blood glucose levels and increased gastric emptying levels. Consistent with in vitro experiments, AP also considerably decreased the increase in oxidative stress in DGP mice. Mechanistically, AP alleviates apoptosis and DGP by decreasing oxidative stress and intracellular Ca2+ concentrations via the inhibition of the AGE/RAGE axis. CONCLUSIONS: Collectively, this study has established that AP can improve DGP, and the mechanism may be related to the inhibition the AGE/RAGE axis to mitigate apoptosis and DGP. To summarize, this study provides a novel supplementary strategy for DGP treatment.
Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Gastroparesis , Rats , Mice , Animals , Gastroparesis/drug therapy , Chromatography, Liquid , Molecular Docking Simulation , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Apoptosis , Oxidative StressABSTRACT
The increased prevalence of neurological illnesses is a burgeoning challenge to the public healthcare system and presents greater financial pressure. Formononetin, an O-methylated isoflavone, has gained a lot of attention due to its neuroprotective potential explored in several investigations. Formononetin is widely found in legumes and several types of clovers including Trifolium pratense L., Astragalus membranaceus, Sophora tomentosa, etc. Formononetin modulates various endogenous mediators to confer neuroprotection. It prevents RAGE activation that results in the inhibition of neuronal damage via downregulating the level of ROS and proinflammatory cytokines. Furthermore, formononetin also increases the expression of ADAM-10, which affects the pathology of neurodegenerative disease by lowering tau phosphorylation, maintaining synaptic plasticity, and boosting hippocampus neurogenesis. Besides these, formononetin also increases the expression of antioxidants, Nrf-2, PI3K, ApoJ, and LRP1. Whereas, reduces the expression of p65-NF-κB and proinflammatory cytokines. It also inhibits the deposition of Aß and MAO-B activity. An inhibition of Aß/RAGE-induced activation of MAPK and NOX governs the protection elicited by formononetin against inflammatory and oxidative stress-induced neuronal damage. Besides this, PI3K/Akt and ER-α-mediated activation of ADAM10, ApoJ/LRP1-mediated clearance of Aß, and MAO-B inhibition-mediated preservation of dopaminergic neurons integrity are the major modulations produced by formononetin. This review covers the biosynthesis of formononetin and key molecular pathways modulated by formononetin to confer neuroprotection.
Subject(s)
Isoflavones , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Phytoestrogens , Neuroprotection , Phosphatidylinositol 3-Kinases/metabolism , Neurodegenerative Diseases/drug therapy , Cell Line, Tumor , Isoflavones/pharmacology , Cytokines , Monoamine Oxidase , Neuroprotective Agents/pharmacologyABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Fei-Yan-Qing-Hua decoction (FYQHD), derived from the renowned formula Ma Xing Shi Gan tang documented in Zhang Zhong Jing's "Treatise on Exogenous Febrile Disease" during the Han Dynasty, has demonstrated notable efficacy in the clinical treatment of pneumonia resulting from bacterial infection. However, its molecular mechanisms underlying the therapeutic effects remains elusive. AIM OF THE STUDY: This study aimed to investigate the protective effects of FYQHD against lipopolysaccharide (LPS) and carbapenem-resistant Klebsiella pneumoniae (CRKP)-induced sepsis in mice and to elucidate its specific mechanism of action. MATERIALS AND METHODS: Sepsis models were established in mice through intraperitoneal injection of LPS or CRKP. FYQHD was administered via gavage at low and high doses. Serum cytokines, bacterial load, and pathological damage were assessed using enzyme-linked immunosorbent assay (ELISA), minimal inhibitory concentration (MIC) detection, and hematoxylin and eosin staining (H&E), respectively. In vitro, the immunoregulatory effects of FYQHD on macrophages were investigated through ELISA, MIC, quantitative real-time PCR (Q-PCR), immunofluorescence, Western blot, and a network pharmacological approach. RESULTS: The application of FYQHD in the treatment of LPS or CRKP-induced septic mouse models revealed significant outcomes. FYQHD increased the survival rate of mice exposed to a lethal dose of LPS to 33.3%, prevented hypothermia (with a rise of 3.58 °C), reduced pro-inflammatory variables (including TNF-α, IL-6, and MCP-1), and mitigated tissue damage in LPS or CRKP-induced septic mice. Additionally, FYQHD decreased bacterial load in CRKP-infected mice. In vitro, FYQHD suppressed the expression of inflammatory cytokines in macrophages activated by LPS or HK-CRKP. Mechanistically, FYQHD inhibited the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby suppressing the translational level of inflammatory cytokines. Furthermore, it reduced the expression of HMGB1/RAGE, a positive feedback loop in the inflammatory response. Moreover, FYQHD was found to enhance the phagocytic activity of macrophages by upregulating the expression of phagocytic receptors such as CD169 and SR-A1. CONCLUSION: FYQHD provides protection against bacterial sepsis by concurrently inhibiting the inflammatory response and augmenting the phagocytic ability of immune cells.
Subject(s)
HMGB1 Protein , Sepsis , Mice , Animals , Lipopolysaccharides/pharmacology , HMGB1 Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Cytokines/metabolism , Phagocytosis , Sepsis/drug therapyABSTRACT
BACKGROUND: Hypericum perforatum L. (HPL) is a potential traditional Chinese medicine. It could promotes menopausal 'kidney-yin deficiency syndrome' that characterized by renal function decline. However, its potential pharmacological effect and mechanism remains unknown. OBJECTIVE: The aim of this study was to investigate whether HPL can improve menopausal renal function decline and to explore its mechanism of action. METHODS: The mainly ingredients of HPL were identified using UPLC-Q-TOF-MS/MS approach, and the potential therapeutic targets of HPL for renal function decline were chose via network pharmacology technique. The key therapeutic metabolites were selected through non-targeted metabolomic and chemometric methods. Then, the network were constructed and the key targets and metabolites were screened. At last, the validation experiments and mechanism exploring were adopted by using Immunofluorescence, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and western blotting assays. RESULTS: mainly ingredients of HPL were identified and determined 17 compounds and 29 targets were chose as mainly active compounds and potential therapeutic targets. Based on OVX induced renal decline rat model, after chemometric analysis, 59 endo-metabolites were selected as key therapeutic metabolites, and AGE-RAGE signal pathway in diabetes complications was enriched as the key pathway. By constructing a "disease-component-target" network, Hyperoside, Quercetrin, and quinic were selected as the key therapeutic compounds, and the AKT1 and NOS3 were selected as the key therapeutic targets. The results of ELISA, RT-PCR and western blot experiments indicated that HPL could rescue the abnormal expressions both of AKT1 and NOS3, as well as their related metabolites distortion. CONCLUSION: Our findings indicated that HPL regulated expression of AKT1 and NOS3 through modulating AGE-RAGE signaling pathway in OVX stimulated rats` renal dysfunction, implicating the potential values of HPL in menopause syndromes therapy.
Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Hypericum , Female , Humans , Animals , Rats , Tandem Mass Spectrometry , Metabolomics , Kidney , Ovariectomy , Plant Oils , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Nitric Oxide Synthase Type IIIABSTRACT
Based on UPLC-Q-orbitrap-MS and biological network analysis tools, the mechanism of Xihuang Pill in improving hyperplasia of mammary glands was systematically analyzed. The rat model of hyperplasia of mammary glands was established by intramuscular injection of estradiol benzoate and progesterone. LC-MS tissue metabolomics was used to explore the key metabolites and metabolic pathways of Xihuang Pill in improving hyperplasia of mammary glands in rat. The network analysis of the key metabolites regulated by Xihuang Pill was carried out by integrating biological network analysis tools, focusing on the key metabolic pathways, and exploring the potential targets of Xihuang Pill to improve hyperplasia of mammary glands. Compared with the control group, there were significant differences in the content of 49 differential metabolites in the tissues of the model group (P < 0.05). Xihuang Pills could significantly call back 17 metabolites such as L-alanine, threonine, indole-3-carboxylic aldehyde, lysine, arginine, alanylleucine, glycyltyrosine, γ-glutamyl leucine, vitamin B3, serine leucine, threonine leucine, isoleucine glutamic acid, γ-glutamyl tyrosine, decanoyl-L-carnitine, uric acid, leucylleucine, S-adenosyl-methionine. Further network analysis and literature research on the key metabolites regulated by Xihuang Pills showed that the AGE-RAGE signaling pathway may be one of the important pathways for Xihuang Pills to improve hyperplasia of mammary glands. STAT3, MAPK1, EGFR, CASP3, CASP8, PRKCA and JUN in the AGE-RAGE signaling pathway may be potential targets for Xihuang Pills to improve hyperplasia of mammary glands. The animal experiment operations involved in this paper follow the provisions of the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine and pass the ethical review of animal experiments (approval number: 2022-705).
ABSTRACT
The striatum (Str) is injured 20 min after permanent ischemic stroke, leading to neurological deficits. Here, we aimed to explore the effect of electroacupuncture (EA) on ischemic stroke and elucidate the possible underlying mechanism. Rat permanent middle cerebral artery occlusion (pMCAO) model, EA treatment, sham-EA (SEA) treatment, beam-balance test, hematoxylin and eosin (HE) staining, Nissl staining, immunofluorescence staining, and Western blot were used to investigate the role of EA in pMCAO. The results showed that balance ability and motor coordination were obviously injured after pMCAO. EA improved balance ability and motor coordination in pMCAO rats. EA reduced striatal injury by reducing the expression of high-mobility group box 1(HMGB1)/receptor for advanced glycation end products (RAGE)/phosphorylated C-Jun N-terminal kinase (p-JNK), whereas SEA did not. Thus, EA plays a neuroprotective role during pMCAO injury, which may be related to the inhibition of HMGB1/RAGE/p-JNK expression.
Subject(s)
Brain Ischemia , Electroacupuncture , HMGB1 Protein , Ischemic Stroke , Rats , Animals , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products/metabolism , MAP Kinase Signaling System , Electroacupuncture/methods , JNK Mitogen-Activated Protein Kinases/metabolism , HMGB1 Protein/metabolism , Infarction, Middle Cerebral Artery/therapy , Brain Ischemia/therapyABSTRACT
Dendrobium mixture (DM) is a patented Chinese herbal medicine which has been shown to ameliorate type 2 diabetes mellitus (T2DM) with non-alcoholic fatty liver disease (NAFLD) in vivo and in vitro. We aimed to investigate the underlying mechanism of DM as a therapeutic agent in attenuating liver steatosis in relation to type 2 diabetes mellitus (T2DM). DM (16.2 g/kg/d) was administered to db/db mice for 4 weeks. The db/m mice and db/db mice in the control and model groups were given normal saline. Additionally, DM (11.25 g/kg/d) was administered to Sprague-Dawley (SD) rats, and the serum was collected and used in an experiment involving palmitic acid (PA)-induced human liver HepG2 cells with abnormal lipid and glucose metabolism. In db/db mice, the administration of DM significantly alleviated liver steatosis, including histological damage and cell apoptosis. DM was found to prevent the upregulation of the RAGE and AKT1 proteins in liver tissues. The underlying mechanism of DM was further studied in PA-induced HepG2 cells. Post-DM administration serum from SD rats reduced lipid accumulation and regulated glucose metabolism in HepG2 cells. Consequently, it inhibited RAGE/AKT signaling and restored autophagy activity. The upregulated autophagy was associated with the mTOR-AMPK signaling pathway. Furthermore, post-DM administration serum reduced apoptosis of hepatocytes in PA-induced HepG2 cells. Our study supports the potential use of DM as a therapeutic agent for the treatment of NAFLD in T2DM. The mechanism underlying this therapeutic potential is associated with the downregulation of the AGE/RAGE/Akt signaling pathway.
ABSTRACT
The purpose of this study is to investigate the therapeutic effect of Qi Fu Yin (QFY) on Alzheimer's disease (AD) both computationally and experimentally. Network pharmacology analysis and molecular docking were conducted to identify potential targets and signaling pathways involved in QFY treating AD. Streptozotocin-induced AD rat model was used to verify important targets and predicted pathways. The components of QFY were identified using liquid chromatography-tandem mass spectrometry. The results indicate that the potential targets of QFY are highly enriched for anti-inflammatory pathways. Molecular docking analysis revealed stable structures formed between QFY's active compounds, including stigmasterol, ß-sitosterol, and isorhamnetin, and the identified targets. In vivo, QFY improved cognitive memory in AD rats and reduced the mRNA expression levels of toll-like receptor 4 (TLR4), the receptor for advanced glycation end products (AGER), and the inflammatory factors interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the brains of AD rats. Furthermore, QFY effectively reduced nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited NF-κB and microglia activation. In conclusion, QFY can ameliorate neuroinflammation in AD model rats, partly via the inhibition of TLR4 and RAGE/NF-κB pathway and microglia activation, thereby enhancing learning and memory in AD model rats.
Subject(s)
Alzheimer Disease , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Neuroinflammatory Diseases , Molecular Docking Simulation , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Background: The high-mobility group box 1 (HMGB1)/receptor for advanced glycation end products (RAGE) signaling pathway holds promise as a potential therapeutic target for ischemic brain injury. The effects of FPS-ZM1 and electroacupuncture (EA) on activation of the HMGB1/RAGE signaling pathway after cerebral ischemia remain uncertain. Methods: Middle cerebral artery occlusion (MCAO) model was established. Neurological function was assessed using Longa scores. Nissl staining was used to observe the morphology of neurons. The expression levels of HMGB1 and RAGE were assayed with immunofluorescence staining and western blot. Results: The results showed that EA and FPS-ZM1 could reduce the neural function score and neurons cell injury in cerebral ischemia rats by inhibiting the expression of HMGB1 and RAGE in primary motor cortex (M1) region. In addition, EA combined with FPS-ZM1 had a better therapeutic effect. Conclusions: The HMGB1/RAGE pathway could be activated after cerebral ischemia. Both EA and FPS-ZM1 improved neurological deficits and attenuated neuronal damage in rats. They had synergistic effects. These interventions were observed to mitigate brain damage by suppressing the activation of HMGB1/RAGE.
ABSTRACT
BACKGROUND: Fuzi-Gancao herb couple is one of the most common herb couples involved in the TCM formula, which was used for the treatment of chronic diseases. The herb couple has a hepatoprotective effect. However, its main components and therapeutic mechanism are not yet clear. This study aims to elucidate the therapeutic effect and mechanism of the Fuzi-Gancao herb couple on NAFLD from animal experiments, network pharmacology, and molecular docking. METHODS: 60 Male C57BL/6 mice (20 g ± 2 g) were randomly divided into six groups including the blank group (n=10) and NALFD group (n=50). The mice of the NALFD group were fed with a high-fat diet for 20 weeks to establish the NAFLD model and the NALFD mice were randomly divided into five groups including positive group (berberine), model group and F-G groups with three dosages (0.257, 0.514, 0.771 g/kg) (n=10). After 10 weeks of administration, the serum was collected for the analysis of ALT, AST, LDL-c, HDL-c, and TC, and liver tissues were collected for pathological analysis. The TCMAS database was used to collect the main components and targets of the Fuzi-Gancao herb couple. The GeneCards database was used to collect NAFLD-related targets, and the key targets were obtained by intersecting with herbal targets. The disease-component-target relationship diagram was constructed by Cytoscape 3.9.1. The obtained key targets were imported into the String database to obtain the PPI network, and imported into the DAVID database for KEGG pathway analysis and GO analysis. Finally, the key targets and key gene proteins were imported into Discovery Studio 2019 for molecular docking verification. RESULTS: In this study, H-E staining indicated the pathological changes of liver tissue in Fuzi-Gancao groups were significantly improved, and the levels of AST, ALT, TC, HDL-c, and LDL-c in serum of Fuzi-Gancao groups decreased in a dose-dependent manner, compared with the model group. 103 active components and 299 targets in the Fuzi-Gancao herb couple were confirmed in the TCMSP database and 2062 disease targets in NAFLD were obtained. 142 key targets and 167 signal pathways were screened, such as the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and so on. The main bioactive ingredients of Fuzi-Gancao herb couple in the treatment of NAFLD are quercetin, kaempferol, naringenin, inermine, (R)-norcoclaurine, isorhamnetin, ignavine, 2,7-Dideacetyl-2,7-dibenzoyl-taxayunnanine F, glycyrol mainly involving IL6, AKT1, TNF, TP53, IL1B, VEGFA and other core targets. Molecular docking analysis indicated that there is a good affinity between the key components and the key targets. CONCLUSION: This study preliminarily explained the main components and mechanism of the Fuzi-Gancao herb couple in the treatment of NAFLD and provided an idea for subsequent research.
ABSTRACT
Exposure to methylglyoxal (MGO) increases the levels of receptor for advanced glycation end products (RAGE) and reactive-oxygen species (ROS) in mouse airways, exacerbating the inflammatory responses. Metformin scavenges MGO in plasma of diabetic individuals. We investigated if amelioration by metformin of eosinophilic inflammation reflects its ability to inactivate MGO. Male mice received 0.5% MGO for 12 weeks together or not with 2-week treatment with metformin. Inflammatory and remodeling markers were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissues of ovalbumin (OVA)-challenged mice. MGO intake elevated serum MGO levels and MGO immunostaining in airways, which were reduced by metformin. The infiltration of inflammatory cells and eosinophils and levels of IL-4, IL-5 and eotaxin significantly increased in BALF and/or lung sections of MGO-exposed mice, which were reversed by metformin. The increased mucus production and collagen deposition by MGO exposure were also significantly decreased by metformin. In MGO group, the increases of RAGE and ROS levels were fully counteracted by metformin. Superoxide anion (SOD) expression was enhanced by metformin. In conclusion, metformin counteracts OVA-induced airway eosinophilic inflammation and remodeling, and suppresses the RAGE-ROS activation. Metformin may be an option of adjuvant therapy to improve asthma in individuals with high levels of MGO.
Subject(s)
Metformin , Male , Mice , Animals , Ovalbumin/adverse effects , Metformin/pharmacology , Metformin/therapeutic use , Pyruvaldehyde , Reactive Oxygen Species/metabolism , Magnesium Oxide , Inflammation/drug therapy , Lung/metabolism , Bronchoalveolar Lavage Fluid , Receptor for Advanced Glycation End Products , Airway Remodeling , Mice, Inbred BALB C , Disease Models, AnimalABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Plantaginis Semen-Coptidis Rhizoma Compound(CQC) was first recorded in Shengji Zonglu. Clinical and experimental studies have reported that both of Plantaginis Semen and Coptidis Rhizoma exerted the effects of lowering blood glocose and lipid. However, the potential mechanism of CQC on type 2 diabetes (T2DM) remain unclear. AIM OF THE STUDY: The main objective of our investigation was to explore the mechanisms of CQC on T2DM based on network pharmacology and experimental research. MATERIALS AND METHODS: Streptozotocin(STZ)/high fat diet(HFD)-induced T2DM models in mice were established to evaluate the antidiabetic effect of CQC in vivo. We obtained the chemical constituents of Plantago and Coptidis from the TCMSP database and literature sources. Potential targets of CQC were gleaned from the Swiss-Target-Prediction database, and T2DM targets were obtained from Drug-Bank, TTD, and DisGeNet. A protein-protein interaction (PPI) network was constructed in the String database. The David database was used for gene ontology (GO) and KEGG pathway enrichment analyses. We then verified the potential mechanism of CQC that were predicted by network pharmacological analysis in STZ/HFD-induced T2DM mouse model. RESULTS: Our experiments confirmed that CQC improved hyperglycemia and liver injury. We identified 21 components and gleaned 177 targets for CQC treatment of T2DM. The core component-target network included 13 compounds and 66 targets. We further demonstrated that CQC improve T2DM through various pathways, especially the AGEs/RAGE signal pathway. CONCLUSION: Our results indicated that CQC could improve the metabolic disorders of T2DM and it is a promising TCM compound for the treatment of T2DM. The potential mechanism may probably involve the regulation of the AGEs/RAGE signaling pathway.
Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Hyperglycemia , Animals , Mice , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Seeds , Streptozocin , Glycation End Products, Advanced , Molecular Docking SimulationABSTRACT
Anti-Alzheimer's disease (AD) drugs can only change the symptoms of cognitive impairment in a short time but cannot prevent or completely cure AD. Thus, a more effective drug is urgently needed. Cornuside is extracted from Corni Fructus, a traditional Chinese medicine that plays an important role in treating dementia and other age-related diseases. Thus, the study aimed to explore the effects and mechanisms of Cornuside on the D-galactose (D-Gal) induced aging mice accompanied by cognitive decline. Initially, we found that Cornuside improved the learning and memory abilities of D-Gal-treated mice in behavioral experiments. Pharmacological experiments indicated that Cornuside acted on anti-oxidant and anti-inflammatory effects. Cornuside also reversed acetylcholin esterase (AChE) activity. Meanwhile, pathology tests showed that Cornuside had a protective effect on neuron damage. Cornuside increased the expression of brain-derived neurotrophic factor (BDNF), and down-regulated the expression of receptor for advanced glycosylation end products (RAGE), ionized calcium binding adapter molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) respectively. Further studies claimed that Cornuside had important effects on the expression of IκBα and extracellular signal-regulated kinases 1/2 (ERK1/2). These effects might be achieved through regulating the AGEs-RAGE-IκBα-ERK1/2 signaling pathway, among which, ERK1/2 might be the key protein. The study provides direct preclinical evidence for the research of Cornuside, which may become an excellent candidate drug for the treatment of aging-related AD.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Animals , MAP Kinase Signaling System , Oxidative Stress , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/pharmacology , NF-KappaB Inhibitor alpha/therapeutic use , Signal Transduction , Aging , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/chemically induced , Brain , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Glycation End Products, Advanced/metabolism , Galactose/adverse effectsABSTRACT
In this study, we probed into the related mechanism underlying the role of Tanshinone IIA (TIIA) in RA fibroblast-like synoviocytes (RA-FLSs). We constructed a mouse model of RA using the collagen-induced arthritis (CIA) method. Gain- or loss-of-function approaches were used to manipulate matrix metalloproteinase9 (MMP9), receptor for advanced glycation end product (RAGE), and toll-like receptor 9 (TLR9) in both CIA mice and RA-FLSs following treatment with TIIA to study the in vivo and in vitro effect of TIIA through analysis of cell viability, and measurement of autophagy and inflammatory proteins as well as severity of RA. In vitro and in vivo animal experiments results showed that TIIA could inhibit the proliferation of RA-FLSs and affect autophagy, thereby improving the symptoms of RA in mice. Mechanically, TIIA could inhibit the expression of MMP9 in RA-FLSs, thereby inhibiting the shedding of RAGE and thus inhibiting the activation of TLR9. Finally, animal experiments confirmed that TIIA affected autophagy by regulating the MMP9/RAGE/TLR9 axis, and finally improve the symptoms of RA in mice. Conclusively, TIIA may inhibit expression of MMP9 to suppress the combination of RAGE and TLR9, thereby inhibiting RA-FLS proliferation and affecting autophagy, eventually improve the RA.
Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Animals , Mice , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Toll-Like Receptor 9/metabolism , Receptor for Advanced Glycation End Products , Matrix Metalloproteinase 9/metabolism , Fibroblasts , AutophagyABSTRACT
BACKGROUND: Wumei Wan (WMW) has been used to address digestive disorder for centuries in traditional Chinese medicine. Previous studies have demonstrated its anti-colitis efficacy, but the underlying mechanism of its action remains to be further clarified. PURPOSE: To investigate the underlying mechanisms of WMW in the treatment of chronic ulcerative colitis (UC) through network pharmacology and experimental validation. METHODS: Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform were used to identify the ingredients and potential targets of WMW. The microarray gene data GSE75214 datasets from GEO database was used to define UC-associated targets. Cytoscape3.7.2 was employed to construct the protein-protein interaction (PPI) network and compounds-disease targets network. GO enrichment analysis and KEGG pathway analysis were performed by R software for functional annotation. UPLC-TOF-MS/MS method was used to quantitatively analyze the active ingredients of WMW. For experimental validation, three cycles of 2% dextran sulfate sodium salt (DSS) were used to construct chronic colitis model. The hub targets and signal pathway were detected by qPCR, ELISA, western blotting , immunohistochemical and immunofluorescence. RESULTS: Through network analysis, 104 active ingredients were obtained from WMW, and 47 of these ingredients had potential targets for UC. A total of 41 potential targets of WMW and 13 hub targets were identified. KEGG analysis showed that WMW involved in advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE) signaling pathway. Taxifolin, rutaecarpine, kaempferol, quercetin, and luteolin of WMW were the more highly predictive components related to the AGE-RAGE signaling pathway. In vivo validation, WMW improved DSS-induced colitis, reduced the expression of inflammatory cytokines and chemokines. Notably, it significantly decreased the mRNA expression of Spp1, Serpine1, Mmp2, Mmp9, Ptgs2, Nos2, Kdr and Icam1, which were associated with angiogenesis. In addition, we confirmed WMW inhibited RAGE expression and diminished DSS-induced epithelial barrier alterations CONCLUSION: Our results initially demonstrated the effective components and the strong anti-angiogenic activity of WMW in experimental chronic colitis. Sufficient evidence of the satisfactory anti-colitis action of WMW was verified in this study, suggesting its potential as a quite prospective agent for the therapy of UC.